
SLAM in O(log n) with the Combined Kalman - Information Filter

César Cadena, Student Member, IEEE and José Neira, Senior Member, IEEE

Abstract— In this paper we show that SLAM can be executed
in as low as O(log n) per step. Our algorithm, the Combined
Filter SLAM, uses a combination of Extended Kalman and
Extended Information filters in such a way that the total cost
of building a map can be reduced to O(n log n), as compared
with O(n3) for standard EKF SLAM, and O(n2) for Divide and
Conquer (D&C) SLAM and the Sparse Local Submap Joining
Filter (SLSJF). We discuss the computational improvements
that have been proposed for Kalman and Information filters,
discuss the advantages and limitations of each, and how a
judicious combination results in the possibility of reducing the
computational cost per step to O(log n). We use simulations and
real datasets to show the advantages of the proposed algorithm.

I. INTRODUCTION

In recent years, researches have devoted much effort to

develop algorithms to improve the computational efficiency

of SLAM. The goal is being able to map large scale

environments in real time [1]. One important contribution

has been the idea of splitting the full map into local maps

and then putting the pieces back together in some way.

Decoupled Stochastic Mapping [2], Constant Time SLAM

[3] and the ATLAS system [4] are local mapping solutions

close to constant time, although through approximations

that reduce precision. Map Joining [5] and the Constrained

Local Submap Filter [6] are exact solutions (except for

linearizations). Exact solutions also include Treemap [7],

Divide and Conquer (D&C) SLAM [8], Tectonic SAM [9]

and Sparse Local Submap Joining Filter (SLSJF) SLAM

[10]. Given a map of n features, the classical EKF SLAM

algorithm is known to have a cost of O(n2) per step.

Two recent algorithms have provided important reductions

in computational cost: D&C SLAM has an amortized cost

O(n) per step, SLSJF SLAM reports a cost O(n1.5) per

step in the worst cases. The Treemap has a cost O(log n),
although with topological restrictions on the environment,

and a rather complex implementation.

In this paper we describe the Combined Filter SLAM (CF

SLAM) algorithm, that can reduce the computational cost

per step down to O(log n); the total computational cost can

be reduced down to O(n log n). The CF SLAM algorithm is

a judicious combination of Extended Kalman and Extended

Information filters, combined with a divide and conquer

local mapping strategy. Being a local mapping algorithm,

it provides more consistent results, compared with Treemap,

César Cadena and José Neira are with the Departamento de Informática
e Ingenieria de Sistemas, Centro Politécnico Superior, Universidad de
Zaragoza, Zaragoza, Spain {ccadena, jneira}@unizar.es

This research has been funded in part by the Dirección General de
Investigación of Spain under project DPI2006-13578 and by the European
Union under project RAWSEEDS FP6-IST-045144.

reported to have the same O(log n) cost, but computing an

absolute map [11]. CF SLAM is also conceptually simple

and rather easy to implement.

This paper is organized as follows: the next section

contains a detailed description of the improvements that

have been reported on the use of Kalman and Information

filters for SLAM, leading to the algorithm that we propose.

Section III contains a description of our algorithm and a

study of its computational cost and consistency properties.

In section IV we study the main factors that may influence

the computational cost. In section V we use the DLR circles

dataset to test the algorithm with real data, and discuss results

compared with the Treemap algorithm. In the final section

we summarize the results and the sketch challenges ahead.

II. EXTENDED KALMAN FILTERS, EXTENDED

INFORMATION FILTERS AND MAP JOINING FILTERS

A. The Extended Kalman Filter

The Extended Kalman Filter (EKF) is one of the main

paradigms in SLAM [12], [13]. In EKF SLAM, a map (μ,Σ)
includes the state μ to be estimated, which contains the

current vehicle location and the location of a set of environ-

ment features. The covariance of μ, represented by Σ, gives

an idea of the precision in the estimation, 0 meaning total

precision. EKF SLAM is an iterative prediction-sense-update

process whose formulation we believe is widely known and is

thus summarized in Table I (left). In exploratory trajectories,

and using a sensor of limited range, the size of the map grows

linearly, each step is O(n2) and the total cost of carrying out

EKF SLAM is known to be O(n3).

B. The Extended Information Filter

In Extended Information Filter (EIF) SLAM, a map (ξ,Ω)
consists of the information state ξ to be estimated, and the

information matrix Ω, which gives an idea of the information

known about the estimation (0 meaning no information). EIF

SLAM is also an iterative prediction-sense-update process

(its formulation is also summarized in Table I, right). The

Information filter is an algebraic equivalent to the Kalman

filter, because the following equivalences hold [12]:

Ω = Σ−1 and ξ = Σ−1μ (1)

For this reason, KF and IF are considered dual filters

[14]. Unfortunately, in the nonlinear case the filters are

not completely dual, since both the transition function g
and the measurement function h require the state as input

[12]. For this reason, the initial required computation during

the prediction step is to derive the state variables μt−1.

In the general case, the EIF is considered computationally

EKF-SLAM EIF-SLAM

Jacobians Ft =
∂g(ut,μt−1)

∂μt−1

∣∣∣
μ̂t−1

O(c) Gt =
∂g(ut,μt−1)

∂ut

∣∣∣
ût

O(c) Ht =
∂h(μt|t−1)

∂μt|t−1

∣∣∣
μ̂t|t−1

O(r)

μt−1 = Ωt−1\ξt−1 O(n)
Prediction μt|t−1 = g(ut, μt−1) O(c) ξt|t−1 = Ωtg(ut, μt−1) O(n)

Σt|t−1 = FtΣt−1F T
t + GtRt−1GT

t O(n) Φ = F−T
t Ωt−1F−1

t O(c)

Ωt|t−1 = Φ− ΦGt(Rt−1 + GT
t ΦGt)−1GT

t Φ O(n)
Innovation νt = zt − h(μt|t−1) O(r) νt = zt − h(μt|t−1) O(r)

St = HtΣt|t−1HT
t + Qt O(n) St = HtΩ

−1
t|t−1

HT
t + Qt O(n3)

Test χ2 D2 = νT
t S−1

t νt O(r3) D2 = νT
t S−1

t νt O(r3)

Kt = Σt|t−1HT
t /St O(n)

Update Σt = (I −KtHt)Σt|t−1 O(n2) Ωt = Ωt|t−1 + HT
t Q−1

t Ht O(n)

μt = μt|t−1 + Ktνt O(n) ξt = ξt|t−1 + HT
t Q−1

t (νt + Htμt|t−1) O(n)
without Data Asociation (St not required)

Cost per step O(n2) O(n)
Total cost during exploration O(n3) O(n2)

TABLE I

FORMULATIONS AND OPTIMIZED (BEST REPORTED TO DATE) COMPUTATIONAL COST OF EACH OF THE OPERATIONS CARRIED OUT USING THE

EXTENDED KALMAN FILTER (LEFT) AND THE EXTENDED INFORMATION FILTER (RIGHT). VARIABLE n IS THE SIZE OF THE FINAL STATE μt OR

INFORMATION VECTOR ξt , r IS THE SIZE OF THE MEASUREMENT VECTOR zt AND c IS A CONSTANT.

more expensive than the EKF: computing the state μt−1

without optimizations is O(n3) because of the inversion of

the information matrix Ωt−1 (only optimized costs are given

in the table).

An important insight into reducing the computational cost

of EIF SLAM was to observe that the information matrix

Ω is approximately sparse [12], and can be easily sparsi-

fied. This Sparse Extended Information Filter (SEIF) allows

reducing the computational cost of most EIF operations to

O(n). The computation of the innovation covariance St is

the exception, it still is O(n3). Its computation is not strictly

necessary, except to carry out data association. Therefore, in

SLAM problems where data association is known, or can be

decided by other means (the use of textured points in vision

could be an example), SEIF SLAM is O(n) per step, and

the total cost is O(n2).
Another important observation regarding EIF SLAM is

that if all vehicle locations are incorporated into the informa-

tion vector, instead of the current one only, the information

matrix becomes exactly sparse [15]. In this Exactly Sparse

Delayed-State Filter (ESDF) SLAM, the reduction in the

computational cost due to this fact is the same as in SEIF.

Additionally, since no approximations due to sparsification

take place, the results are more precise [16]. When the

state or information vector contain only the current vehicle

location, we have an online SLAM problem; if it contains all

vehicle locations along the trajectory, we have full SLAM.

Again, during exploration, the total cost of ESDF is known

to be O(n2), as compared with the cubic cost of EKF

SLAM. Note however that the information vector is ever

increasing, even during revisiting every new vehicle location

is incorporated.

C. Map Joining SLAM with EKF

Local mapping (or submapping) algorithms were the next

contribution to the reduction of the computational cost of

SLAM. In these algorithms, sequences of local map of

constant size are sequentially built (in constant time because

of the size limitation) and then put together into a global

map in different ways.

One of such solutions, Map Joining SLAM [5], works

in the following way: given two consecutive local maps

(μ1,Σ1) and (μ2,Σ2), the map (μ,Σ) resulting from joining

their information together is computed in three initialization-

innovation-update steps, summarized in Table II, left. A

specialized version of the Extendad Kalman filter is used,

where the full state vectors and covariance matrices are

simply stacked in the predicted map; correspondences can

then be established between features from both maps through

a prediction function h, equivalent to considering a perfect

measurement z = 0, Q = 0. Notice that this is possible,

since the EKF allows the consideration of 0 covariance

measurements. The update step includes a computation using

the transformation function g to transform all map features

and vehicle locations to a common base reference, usually

the starting vehicle location in the first map.

Map joining SLAM is constant time most of the time,

when working with local maps. However, joining operations

are O(n2) on the final size of the map, and although it results

in great computational savings (it may slash the cost by a

large constant), MJ SLAM is still O(n2) per step, just as

EKF SLAM is.

D. Map Joining SLAM with EIF

The Extended Information filter can also be used to

carry out the map joining operations, as reported in the

Sparse Local Submap Joining filter (SLSJF) SLAM [10].

Its application is not as straightforward as the Map Joining

with EKF for two reasons. First, in Map joining with EKF

correspondences are established by considering a perfect

measurement z = 0, Q = 0. In the information form,

0 covariance measurements are not allowed since Q−1 is

required in the formulation. For this reason, in SLSJF SLAM,

having two consecutive local maps (μ1,Σ1) and (μ2,Σ2) to

join, the resulting map (ξ,Ω) is predicted in the information

form with the information of the first map, and an initial

Join with EKF Join with EIF

Jacobians G =
∂g(μ+)

∂μ+

∣∣∣
μ̂+

O(n2) H =
∂h(μ−)

∂μ−

∣∣∣
μ̂−

O(n2)

μ− = g(μ1, μ2) O(n2)

Initialization μ− =

[
μ1

μ2

]
O(n) ξ− =

[
ξ1
0

]
O(n)

Σ− =

[
Σ1 0
0 Σ2

]
O(n2) Ω− =

[
Ω1 0
0 0

]
O(n)

Innovation ν = −h(μ−) O(r) ν = μ2 − h(μ−) O(r)
S = HΣ−HT O(n) Q−1 = Ω2 given

K = Σ−HT /S O(n)
Σ+ = (I −KH)Σ− O(n2) Ω = Ω− + HT Ω2H O(n2)

Update μ+ = x− + Kν O(n) ξ = ξ− + HT Ω2(ν + Hμ−) O(n2)
μ = g(μ+) O(n2) μ = Ω\ξ O(n) to O(n2)
Σ = GΣ+GT O(n2

2)
Cost per join O(n2) O(n) to O(n2)

TABLE II

FORMULATIONS AND OPTIMIZED (BEST REPORTED TO DATE) COMPUTATIONAL COST OF EACH OF THE OPERATIONS CARRIED OUT FOR MAP JOINING

USING THE EXTENDED KALMAN FILTER (LEFT) AND USING THE EXTENDED INFORMATION FILTER (RIGHT). VARIABLES n1 , n2 AND n ARE THE

SIZE OF THE FIRST, SECOND AND FINAL STATE OR INFORMATION VECTOR RESPECTIVELY, AND r IS THE SIZE OF THE MEASUREMENT VECTOR zt .

0 (no information) from the second map. The innovation is

computed considering the second map as a set of measure-

ments for the full map (zt = μ2, Qt = Ω−1
2), and the final

update step computes the information state ξ and information

matrix Ω using the standard EIF equations.

An important observation made in [10] is that the in-

formation matrix resulting from the map joining operation

using EIF is exactly sparse if the vehicle locations coming

from each local map are maintained in the final information

state. This is a situation very similar to the full SLAM

problem, except that not all vehicle locations remain, only

a fraction corresponding to the final vehicle locations in

each local map. There is an additional final computation of

the final state μ, to make it available for potential future

joining operations. This state recovery can be done with a

preordering of minimum degree of the information matrix

and the sparse Cholesky factorization to solve the linear

system. In the section IV-A we shall see that the cost of this

computation can be proportional to n during exploration, and

up to O(n2) in the worst case.

E. Divide and Conquer with EKF

In the Divide and Conquer (D&C) SLAM algorithm [8]

it was pointed out that SLAM can be carried out in linear
time per step if map joining operations are carried out in

a hierarchical binary tree fashion, instead of a sequential

fashion. The leafs of a binary tree represent the sequence

of l local maps of constant size p, computed with standard

EKF SLAM. These maps are joined pairwise to compute l/2
local maps of double their size (2p), which will in turn be

joined pairwise into l/4 local maps of size 4p, until finally

two local maps of size n/2 will be joined into one full map

of size n, the final map. The O(n2) updates are not carried

out sequentially, but become more distant as the map grows.

An O(n2) computation can then be amortized in the next n
steps, making the amortized version of the algorithm linear

with the size of the map. It can also be shown that the total

cost of D&C SLAM is O(n2), as compared to the total cost

of EKF SLAM, O(n3).

III. OUR PROPOSAL: COMBINED FILTER SLAM

The algorithm proposed here, Combined Filter SLAM, has

three main highlights:

a) Local mapping is carried out using standard online
EKF SLAM to build a sequence of maps of constant size p:
each local map (μi,Σi) is also stored in information form

(ξi,Ωi); both the information vector and the information

matrix are computed in O(p3), constant with respect to the

total map size n. Each local map only keeps the final pose

of the robot. EKF SLAM in local maps allows robust data

association, e.g. with JCBB [17], and local maps remain

consistent.

b) Map Joining is carried out using EIF, keeping ve-
hicle locations from each local map in the final map as in
SLSJF: this allows to exploit the exact sparse structure of

the information matrix and the join can be carried out in

linear time with the final size of the map.

c) In contrast with sequential map joining strategy fol-
lowed by SLSJF, the D&C strategy is followed to decide when
map joining takes place: we will see that this will result in a

total computation cost of O(n log n), as compared with the

total cost of SLSJF, O(n2). Additionally, the computation

per step can be amortized to O(log n), as compared with

O(n) for SLSJF.

A. Total computational complexity

In exploratory trajectories, the process of building a map

of size n using the proposed CF SLAM follows the divide

and conquer strategy: l = n/p maps of size p are produced

at cost O(p3) each, which are joined into l/2 maps of size

2p (not considering overlap), at cost O(2p) each. These in

turn are joined into l/4 maps of size 4p, at cost O(4p) each.

This process continues until two local maps of size n/2 are

joined into one local map of size n, at a cost of O(n). SLSJF

SLAM and our algorithm carry out the same number of map

joining operations. The fundamental difference is that in our

case the size of the maps involved in map joining increases

at a slower rate than in SLSJF SLAM.

The total computational complexity of CF SLAM in this

case is:

C = O

⎛
⎝p3l +

log2 l∑
i=1

l

2i
(2i p)

⎞
⎠

= O

⎛
⎝p2n +

log2 n/p∑
i=1

n

⎞
⎠

= O (n + n log n/p)
= O (n log n)

Therefore, CF SLAM offers a reduction in the total compu-

tational cost to O (n log n), as compared with the total cost

O
(
n3

)
for EKF SLAM, and O

(
n2

)
for D&C SLAM and

SLSJF SLAM. Furthermore, as in D&C SLAM, the map to

be generated at step t will not be required for joining until

step 2 t. This allows us to amortize the cost O(t) at this

step by dividing it up between steps t + 1 to 2 t in equal

O(1) computations for each step. In this way, our amortized

algorithm becomes O(log n) per step. See Section IV for

factors that influence this computational cost.

B. CF SLAM vs. other algorithms

To illustrate the computational efficiency of the algorithm

proposed in this paper, a simulated experiment was con-

ducted using a simple Matlab implementation of CF SLAM,

D&C SLAM [8], and SLSJF [10] (with reordering using

symmmd instead of the heuristic criteria proposed there). The

simulated environment contains equally spaced point features

1.33m apart, a robot equipped with a range and bearing

sensor with a field of view of 180 degrees and a range of

2m. Local maps are built containing p = 30 features each.

All tests are done over 100 MonteCarlo runs. Fig. 1 shows

the resulting execution costs of the three algorithms. We can

see that the total costs of D&C SLAM and the SLSJF tend to

be equal (fig. 1, middle). This is expected, since both have

a total cost of O(n2). We can also see that the total cost

of our algorithm increases more slowly, it is expected to be

O(n log n). We can finally see that the amortized cost of our

algorithm exhibits an O(log n) behavior, always smaller than

the cost of the other two algorithms (fig. 1, bottom).

C. Consistency

When ground truth is available as in this simulated exper-

iment, we can carry out a statistical test on the estimation

(μ,Σ) for filter consistency. We define the consistency index,

CI = D2/χ2
n,1−α, where D2 is the Mahalanobis distance,

or Normalized Estimate Error Square (NEES) [18], n =
dim(μ) and (1−α) is the confidence level (95% typically).

When CI < 1 the estimation is consistent with ground truth,

otherwise the estimation is optimistic or inconsistent.

It is known that local map-based strategies, (e.g. SLSJF

and D&C SLAM) improve the consistency of SLAM by

including less linearization errors than strategies based in one

global map, (e.g. Treemap) [11]. We tested consistency of

Fig. 1. Computational time in the simulated execution for D&C SLAM
(blue), SLSJF SLAM (red) and our algorithm, CF SLAM (green): Time
per step (top); Total time of execution (middle); Time per step for SLSJF
vs. amortized time per step for D&C SLAM and our algorithm, CF SLAM
(bottom). The final map contains 1093 features from 64 local maps.

SLSJF, D&C SLAM and CF SLAM on the simulated exper-

iments. Fig. 2 shows the evolution of the mean consistency

index of the vehicle position in x (top) and y (middle), and

orientation φ (bottom), during the steps of the trajectory. We

can see that the performance of the index for D&C SLAM

and for our proposal a very similar, and clearly better than for

SLSJF. This is because both D&C SLAM and our proposal

follow a binary tree structure to carry out the map joining

process. In SLSJF map joining is sequential, thus errors tend

to increase faster in the global map.

IV. FACTORS THAT HAVE INFLUENCE IN THE

COMPUTATIONAL COST

A. Vehicle trajectory

Given that local mapping is a constant time operation,

we concentrate on the computational cost of map joining in

Fig. 2. Mean consistency index CI in x, y, and φ for SLSJF, D&C SLAM
and our proposal, CF SLAM.

information form. The state recovery is the most computa-

tionally expensive operation in this case. State recovery is

carried out using the Cholesky factorization, with a previous

minimum degree ordering of the information matrix. The

cost of this operation depends on the sparsity pattern of

the information matrix and the density of non-zero elements

[19], [10]. This in turn depends on the environment, the

sensor used and the more importantly, on the trajectory of

the robot.

We have used the simulated experiments to study the effect

of the trajectory of the vehicle in the computational cost

of the map joining operation. Fig. 3 shows the trajectory

studied (left), the sparsificacion pattern of the information

matrix of the final map (middle), and the mean cost (for the

100 Monte Carlo runs) of state recovery and joining between

maps versus the dimension of the state vector after joining

(right).

To determine the order of the computational cost, we

compute a fit to equation y = axb for the state recovery

and for map joining costs. The independent variable is

the dimension of the state vector resulting from each map

joining. The dependent variable is the cost of the operation:

sr for the state recovery μ = Ω\ξ, and jEIF is the cost

of all operations involved in map joining with EIF, including

sr. The results of the fit can be seen in Table III. The sum of

squared errors (SSE), the coefficient of correlation squared

(R2) and root mean squared errors (RMSE) are reported.

• In an exploratory trajectory, fig. 3 (top), the fit suggests

that the exponent b can be considered equal to 1 in both

Trayectory b (95%) SSE R2 RMSE

Exploration
sr 1.01

(0.956,
0.1385 0.9976 0.1316

1.058)

jEIF 0.97
(0.955,

0.0094 0.9999 0.0342
0.977)

sr 1.30
(1.21,

0.6849 0.9976 0.2926
Lawn 1.39)

mowing
jEIF 1.18

(1.13,
0.2900 0.9991 0.1904

1.237)

sr 1.99
(1.816,

0.9726 0.9993 0.3497
Out-ward 2.157)

spiral
jEIF 1.81

(1.695,
0.6629 0.9995 0.28797

1.92)

sr 1.06
(0.982,

0.0072 0.9985 0.0379
Inside 1.139)

the loops
jEIF 0.96

(0.884,
0.0119 0.9976 0.0487

1.03)
Exploration

sr 1.14
(1.097,

0.1151 0.9990 0.1023
with 1.174)

smallest
jEIF 1.08

(1.032,
0.1958 0.9980 0.1334

local maps 1.123)

TABLE III

RESULTS OF THE FIT TO y = axb , BOTH THE COST OF STATE RECOVERY

(sr) AND THE JOINING WITH EIF (jEIF). WE CAN SEE THE VALUE OF

THE EXPONENT b WITH 95% CONFIDENCE BOUNDS, THE SUM OF

SQUARED ERRORS (SSE), THE COEFFICIENT OF CORRELATION SQUARED

(R2) AND ROOT MEAN SQUARED ERRORS (RMSE) FOR THE

SIMULATIONS OF FIG. 3 AND FIG. 4(RIGHT).

state recovery and map joining operations, see Table

III (top). Thus, as we said in the previous section, in

the case of exploration, the cost of map joining has

a linear behavior with respect to the dimension of the

state vector, and can be amortized in CF SLAM to attain

O(log n).
• We have also studied lawn mowing, fig. 3 (upper

middle). In this case, the cost can increase to O(n1.3)
(see the exponent from the fit, Table III).

• In another type of trajectory, outward spiral, fig. 3

(lower middle), the cost can increase to O(n2).
• In the worst case, repeated traversal of a loop (fig. 3,

bottom), the cost of map joining is linear most of the

time, except during loop closing, when the operation is

quadratic with the dimension of the state vector.

Two things are important to note:

1) Whatever the cost of the map joining operation, it can

be amortized in CF SLAM. This means that in the

worst case, when map joining is O(n2), CF SLAM is

O(n) per step.

2) In these cases, the computational cost of D&C SLAM

and SLSJF also increase in the same manner: in the

worst case, both will be O(n2) per step, so CF SLAM

will always be better.

Table IV summarizes the computational costs of all algo-

rithms in the best and worst cases.

B. Local map size

The selection of the local map size p can also influence the

computational cost of CF SLAM. Local maps of a large size

p (for example p = 350) cannot be computed in real time,

and also increase the density on non-zero elements in the

information matrix (see Fig. 4, top left). If on the contrary

Fig. 3. Computational cost of state recovery in four cases: exploration with 27651 features (top), lawn mowing with 9056 features (upper middle),
out-ward spiral with 7423 features (lower middle), several loops with 3456 features (bottom), all from 1024 local maps. From left to right: ground truth
enviroment and trajectory, sparse information matrix obtained by our algorithm and execution time for to do joining and recovery state versus the state
vector’s dimension with their fit functions. In order to concentrate in studying computational costs these simulations were carried out with noise equal to
cero.

Cost per step Total cost
Best Worst Best Worst

SLSJF O(n) O(n2) O(n2) O(n3)
D&C SLAM O(n) O(n2) O(n2) O(n3)
CF SLAM O(log n) O(n) O(n log n) O(n2)

TABLE IV

COMPUTATIONAL COSTS FOR ALL ALGORITHMS IN THE BEST CASE

(ONLY EXPLORATION) AND IN THE WORST CASE (REVISITING SEVERAL

TIMES). NOTE THAT THE CF SLAM IS THE MOST EFFICIENT ALWAYS.

Fig. 4. Results of different sizes of local maps. (Top) The sparse matrix
information and (bottom) execution time of state recovery and map joining,
both in exploration trajectory. On the left the local map size is 350 features,
note the time needed for a final map of 5564 features from 16 local maps.
On the right the local map size is 4 features (field of view of the sensor)
and the final map has 18431 features from 8192 local maps

the local map size is too small (p = 4), a large number of

robot poses will appear in the state vector (Fig. 4, top right).

Both situations may result in the cost of map joining not

being linear anymore (Fig. 4, bottom).

In the first case, the density of non-zero elements is 1

in every 12, and thus map joining in the lower levels of

the tree (the most frequent) are very expensive, more than

4s in the simulation. In the case of small local maps, the

exponent from the fit increases to 1.14. (see Table III). The

density is much lower, 1 in every 1070, but the state vector is

much larger because we have many more poses. In the Fig.

4 the number of features is different because the memory

requirements of the scenario on the left overflowing the

capacity of MATLAB. In our experience, a good rule of

thumb is that we should select p to keep the feature variable

vs. pose variable ratio between 5 and 20.

V. EXPERIMENTS

The algorithm proposed here was executed with the DLR

circles dataset1 and compared with the other two algorithms,

see the accompanying video2.

1Available from the Workshop Inside Data Association in RSS’08
Conference, at http://www.sfbtr8.spatial-cognition.de/
insidedataassociation/data.html

2A high resolution version of this video is available at http://
webdiis.unizar.es/˜ccadena/videos/dlr_dataset.avi

In real experiments, the step in which two local maps

will have the same size and will thus be available for

map joining is not known in advance. As in [8], a simpler

amortized version of our algorithm can be implemented

in using two concurrent threads: one high priority thread

executes ekf slam to update the current local map, and the

other low priority thread executes all pending map joinings.

In this way, all otherwise idle time in the processor will be

used for the more costly map joining operations, but high

priority is given to local mapping, allowing for real time

execution of our algorithm.

Alternatively, amortization can be carried out by step

number instead of by map size. We chose this alternative

for this experiment. The complete experiment contains 3297

steps of odometry and 560 features; data association is

provided in the dataset . One local map is done each 13

steps, the final map was obtained from 251 local maps. Fig.

5a shows the map resulting of the execution of CF SLAM

(it was in fact very similar for D&C SLAM and SLSJF).

In this experiment, the CF SLAM algorithm has a lower

total computational cost compared with D&C SLAM and

SLSJF (fig. 5b), and its computation cost is less than that of

SLSJF most of the time (fig. 5c). In the amortized version,

the computational cost is lower in all steps (fig. 5d). For

clarity, in fig. 5d we show only the computational cost of map

joining in each algorithm, the computational cost for building

local maps is constant and the same for all algorithms.

In [7] a total execution time of 2.95s was reported with

the Treemap for this dataset, implemented in C++ on an Intel

Xeon, 2.67 GHz. Our algorithm implemented in MATLAB

spent 4.2s on 2.4 GHz Intel Core 2 CPU 6600. We believe

that the CF SLAM algorithm is much more simple to

implement and use. Furthermore, Treemap is expected to be

less consistent in general, being an absolute map algorithm

[11].

VI. DISCUSSION

In this paper we have proposed an algorithm that can

carry out SLAM in as low as O(log n) per step. It brings

together the advantages of different methods that have been

proposed to optimize EKF and EIF SLAM. There is no loss

of information, because the solution is computed without

approximations, except for linearizations. We believe that

it is conceptually simple and easy to implement. There

are no restrictions on the topology of the environment and

trajectory, although, as it is the case in all other SLAM

algorithms, the efficiency will depend on this. It can be

used with any geometric sensor and expanded without much

difficulty to 6DOF.

One limitation of the approach is the unavailability of

covariance matrices (except with a high computational cost)

for data association. This is the case in any SLAM algorithm

that makes use of the extended Information filter. Several

authors have proposed alternatives, such as exact covariance

submatrix recovery [10], computing associations for local

maps at the bottom level where covariances are available

[20], or using local maps to make local matching [21].

(a)

(b)

(c)

(d)

Fig. 5. Results for the DLR circles dataset: (a) final map obtained with our
algorithm; (b) total cost of the three algorithms; (c) time per step for each
algorithm; (d) time of map joining operations for CF SLAM amortized vs.
D&C SLAM amortized and SLSJF, all without the computational cost of
building local maps (constant and the same for all)

In some cases, for example if we have a vision sensor,

additional information such as texture can be very useful for

data association. But no general solution is known, so data

association is an issue in which we must continue working

on.

REFERENCES

[1] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and
mapping (SLAM): Part II,” IEEE Robotics & Automation Magazine,
vol. 13, no. 3, pp. 108–117, 2006.

[2] J. Leonard and H. Feder, “Decoupled stochastic mapping,” IEEE
Journal of Oceanic Engineering, vol. 26, no. 4, pp. 561–571, 2001.

[3] J. Leonard and P. Newman, “Consistent, convergent and constant-time
SLAM,” in Int. Joint Conf. Artificial Intelligence, Acapulco, Mexico,
August 2003.

[4] M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller, “SLAM in large-
scale cyclic environments using the atlas framework,” Int. J. Robotics
Research, vol. 23, no. 12, pp. 1113–1139, December 2004.

[5] J. D. Tardós, J. Neira, P. M. Newman, and J. J. Leonard, “Robust
Mapping and Localization in Indoor Environments using Sonar Data,”
Int. J. Robotics Research, vol. 21, no. 4, pp. 311–330, 2002.

[6] S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, “An efficient
approach to the simultaneous localisation and mapping problem,” in
Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, Washington
DC, 2002, pp. 406–411.

[7] U. Frese, “Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping,” Autonomous Robots, vol. 21, no. 2, pp.
103–122, September 2006.

[8] L. M. Paz, J. D. Tardós, and J. Neira, “Divide and conquer: Ekf slam
in O(n),” IEEE Trans. Robotics, vol. 24, no. 5, pp. 1107–1120, October
2008.

[9] K. Ni, D. Steedly, and F. Dellaert, “Tectonic SAM: Exact, Out-of-
Core, Submap-Based SLAM,” in 2007 IEEE Int. Conf. on Robotics
and Automation, Rome, Italy, April 2007.

[10] S. Huang, Z. Wang, and G. Dissanayake, “Sparse local submap joining
filters for building large-scale maps,” IEEE Trans. Robotics, vol. 24,
pp. 1121–1130, 2008.

[11] S. Huang and G. Dissanayake, “Convergence and Consistency Analy-
sis for Extended Kalman Filter Based SLAM,” IEEE Trans. Robotics,
vol. 23, no. 5, pp. 1036–1049, October 2007.

[12] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, September 2005.

[13] S. Thrun and J. Leonard, “Simultaneous Localization and Mapping,” in
Springer Handbook of Robotics, ser. Springer Handbooks, B. Siciliano
and O. Khatib, Eds. Springer, 2008, ch. 37, pp. 871–889.

[14] A. Mutambara and M. Al-Haik, “State and information space estima-
tion: a comparison,” American Control Conference, 1997. Proceedings
of the 1997, vol. 4, pp. 2374–2375 vol.4, Jun 1997.

[15] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly Sparse Delayed-
State Filters for View-based SLAM,” IEEE Trans. Robotics, vol. 22,
no. 6, pp. 1100–1114, Dec 2006.

[16] R. Eustice, M. Walter, and J. Leonard, “Sparse extended information
filters: Insights into sparsification,” in IEEE Int. Workshop on Intelli-
gent Robots and Systems, Edmonton, Alberta, Canada, August 2005.

[17] J. Neira and J. D. Tardós, “Data association in stochastic mapping
using the joint compatibility test,” IEEE Trans. Robotics and Automa-
tion, vol. 17, no. 6, pp. 890–897, 2001.

[18] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applica-
tions to Tracking and Navigation. New York: John Willey and Sons,
2001.

[19] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab:
Design and implementation,” SIAM Journal on Matrix Analysis and
Applications, vol. 13, pp. 333–356, 1992.

[20] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical SLAM: real-
time accurate mapping of large environments,” IEEE Trans. Robotics,
vol. 21, no. 4, pp. 588–596, August 2005.

[21] E. Olson, “Implicit data association from spectrally clustered local
matches,” in Inside Data Association, held in RSS 2008, Zurich,
Switzerland, 2008.

