
Realizing, Reversing, Recovering : Incremental Robust Loop Closing
over time using the iRRR algorithm

Yasir Latif, César Cadena, and José Neira

Abstract— The ability to detect failures and reconsider infor-
mation over time is crucial for long term robust autonomous
robot applications. This applies to loop closure decisions in
localization and mapping systems. This paper describes a
method to analyze all available information up to date in
order to robustly remove past incorrect loop closures from the
optimization process. The main novelties of our algorithm are:
1. incrementally reconsidering loop closures and 2. handling
multi-session, spatially related or unrelated experiments. We
validate our proposal in real multi-session experiments showing
better results than those obtained by state of the art methods.

I. INTRODUCTION

A mobile robot can use a place recognition system to find
loop closing constraints that helps it improve the estimate
of its pose in the environment as well the precision of the
model of the environment being built. Any failure in the loop
closure process will surely corrupt the state estimation. The
robot is expected to continue exploring the environment, even
with the corrupt estimation, gathering more information that
allows it to realize any failures and to recover the accurate
state estimation. No matter how robust a place recognition
system might be, there always exists the possibility of
getting just one false positive loop closing constraint. That
possibility increases in long term operations and in persistent
mapping tasks, where failures may happen over time. But
with the arrival of new evidence, the estimation can be
corrected. Only by collecting more evidence over time can
we detect and correct these mistakes in loop closing.

In this work we propose an incremental algorithm to
realize that the place recognition system has generated wrong
constraints, remove them if necessary, and recompute the
state estimation. The proposal is based on evaluating the
consensus among constraints with two main novelties:
• making the best possible decision according to the

information provided up to date by the place recognition
and odometry systems; and

• the ability make decisions over loop closures among dif-
ferent sessions without requiring connectivity through
weak links.

Our method works with the pose graph formulation. It is
a part of the back-end of a SLAM system and is therefore
independent of the type of sensor used for odometry or loop
closing. All our method needs is a system that is able to

Yasir Latif, César Cadena, and José Neira are with the Instituto de Inves-
tigación en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Zaragoza
50018, Spain. {ylatif, ccadena, jneira}@unizar.es.

This research has been funded by the Dirección General de Investigación
of Spain under projects DPI2009-13710 and DPI2009-07130, and by DGA-
FSE(group T04)

generate a pose graph from the sequential pose constraints
and a place recognition system for the non-consecutive loop
closure constraints.

In the next section we discuss work related to our proposal
and highlight the need for a robust loop closing over time
method. In section III we detail our proposal and carry
out real experiments in section IV. Finally, in section V
discussion and conclusions about the work are presented
along with possible future work.

II. RELATED WORK

Several approaches to multi-session SLAM have been
presented in robotics literature in the recent past. Konolige
and Bowman [1] presented a stereo visual odometry system
that works together with a bag of words place recognition
system towards building multiple representations of dynamic
environments over time. Multiple map stitching, recovery
for odometry failures, loop closing, and global localization
rely on the robustness of the place recognition system.
“Weak links” are removed when place recognition is able
to close loops, making it prone to errors when the place
recognition closes loops wrongly. Similarly, McDonald et al.
[2] presented a multi-session 6 DOF Visual SLAM system
using “anchor nodes”. In their approach, place recognition
is assumed to be perfect and its output is trusted every
time. Sibley et al. [3] presented a relative bundle adjustment
approach for large scale topological mapping. They show
an example of mapping from London to Oxford, over a
trajectory of about 121-km. They also use appearance based
place recognition and are therefore also in danger of making
wrong decisions in case of incorrect place recognition. All
of these approaches to large scale and persistent mapping
rely on a place recognition system with zero false positives.
This is usually achieved at the cost of a high false negative
rate, and thus loss of precision. But even the most robust
place recognition systems [4], [5] cannot guarantee 100%
accuracy.

Some approaches delay decision making and maintain
multiple topologies of the map with an associated belief
for each one [6], [7]. Ranganathan and Dellaert [6] follow
this approach using a Rao-Blackwellized particle filter. Their
method is also unique in the sense that it uses the estimation
process itself to reason about possible loop closures. Tully
et al. [7] also maintain multiple hypotheses with a forest
expansion considering all possible loop closures. However,
those approaches do not explicitly show how their system is
affected by and recovers from wrong loop closures. Tully et
al. favour the smaller graph in cases of perceptual aliasing



inducing to collapse it and not recover it from the failure.
A similar estimation-based reasoning approach using pose
graph formulation was presented by Sunderhauf and Protzel
[8] which is a robust SLAM back end using “switch factors”.
The central idea is to penalize those loop closure links during
graph optimization that deviate from the constraints they
suggest between two nodes. Similar to our approach, they
change the topological structure of the graph based on iden-
tification and rejection of wrong loop closures. In contrast,
however, they assess the validity of every loop closure on
its own, without forming a general consensus using all the
available information. In cases where there are a number of
hypotheses that suggest the same but wrong loop closings
(for instance due to perceptual aliasing in long corridors),
overall consensus helps us in rejection of such outliers. Their
method suggests a continuous function governing the state
of “switch factors” which does not make sense in most of
the cases like traversal paths. We show comparisons against
their method in the experimental section.

III. OUR PROPOSAL

We propose a robust consistency-based loop closure veri-
fication method using the pose graph formulation. It is based
on the observation that correct loop closure in conjunction
with odometry can help in the detection of wrong loop
closures. Our method follows the line of work in which the
estimation process itself is used in making the distinction
between correct and false loop closures. The first part of this
section (up to but not including subsection B) describes the
batch version of the RRR algorithm that we already presented
in our very recent previous work [9]. It has been included
here for the sake of completeness.

The graph based formulation for SLAM, the so-called
“graph-SLAM” models robot poses as nodes in a graph
where relative transformations from odometry or loop clo-
sures form edges or “constraints”. Let x = (x1 . . . xn)T be
a vector of parameters that describe the configuration of the
nodes. Let ωij and Ωij be the mean and the information of
the observation of node j from node i. Given the state x, let
the function fij(x) be a function that calculates the perfect
observation according to the current state. The residual rij
can then be calculated as

rij(x) = ωij − fij(x) (1)

Constraints can either be introduced by odometry which
are sequential constraint (j = i+ 1), or from a place recog-
nition system which are non-sequential. The amount of error
introduced by each constraint weighed by its information can
be calculated as

dij(x)2 = rij(x)TΩijrij(x) (2)

and therefore the overall error, assuming all the constraints
to be independent, will be:

D2(x) =
∑

dij(x)2 =
∑

rij(x)TΩijrij(x) (3)

The solution to graph-slam problem is to find a state x∗
that minimizes the overall error. Iterative approaches such
as Gauss-Newton or Levenberg-Marquadt can be used to
compute the optimal state estimate [10].

We can divide the constraints into two sets; S containing
sequential links and R containing loop closure links. Since
all constraints are independent of each other, the error in 3
can be written as

D2(x) =
∑

(i,j)∈S

dij(x)2 +
∑

(i,j)∈R

dij(x)2 (4)

We can further divide the set R into n disjoint subsets
Rk, where each subsets only contains topologically related
constraints (links that relate similar portions of the robot
trajectory) such that R = ∪nk=1Rk and ∀(i 6= j)Ri∩Rj = ∅.
We term each of theses subsets as “clusters”.

Then the error for set R can be written as

∑
(i,j)∈R

dij(x)2 =

n∑
c=1

∑
(i,j)∈Rc

dij(x)2 =

n∑
c=1

dRc(x)2 (5)

where dRc
(x)2 is the error contributed by the cth subset. This

simply means that the overall error introduced due to loop
closure constraints is the sum of the individual errors of each
cluster.

Assuming that initially we do not have any outliers in
odometry (if there are errors in odometry the front-end can
detect them and split the experiment in two sessions), the
error in (3) is caused practically only by the loop closing
links. Once we iterate to find the optimal state, the error in
the odometry is no longer zero. This increase in odometry
error gives us a measure of the change that must take place
in order for the graph to conform to loop closure constraints.
This error will be smaller when the corresponding loop
closures are correct because of the comparatively smaller
change needed as opposed to the change needed when loop
closures are wrong. Moreover, clusters that suggest the same
change would cause smaller errors among them as compared
to clusters that suggest different changes. By measuring how
much errors the clusters introduce, we can detect which
clusters agree with each other. A point to note here is that
even though odometry drifts with time, it is still a useful
measure of the underlying topology of the graph.

A. Method

1) Clustering: Our method starts by collecting topologi-
cally related loop closing hypotheses into clusters. Clusters
are sets of loop closure links that relate similar portions of
the trajectory. We use a simple incremental way to group
them related in time and in space, given that each pose has
an associated timestamp. We proceed as follows: with the
first loop closure that arrives, we initialize the first cluster
R1. Then, we decide according to (6) if the next loop closure
arriving belongs to same cluster or a new cluster needs to
be initialized:



ωi,j ∈ Rk ⇐⇒
∃ωp,q ∈ Rk | ‖ti − tp‖ ≤ tg ∧ ‖tj − tq‖ ≤ tg (6)

where ti means the timestamp related to the node i, and
tg can be selected according to the rate at which place
recognition system runs. This threshold defines the cluster
neighbourhood. In our experiments, we consider loop closing
hypotheses that are less than 10 second apart to be part of
the same cluster. A cluster is considered closed if after tg
time no more links are added to it.

2) Intra-Cluster Consistency: After clustering hypotheses
together, the next step is to compute the intra-cluster con-
sistency for each cluster. This involves optimizing the pose
graph with respect to just this single cluster and checking
which links satisfy the corresponding χ2 bound. The links
inside the cluster that do not pass this test are removed from
the cluster and are no longer considered in the optimization.
Algorithm 1 describes the intra-cluster consistency, where
D2
G is the residual error for all the links in the current graph,

D2
l is the residual for each individual loop closing link, d∗ is

the corresponding degrees of freedom, and χ2
α,k represents

the chi-squared distribution with k degrees of freedom and
α confidence. This procedure is carried out for each cluster
as soon as it is closed.

Algorithm 1 Intra Cluster Consistency
Input: poses , slinks , cluster of rlinks
Output: cluster

add poses, slinks to PoseGraph
PoseGraphIC ← PoseGraph
add cluster to PoseGraphIC
optimize PoseGraphIC
if D2

G < χ2
α,dG

then
for each rlinkl ∈ cluster do

if D2
l < χ2

α,dl
then

Accept rlinkl
else

Reject rlinkl
end if

end for
else

Reject cluster
end if

3) The RRR algorithm: Having established intra-cluster
consistency, we now look for clusters that are jointly consis-
tent i.e. inter-cluster consistency. We initially assume that all
the clusters present in the optimization process are consistent
and carry out optimization by including all of them in the
optimization process. Once optimized, we check for any links
whose residual error satisfies the χ2 test. The clusters to
which these links belong are then selected and added to the
candidate set to be evaluated for inter-cluster consistency.

The inter-cluster consistency test is give in algorithm 2.
It requires that the Mahalanobis distance contributed by
the clusters (D2

C) and the overall Mahalanobis distance of
the optimized graph (D2

G) should be less than χ2 for the
corresponding degrees of freedom. Moreover, if the current

set is not jointly consistent, we remove the cluster with the
greatest Consistency Index (CI) and try again. Consistency
Index is defined as the ratio of Mahalanobis distance to the
χ2
α,d for the corresponding degrees of freedom d [11].

Algorithm 2 Inter Cluster Consistency
Input: goodSet , candidateSet , PoseGraph
Output: goodSet , rejectSet

PoseGraphJC ← PoseGraph
add (goodSet , candidateSet) to PoseGraphJC
rejectSet ← {}
optimize PoseGraphJC
if D2

C < χ2
α,dC

∧D2
G < χ2

α,dG
then

goodSet ← {goodSet , candidateSet}
else

find the clusteri ∈ candidateSet with largest CI
remove clusteri from candidateSet
rejectSet ← clusteri
if ¬isempty candidateSet then

(goodSet , rSet)←
Inter Cluster Consistency(goodSet , candidateSet)
rejectSet ← {rejectSet , rSet}

end if
end if

Algorithm 3 RRR
Input: poses , slinks , R set of clusters containing rlinks
Output: goodSet of rlinks

1: add poses, slinks to PoseGraph
2: goodSet ← {}
3: rejectSet ← {}
4: loop
5: PoseGraphPR ← PoseGraph
6: currentSet ← R\{goodSet ∪ rejectSet}
7: candidateSet ← {}
8: add currentSet to PoseGraphPR
9: optimize PoseGraphPR

10: for each clusteri ∈ currentSet do
11: if ∃D2

l < χ2
α,dl
| rlinkj ∈ clusteri then

12: candidateSet ← {candidateSet , clusteri}
13: end if
14: end for
15: if isempty(candidateSet) then
16: STOP
17: else
18: s = goodSet .size
19: (goodSet , rSet)←

Inter Cluster Consistency(goodSet , candidateSet)
20: if goodSet .size > s then
21: rejectSet ← {}
22: else
23: rejectSet ← {rejectSet , rSet}
24: end if
25: end if
26: end loop

We accept the clusters that are jointly consistent and call
them the good set. In the next iteration, we remove the good
set as well as the reject set from the optimization and try
to re-optimize with the remaining clusters. The idea behind
doing so is that, in the absence of the good clusters, other
correct clusters will be able to pass the χ2 tests. As long as
we keep finding clusters that are jointly consistent with the



good set, the good set will grow.
An important point to mention here is the use of the reject

set. The reject set contains all the clusters that we checked
in the last iteration but found them to be incompatible
with the good set. We omit them from the optimization
process until something is added to the good set in the
next iteration. The idea behind doing so is the following:
during the previous iteration of the algorithm, we found
some clusters to satisfy the threshold test, and therefore we
evaluated their compatibility with the good set. We found
some of them to be incompatible and they were added to the
reject set. If no changes were made to the good set and we
include the clusters from the reject set in the optimization
again, the algorithm would suggest the same clusters for
evaluation but we already know them to be inconsistent. The
reject set therefore acts as an accumulator of clusters that
are inconsistent with the present good set. The reject set is
therefore maintained until something is added to the good
set and is cleared once something is appended to the good
set. The main algorithm is given in the algorithm 3.

The algorithm terminates when we are no longer able to
find any clusters to add to the candidate set.

B. Incremental Implementation

The method proposed can be carried out in an incremental
fashion, it being triggered every time we close a cluster. We
calculate the individual compatibility for this cluster. If it
is not individually compatible, it is discarded and nothing
further is done, otherwise we execute an incremental version
of algorithm 3.

The incremental version of algorithm 3 works this way:
for the first cluster that passes intra-cluster test (algorithm
1), we begin with an empty goodSet and rejectSet (line 2-3),
otherwise values evaluated at the previous step are used. It
should be mentioned that the set R contains only the clusters
that have passed the intra-cluster consistency test. The loop
(line 4-26) is then carried out with the following changes:
in inter-cluster consistency (line 19), rather than consider-
ing only the members of candidateSet for elimination, we
consider the member of goodSet as well. This is to ensure
that if further evidence becomes available against member
of goodSet, they can be eliminated. Since we are building a
consensus gradually over time, anything that is rejected by
inter-cluster consistency test is inconsistent. Therefore we
do not clear the rejectSet in the incremental implementation
(line 20-24). Finally, once we have calculated the goodSet,
we optimize the graph with it, giving us the best estimate at
the current point in time.

C. Multi-Session

Our method is able to work with multiple sessions without
needing “weak links” or “anchor nodes”. We argue that
if there is a correct loop closure between two sessions,
this information alone is enough to align the two sessions
correctly after optimization. But this information may or
may not be available or may arrive in the system after a
long time. Therefore, we need to deal with multiple session

in a unified manner, so that if the loop closing information
between different sessions becomes available, we can align
the sessions, otherwise we maintain up-to-date estimate of
all the sessions independently.

The loop closing clusters can be of two types; the first
ones are those which close loops with in the same session or
intra-session loop closures (Gi). The second type are those
that connect two sessions with each other or inter-session
loop closures (Gij). If we have n sessions that have intra-
session loop closures, but no inter-session loops closures,
then for these n un-connected sessions, the goodSet denoted
by Gt at time t will be partitionable into n subsets such that
Gt = ∪ni=1G

t
i and ∀i 6= j : Gti ∩ Gtj = ∅. Gti contains all

the good links that belong to session i at time t. It should be
noted that this partitioning is based on the sessions to which
the loop closing links belong.

Since there are no clusters that link these sets, they are
independent of each other, and we can calculate/expand the
Gi for each subset independently. Similar partitioning can
be done for the candidateSet.

If we find a cluster Rkl that links session k to session l,
this introduces a connection between Gk and Gl via Rkl.
We fuse these to form a single set. This is given by:

Gkl ← {Gk ∪Gl ∪Rkl} (7)

Since we have now connected two sessions that were not
connected before, the number of unconnected components
(the number of partitions of the set) reduce from n to n− 1.
In the ideal case, when all the sessions are connected to
each other we get just a single set at the end, indicating that
all the sessions are connected either directly or indirectly
to all the other sessions. Once we compute/update the new
partitioning, the union of these new subsets forms our
estimate of the correct loop closures, Gt+1.

Consider the case when the robot starts moving in the first
session. All the links are intra-sessions links and we only
maintain a single subset G0. After some time, the front end
indicates the start of a new session. Now the intra-sessions
clusters will form a new set G1. As soon as there is a cluster
R10 that links the two sessions, we can merge them to form
a single connected graph. If such a cluster is never found,
the individual sets G0 and G1 maintain the goodSet for each
individual session.

This formulation helps us deal dynamically with linkages
between sessions. As soon as such a inter-session cluster
forms a part of the goodSet, we have the up-to-date in-
formation on how the two sessions, linked by this cluster,
are related to each other. This formulation also ensures that
only the session to which new loop closing clusters are
being added are updated, because for the other sessions the
candidate set, Cti would be empty, indicating that we can not
reason about that session given this new information.

IV. EXPERIMENTS

In this section, we present the result of experiments for
our proposal using multiple and diverse datasets. We use the



−60 −40 −20 0 20 40 60 80 100 120

−60

−40

−20

0

20

40

60

80

(a) Input.
−60 −40 −20 0 20 40 60 80 100 120

−60

−40

−20

0

20

40

60

80

−20 0 20 40 60 80
−60

−40

−20

0

20

40

60

80

x [m]

y
 [

m
]

Bicocca_2009−02−25b

 

 

(b) Output of Sunderhauf’s method.
−60 −40 −20 0 20 40 60 80 100 120

−60

−40

−20

0

20

40

60

80

−20 0 20 40 60 80
−60

−40

−20

0

20

40

60

80

x [m]

y
 [

m
]

Bicocca_2009−02−25b

 

 

(c) Output of Sunderhauf’s method with Robust Kernel.

−60 −40 −20 0 20 40 60 80 100 120

−60

−40

−20

0

20

40

60

80

−20 0 20 40 60 80
−60

−40

−20

0

20

40

60

80

x [m]

y
 [

m
]

Bicocca_2009−02−25b

 

 

(d) Output of our proposal.

0 0.5 1 1.5 2 2.5 3
0

50

150

250

350

Position Error [m]

F
re

qu
en

cy

Bicocca_2009−02−25b: ATE, proposal vs GT−extended

ē=0.96

ē=1.12

 

 

Our proposal

Sunderhauf’s−RK

(e) Absolute trajectory errors distributions.

Fig. 1. (a): One of the sessions from Bicocca campus shown in Fig. 2(a)(bottom) with laser odometry and the constraints from the place recognition
system. (b): The result of Sunderhauf et. al [8], (c) with Robust Kernel activated, left: the loop closures, light to dark red proportional to the value taken
by the switch factors, right: optimized graph (blue) and ground truth (green). (d): The result of our proposal, left: the final loop closures in the good set,
right: optimized graph (blue) and ground truth (green). (e) the distribution of the Absolute Trajectory Errors for the final pose graphs against the ground
truth (c,right) and (d,right).

popular Intel dataset (∼420m) collected at the Intel Research
Laboratory (Seattle, WA), which is available with the down-
loaded version of g2o. Also, we use the New College dataset
(∼2.2km), an outdoors environment from [12], and a multi-
session dataset (∼4km) in an indoor environment (Bicocca
campus) from the RAWSEEDS project [13]. Our method can
use any graph optimizer (e.g. iSAM [14] or g2o [10]), for
this work we use g2o configured with Gauss-Newton method
and four iterations.

A. Comparisons

We first compare in batch mode our method (i.e. RRR
algorithm) against our own implementation of Sunderhauf’s
approach to robust back-end [8] using the parameters and
functions for switch links as given in their paper. The
optimizer used was g2o as well, with two configurations:
Levenberg-Marquadt and Levenberg-Marquadt with Huber
Robust Kernel (RK) width=0.1. We evaluate both configura-
tions against our method in a batch mode over one indoor
session (Bicocca Feb 25b) with a laser scan matcher as
odometry and a bag-of-words plus stereo geometrical check-
ing as place recognition system. The results are shown in Fig.
1. Sunderhauf’s method accepts false positive loop closures
in the zones where there are several contiguous links because
they all weigh in the same direction in the optimization and
for this reason the switch links are not able to reduce their
effect on the graph. The same method with RK works much
better, but given that their method never completely rejects

Mean (m) Std. Dev (m). Time (sec)
Sunderhauf’s 14.72 14.00 20.9
Sunderhauf’s RK 1.120 0.430 18.7
Our method 0.964 0.367 10.1

TABLE I
SUMMARY OF RESULTS FOR FIG. 1.

the wrong loop closures, the accuracy of the estimation is
affected. In Table I we show he Absolute Trajectory Errors
(ATE) computed using the Rawseeds Metrics Computation
Toolkit provided by the RAWSEEDS Project. Also, we show
the computational time required in each case.

Our proposal efficiently keeps only the loop closures that
form the majority consensus among them and with the
odometry constraints. It takes half of the time compared to
Sunderhauf’s method and the accuracy is better than 1m,
0.12% of 774m of travel in this session. The ATE distribution
is shown in Fig. 1(e) for our method and for Sunderhauf’s
with RK activated.

B. Long term mapping

The task of long term mapping involves robustly maintain-
ing and when information becomes available joining multiple
sessions into a single map.

For the Intel dataset, g2o gives us an optimized graph
with sequential constraints and true loop closures. In order
to use it as multi-session and to evaluate our proposal, we
split the dataset in four sessions after each loop in completed
deleting the corresponding odometry constraint. The first



−20 −10 0 10
−20

−10

0

10

20

1st

2nd

3rd

4th

0 5 10 15 20
−5

0

5

10

15

1st

2nd

3rd

4th

0 5 10 15 20
−10

−5

0

5

10

15

0 200 400 600 800
0

0.05

0.1

0.15

0.2

0.25 1st 2nd 3rd 4th

steps

ti
m

e
 (

s
)

−50

0

50

−100−50050100

1st

2nd

3rd

0

50

100

150

−200−150−100−500

1st

2nd

3rd

0 50 100 150

−200

−150

−100

−50

0

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1st 2nd 3rd

steps

ti
m

e
 (

s
)

−150−100−50050100150

−100

0

100

Fep 25a

Feb 25b

Feb 26a

Feb 26b

Feb 27

(a) Inputs.

−50

0

50

100

150

−50050100

Fep 25a

Feb 25b

Feb 26a

Feb 26b

Feb 27

−40 −20 0 20 40 60 80 100 120
−60

−40

−20

0

20

40

60

80

100

(b) Output of our iRRR algorithm.

0 10000 20000 30000 40000
0

1

2

3

4

5

6

7

8

9

10

Fep 25a Feb 25b Feb 26a Feb 26b Feb 27

steps

ti
m

e
 (

s
)

(c) Computational time.

Fig. 2. Multi-session experiments. (a) The input; odometry (each session is a different color and height) and loop closures (pink). (b) The output of
our proposal, each session on different height (left) and the floor-view (right). On top, the Intel dataset divided by us into four sessions and corrupted by
600 wrong loop closures. In the middle, the NewCollege dataset using visual odometry divided into three sessions and with a BoW+gc place recognition
system. Bottom, the Bicocca multi-session experiment from the RAWSEEDS project, odometry from laser scan matching and the loop closures from a
BoW+gc place recognition system. Each session is in its own frame of reference. (c) The computational time of our proposed method against the step
when is triggered.

pose in the resultant session is assumed to be at the origin
and we transform each session according to that. Finally, we
corrupt the dataset with 600 wrong loop closures, grouped
in 200 randomly generated clusters of 3 links each. In Fig.
2(a)(top) we show the resultant sessions with the original
and generated loop closures.

The New college dataset provides laser scan and images.
We use a precomputed visual odometry1 and again, we
split this odometry in three session deleting one of the
sequential constraints and changing the reference frame for
each session. We obtain the loop closure constraints with
a bag-of-words place recognition system, as described in
[5], plus a stereo geometrical checking (BoW+gc). In Fig.
2(a)(middle) we show the resultant sessions with the detected
loop closures.

The rawseeds dataset contains five overlapping runs in
indoor environment and provides wheel odometry, laser scans
and images from a camera mounted on the robot. We use
laser scans from the dataset to compute the laser odometry
using a simple scan matcher and use the BoW+gc to compute

1Available at http://www.robots.ox.ac.uk/NewCollegeData/
index.php?n=Main.Downloads

the loop closure constraints. Each session starts with its own
origin. In Fig. 2(a)(bottom) we show the laser odometry for
the five sessions with the detected loop closures.

The results for the three datasets are shown in Fig. 2(b). It
can be seen that we have recovered the correct loop closing
as well as the relationships between the different sessions.
In Fig. 2(c) we show the computational times required by
the iRRR algorithm vs. the step when is triggered. For
C clusters, our method needs to carry out C individual
compatibility tests. More over, in the worst case if all the
clusters are considered for joint compatibility after the first
optimization and are not jointly compatible, we need C joint
compatible checks. This makes our method linear O(C) in
the number of clusters which agrees with the linear behaviour
shown in Fig. 2(c).

V. DISCUSSION

In this paper, we have presented a method of robustly
solving the loop closing problem in a multi-session context.
Our method is able to generate the best estimate of the
possibly multiple maps with all the information available
until the present moment simultaneously solving for the



transformation relating the sessions.
We compare our method against the one proposed by [8]

and we show that our method is able to deal with loop closing
robustly. The aim of SLAM is not just to construct a good
looking map, but the map should be usable for high level
tasks such as path planning. In that context, loop closing
links provide traversability information and the robot can
take these path into account in order to calculate a path.
“Switch factor” may provide a good estimate of the map but
since they are governed by a continuous function they allow
soft decision making with regards to loop closings decisions,
which in principle should be a boolean decision. In some
cases, as has been shown in the comparison section, links
are partially disabled, which is not a desirable effect.

Previously methods such as anchor nodes or weak links
have been proposed to deal with the problem of connectivity
in multiple sessions. Weak links while providing connectivity
also introduce unnecessary uncertainty into the optimization
process. Anchor nodes on the other hand provide linkage
when there is a common observation but they do not deal
with errors in data association. We have shown that those
two approaches are not required as our proposal can handle
those unconnected session without sacrificing performance.

Our method relies on consensus between the loop closing
links and assumes that there is only one correct configuration
of the graph on which most of the loop closing links agree.
The links that do no agree, suggest random configurations.
What this means is that we are able to deal with “random
conspiracy” among loop closures. For the multi-session ex-
ample of the Intel dataset shown in Fig. 2, approx. 42% of
the loop closing links were incorrect. (769 correct and 600
incorrect). This shows that the proposed method can work
in the presence of a great number of outliers.

The second, more worrying kind of data association prob-
lem is an “organized conspiracy”, in which a second set of
loop closure agree on a different, incorrect configuration of
the graph. To this end, if everything else is the same, we can
trust the odometry links to support the true configuration.
Secondly, place recognition systems can be trusted to give
either the correct place recognition or random false loop
closings, this will prevent an organized conspiracy from
forming. Even still, perceptual aliasing can give rise to such
conspiracy, as is the case shown for Bicocca Feb 25b.

In order to ensure robustness to such configurations, the
incremental implementation optimizes the graph after every
iteration. This ensures that during the next iteration, if the
cluster passes intra-cluster consistency, it will converge fast
enough to end up in the candidateSet, but if the cluster
is inconsistent with the current goodSet, the chances of it
ending up in the candidate set will be less because other
clusters will converge faster than it. Secondly, we maintain
the rejectSet which ensures that any cluster that does not
agree with the current goodSet is not considered again. While
we can not ensure the optimal configuration after each step
in case of an organized conspiracy, we can ensure recovery
if this becomes clear later on.

The method proposed in this work is applicable to the

global metric pose graph formulation. The method is not
restricted to any type of sensor for obtaining odometry or
loop closures. SLAM algorithms that only generate local
consistent maps such as [15] or [16] do not preserve the
global geometric relationships between poses and therefore
our method can not be applied to them.

We have demonstrated the performance of our algorithm
in multiple real cases, in multi-session experiments and
compared against the state of the art in robust back-end
against false loop closures. Immediate future work consists in
considering that odometry links can also include false links.
In these cases, these links can be eliminated from the graph,
breaking down a single session into a multi-session case, that
can then be treated accordingly.

REFERENCES

[1] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in Intel-
ligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on. IEEE, 2009, pp. 1156–1163.

[2] J. McDonald, M. Kaess, C. Cadena, J. Neira, and J. Leonard, “6-
DOF Multi-session Visual SLAM using Anchor Nodes,” in European
Conference on Mobile Robotics, ECMR, 2011.

[3] G. Sibley, C. Mei, I. Reid, and P. Newman, “Vast-scale outdoor nav-
igation using adaptive relative bundle adjustment,” The International
Journal of Robotics Research, vol. 29, no. 8, pp. 958–980, 2010.

[4] M. Cummins and P. Newman, “Appearance-only SLAM at large
scale with FAB-MAP 2.0,” The International Journal of Robotics
Research, 2010. [Online]. Available: http://ijr.sagepub.com/content/
early/2010/11/11/0278364910385483.abstract

[5] C. Cadena, D. Gálvez-López, J. Tardós, and J. Neira, “Robust place
recognition with stereo sequences,” IEEE Transaction on RObotics,
vol. 28, no. 4, 2012, to appear.

[6] A. Ranganathan and F. Dellaert, “Online probabilistic topological
mapping,” The International Journal of Robotics Research, vol. 30,
no. 6, pp. 755–771, May 2011. [Online]. Available: http://ijr.sagepub.
com/content/early/2011/01/23/0278364910393287.abstract

[7] S. Tully, G. Kantor, and H. Choset, “A unified bayesian framework
for global localization and slam in hybrid metric/topological
maps,” The International Journal of Robotics Research, 2012.
[Online]. Available: http://ijr.sagepub.com/content/early/2012/01/16/
0278364911433617.abstract

[8] N. Sünderhauf and P. Protzel, “Towards a robust back-end for pose
graph slam,” in Proc. IEEE Int. Conf. Robotics and Automation, 2012.

[9] Y. Latif, C. Cadena, and J. Neira, “Robust Loop Closing Over Time,”
in Proceedings of Robotics: Science and Systems, Sydney, Australia,
July 2012.

[10] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China,
May 2011.

[11] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applica-
tions to Tracking and Navigation. New York: John Willey and Sons,
2001.

[12] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The
new college vision and laser data set,” The International Journal of
Robotics Research, vol. 28, no. 5, pp. 595–599, May 2009. [Online].
Available: http://www.robots.ox.ac.uk/NewCollegeData/

[13] RAWSEEDS, “Robotics advancement through Webpublishing of sen-
sorial and elaborated extensive data sets (project FP6-IST-045144),”
2009, http://www.rawseeds.org/rs/datasets.

[14] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
Smoothing and Mapping,” IEEE Trans. on Robotics, TRO, vol. 24,
no. 6, pp. 1365–1378, Dec 2008.

[15] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid,
“RSLAM: A System for Large-Scale Mapping in Constant-Time
Using Stereo,” International Journal of Computer Vision, vol. 94,
pp. 198–214, 2011, 10.1007/s11263-010-0361-7. [Online]. Available:
http://dx.doi.org/10.1007/s11263-010-0361-7

[16] H. Strasdat, A. Davison, J. Montiel, and K. Konolige, “Double window
optimisation for constant time visual SLAM,” in IEEE International
Conference on Computer Vision (ICCV), 2011.


