
Semantic Segmentation with Heterogeneous Sensor Coverages

Cesar Cadena and Jana Košecká
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Fig. 1: Our novel semantic parsing approach can seamlessly integrate evidence from multiple sensors with overlapping but possibly different fields of view
and account for missing data, while predicting semantic labels over the spatial union of sensors coverages. The semantic segmentation is formulated on
a graph, in a manner which depends on sensing modality. First row: (a) over-segmentation on the image; (b) graph induced by superpixels; (c) 3D point
cloud re-projected on the image with a tree graph structure computed in 3D, and (d) the full graph as proposed here for full scene understanding. In the
second row is the semantic segmentation (a) ground truth and results of (b) using the image graph and only visual information; (c) using the 3D graph
and visual and 3D information, and finally (d) the result from using a graph for full coverage and all the information. Note the best semantic segmentation
achieved over the union of the spatial coverage of both sensors. Color code: ∎ground, ∎objects, ∎building and ∎vegetation.

Abstract— We propose a new approach to semantic parsing,
which can seamlessly integrate evidence from multiple sensors
with overlapping but possibly different fields of view (FOV),
account for missing data and predict semantic labels over the
spatial union of sensors coverages. The existing approaches typ-
ically carry out semantic segmentation using only one modality,
incorrectly interpolate measurements of other modalities or at
best assign semantic labels only to the spatial intersection of
coverages of different sensors. In this work we remedy these
problems by proposing an effective and efficient strategy for
inducing the graph structure of Conditional Random Field used
for inference and a novel method for computing the sensor
domain dependent potentials. We focus on RGB cameras and
3D data from lasers or depth sensors. The proposed approach
achieves superior performance, compared to state of the art and
obtains labels for the union of spatial coverages of both sensors,
while effectively using appearance or 3D cues when they are
available. The efficiency of the approach is amenable to real-
time implementation. We quantitatively validate our proposal
in two publicly available datasets from indoors and outdoors
real environments. The obtained semantic understanding of the
acquired sensory information can enable higher level tasks for
autonomous mobile robots and facilitate semantic mapping of
the environments.

I. INTRODUCTION

In recent years numerous advances have been made in
semantic mapping of environments. Associating semantic
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concepts with robot’s surroundings can enhance robot’s
autonomy and robustness, facilitate more complex tasks
and enable better human robot interaction. One important
component of semantic understanding is so called semantic
segmentation, which entails simultaneous classification and
segmentation of the sensory data.

In the computer vision community large variety of ap-
proaches have been proposed using only appearance features
computed from RGB images or sparse 3D geometric features
computed by structure from motion techniques. The most
successful approaches for semantic segmentation typically
use Markov or Conditional Random Fields (MRFs or CRFs)
framework [6,12,16,23,26] and vary in the types of features
used, the local classifiers and the graph structure defining the
random field [16,23,26]. With the exception of few [6,12],
most commonly the graph structure is induced by super-
pixels obtained by over-segmentation algorithms on individ-
ual pixels.

In robotics community an active research topic is semantic
segmentation of 3D point clouds from laser range finders
[9,25]. The method of Triebel et al. [25] implements an
online clustering for the point cloud and carries out the
inference in a CRFs setting. While Hu et al. [9] carry
out the segmentation through a cascade of classifiers from
fine to coarse point cloud clusters. Nowadays many robotic
platforms use simultaneously both cameras and 3D lasers
for outdoor navigation, and RGB-D cameras for indoors,
which are calibrated with respect to each other. The use of
these modalities creates opportunities for using richer set of
features as well as obtaining better coverage. In the common



approaches for semantic segmentation proposed [3,20], the
features and the graphical model are constrained to the
area that is covered simultaneously by both sensors. Areas
covered by only one of the sensors are not considered. For
example in the case of cameras and lasers often used in
outdoors setting, due the small FOV of laser range sensors
the upper portion of the image is typically discarded from
the evaluation, see Fig. 1(c).

In the case of RGB-D sensors for indoors environments,
while the depth data cover almost the same area as the RGB
sensor, many image regions have missing corresponding 3D
data due to specular or transparent surfaces or large depth
values which cannot be estimated reliably with the sensor,
see Fig. 7 (second column). The missing depth values are
typically filled by using different in-painting strategies to
obtain dense depth images [10,22], resulting in a full overlap
between the RGB and depth channels. The in-painted depth
is used by [4,5,8,22] for RGB-D in their semantic parsing
approaches. Both Silberman et al. [22] and Gupta et al. [8]
also exploit computationally demanding boundary detectors
and expensive engineered features. The work of Cadena
and Košecká [4] does not require dense depth but it is
able to obtain labels only in regions with common sensor
coverage. While the in-painted depth images provide a partial
solution to a missing data problem, the interpolated depth is
often incorrect and available algorithms are computationally
expensive (15s/frame), making them unsuitable for real-time
operation.

Contribution: In this work we tackle these issues by
proposing an effective and efficient strategy for inducing
the graph structure of Conditional Random Field used for
inference and a novel method for computing the sensor
domain dependent potentials. We achieve superior semantic
segmentation for the regions in the union of spatial coverage
of the sensors, while keeping the computational cost of
the approach low. The problem is illustrated in Fig. 1. For
example with an image sensor note how in column (b) one
portion of the car is confused with the ground because their
colors are similar. When we combine the visual sensing with
the evidence from a 3D laser sensor, we are able to mitigate
sensor specific perceptual confusers, column (c), but now
we are only able to explain a subset of the scene, the spatial
intersection coverage, leaving us without output for the car
glass and the building in the top portion of the image. With
the strategy proposed in the remainder of the paper, we take
the advantage of both sensor modalities without discarding
the non-overlapping zones, column (d) in Fig. 1.

Related work: This problem was also addressed by
Muñoz et al. [18], as a co-inference problem, where a
cascade of classifiers are used over a hierarchy of over-
segmentations in each modality, image and 3D. The prop-
agation of evidence between modalities is achieved by using
the partial classification results from a modality, at each level
of the hierarchy, as input for the classification in the other
modality in the overlapping regions. They validate the ap-
proach on their own urban dataset containing images and off-
line processed 3D point clouds, which are later re-projected

on the camera poses to emulate an on-line acquisition. This
strategy does not properly handle the occluded structures in
different points of view, making the emulation a non-realistic
one. In terms of timing, the computational cost increases
linearly with the number of sensors as they are solving a
classification problem for each one. After an expensive (im-
age and 3D) feature extraction, the co-inference takes 0.46s
to classify one scene. Beyond the framework and features,
our approach differs in the use of an augmented feature
space whenever possible and our computational complexity
depends on the size of the scene rather than on the number of
sensors. In our case we propose to augment CRFs framework
by proposing a unified graphical model and using simple,
and efficient to compute, features in each modality to define
proper energy potentials.
In the next section, we recall the general formulation of
Conditional Random Fields, then in Section III we describe
the application of CRFs to the semantic segmentation prob-
lem for images, intersection of image and 3D, and at last
our proposal for the union of image and 3D. In Section
IV we describe the experiments in outdoors and indoors
datasets. We show the advantages of our approach using
all the information available, and compare the results with
state of the art methods. Finally, in Section V we present
discussions and conclusions of the presented work.

II. GENERAL FORMULATION

CRFs directly model the conditional distribution over the
hidden variables given observations p(x∣z). The nodes in a
CRF are denoted x = ⟨x1,x2,⋯,xn⟩, and the observations
are denoted z. In our framework the hidden states correspond
to the m possible classes: xi = {ground, objects,⋯}. A
CRF factorizes the conditional probability distribution over
hidden states into a product of potentials, as:

p(x∣z) =
1

Z(z)
∏
i∈N

φ(xi,z) ∏
i,j∈E

ψ(xi,xj ,z)∏
c∈H

η(xc,z)

(1)
where Z(z) is the normalizing partition function, ⟨N ,E⟩ are
the set of nodes and edges on the graph, andH represents the
set of high order cliques. The computation of this function
is exponential in the size of x.

The unary, or data-term, and pairwise potentials are rep-
resented by φ(xi,z) and ψ(xi,xj ,z), respectively, as their
domains span over one and two random variables or nodes in
the graphical model. The domain for higher order potentials
η(xc,z) spans over cliques of three or more fully connected
nodes. In the remainder we consider only the data and pair-
wise terms, choice commonly referred to as pairwise CRFs.
The potentials are functions that map variable configurations
to non-negative numbers capturing the agreement among the
involved variables: the larger a potential value, the more
likely the configuration.

Potentials are described by log-linear combinations of
feature functions, f and g, i.e., the conditional distribution
in Eq. 1 can be rewritten as:



Fig. 2: CRF over a graphical model with two different sources of informa-
tion.

p(x∣z) =
1

Z(z)
exp

⎛

⎝
∑
i∈N

wT
u f(xi,z) + ∑

i,j∈E

wT
p g(xi,j ,z)

⎞

⎠

(2)
where u and p stand for unary and pairwise, respectively; and
wT = [wT

u ,w
T
p ] is a weight vector, which represents the im-

portance of each feature function. CRFs learn these weights
discriminatively by maximizing the conditional likelihood of
labeled training data.

Fig. 2 shows an example where the random variables
capture two different sources of information A and B,
thus we can define different unary and pairwise potentials
depending on the type of available information. The CRFs
formulation for the graphical model shown in Fig. 2 in terms
of Eq. 2 is:

p(x∣z) =
1

Z(z)
exp

⎛

⎝
∑

i∈NA∖B

ωu1f1(xi,zA) +

∑
i∈NA∩B

ωu2f2(xi,zA,B) + ∑
i∈NB

ωu3f3(xi,zB)+

∑
i,j∈EA

ωp1g1(xi,j ,zA) + ∑
i,j∈EB

ωp2g2(xi,j ,zB)
⎞

⎠

where A and B stand for “green” and “blue” domain. We
observe different feature function depending on the available
domain: f1 is computed for nodes with access only to domain
A; f3 is computed for nodes with access to domain B; and f2

is added for nodes with access to both, A and B. Similarly
for edges, two pairwise functions are computed, g1 if the
edge connects two nodes with information from A available
and g2 with information from B.

With this formulation we can obtain either the marginal
distribution over the class of each variable xi by solving
Eq. 2, or the most likely classification of all the hidden
variables x. The latter can be formulated as the maximum
a posteriori (MAP) problem, seeking the assignment of x
for which p(x∣z) is maximal.

In summary the conditional probability distribution can be
modelled by defining a graph structure relating the random
variables, and the feature functions with the proper domain
depending on the information available.

Fig. 3: On top, the original image with the SLIC superpixel over-
segmentation [1]. Below, the image graph computed from the superpixels’
neighbourhood.

III. SEMANTIC SEGMENTATION WITH CRFS

Given the general formulation for CRFs, we want to apply
it to our problem of semantic segmentation. First we show
how to solve the problem using only visual information
acquired from a monocular camera. Then, we describe the
proposal of [3] when we have two sensor modalities with
common spatial coverage, in this case visual and 3D infor-
mation. And finally, we show our strategy for the same two
sensor modalities but with different spatial coverage.

A. Image only

This is a classic problem in computer vision. The strategy
explained here is a basic approach which allows us explain
the recipe for semantic segmentation with CRFs.

1st: The first step is to define the graph. We adopt
commonly used strategy of superpixel over-segmentation to
obtain the nodes in the graph, and the edges are defined by
the superpixel neighbourhood in the image. To illustrate this
step the image over-segmentation and the image graph are
shown in Fig. 3.1

2nd: In the second step we define the unary and
pairwise feature functions. For the unary feature function
(Eq. 3) we use a k-NN classifier (Eq. 4) as defined in [24].

f1(xs,zim) = − logPs(xs∣zim) (3)

Ps(xs = lj ∣zim) =
1

∑
m
j=1 (

f(lj)
F(lj)

f(lj)
F(lj)

)

f(lj)
F(lj)

f(lj)
F(lj)

(4)

where f(lj) (resp. f(lj)) is the number of neighbours to
superpixel s with label lj (resp. not lj) in the kd-tree. And
F(lj) (resp. F(lj)) is the counting of all the observations in
the training data with label lj (resp. not lj).

In the outdoors case [3], the 13-D feature vector is
composed from the mean and standard deviation of LAB
and RGB color spaces of the superpixel, and by the vertical
superpixel centroid in the image. In the indoors case [4], the
8-D feature vector is composed from the mean and standard
deviation of LAB color space, the vertical superpixel centroid
in the image, and the entropy of the probability distribution

1For the sake of visual clarity the example in Figs. 3, 4 and 5 use a coarser
over-segmentation than the actually used in the experimental section.



Fig. 4: On top, the 3D point cloud re-projected on the image. Below, the 3D
graph (blue) computed as the minimum spanning tree over the Euclidean
3D distances between superpixels and re-projected on the image.

for the superpixel’s boundaries belonging to the dominant
vanishing points.

The pairwise feature function is defined in Eq. 5.

g1(xi,j ,zim) =

⎧⎪⎪
⎨
⎪⎪⎩

1 − exp (−∥ci − cj∥2) → li = lj

exp (−∥ci − cj∥2) → li ≠ lj
(5)

where ∥ci − cj∥2 is the L2-Norm of the difference between
the mean colors of two superpixels in the LAB-color space
and l is the class label.

3rd: The next step is the learning stage and finally
the inference. Given that the graph structure contains loops
the inference is carried out by loopy belief propagation and
the learning of the weights [wu1 ,wp1] by minimizing the
negative log pseudo-likelihood [11].

B. Image and 3D: Intersection

When information from another sensor becomes available
we want to infer the class in the spatial regions that are
covered by all the sensors. In this case, we want to use the
visual information jointly with the 3D information from a
laser range finder or from a depth sensor. The steps described
here are a summary of the proposals in [3] for outdoors and
[4] for indoors.

1st: We use the superpixel over-segmentation to obtain
the nodes in the graph. Hence, the 3D point cloud is clustered
through this over-segmentation by re-projecting them on
the image. The graph edges are defined by the minimum
spanning tree (MST) over the Euclidean distances between
3D superpixel’s centroids in the scene. The area of coverage
of the laser and the 3D graph are shown in Fig. 4.

2nd: The unary and pairwise feature functions take the
same form of Eqs. 3 and 5. But with the new information
available we augment the feature vector for the kd-tree in
the k-NN classifier. The previous feature vector is augmented
with a 8-D vector of 3D features, containing the 3D centroid,
the local and neighbourhood planarity, the vertical orienta-
tion, and the mean and std for the differences in depth for the
superpixel wrt. its image neighbours. In the indoor case the
horizontal coordinate for the centroid is not used, ending in
a 7-D vector of 3D features. Eq. 6 shows the unary feature
function using this new k-NN classifier and Eq. 7 is used
jointly with Eq. 5 as pairwise feature functions.

Fig. 5: Full graph. The edges determined by the 3D distances are in blue,
and those by color distances are in green. We have shaded the image area
with no 3D data related.

f2(xs,zim,3D) = − logPs(xs∣zim,3D) (6)

g2(xi,j ,z3D) =

⎧⎪⎪
⎨
⎪⎪⎩

1 − exp (−∥p⃗i − p⃗j∥2) → li = lj

exp (−∥p⃗i − p⃗j∥2) → li ≠ lj
(7)

where ∥p⃗i − p⃗j∥2 is the L2-Norm of the difference between
centroid’s 3D positions.

3rd: In this case the MST over 3D has induced the tree
graph structure, as such the inference process can be carried
out in an exact way efficiently by the belief propagation
algorithm [11]. The learning of the weights [wu2 ,wp1 ,wp2]

is done as before.

C. Image and 3D: Union

In the previous approach the graphical model is induced
by 3D point cloud, and is able to explain only the intersection
of the field of view of the camera and the 3D sensor.
In the proposal presented below, we show how to assign
semantic labels to the union of spatial coverage of both
sensors.2 We do so by augmenting the three ingredients of the
CRFs approach (graph structure, potentials and learning and
inference) to incorporate non-overlapping sensor coverage.
In the experimental section we demonstrate improvements in
the semantic segmentation accuracy, while maintaining the
efficiency of the system.

1st: To build the full graph we need edges relating the
3D point cloud, the image and some connection between
them. We first rely on the approach presented in the previous
section and construct the sub-graph over the intersection of
sensors coverage. Namely, we use the superpixels to cluster
the point cloud but note that any other 3D clustering method
is suitable for this purpose if the image is not available. Then,
the 3D sub-graph is identical to that shown in Fig. 4. For
the image sub-graph we use the image superpixels’ neigh-
bourhood without 3D information, a subset of Fig. 3 bottom.
Note that some of the neighborhood edges end in the nodes
of the 3D sub-graph giving us the connection between sub-
graphs. Within this set of connections we find a MST over
the distances between the superpixels’ LAB-color space,
inducing the image sub-graph. In Fig. 5 we show the graph
for the full coverage, the 3D sub-graph in blue and the image
sub-graph in green.

2The 3D laser has actually 360○ of horizontal field of view but the ground
truth labels are not available outside of image field of view. Note that the
approach proposed here is equally applicable to parts with only 3D data
extending the 3D graph to some point cloud over-segmentation, in which
case the graphical model would take the form of Fig. 2.



TABLE I: KITTI dataset, semantic segmentation recall accuracy in pixel-wise percentage.
ground objects building vegetation sky Average Global Coverage

road pavem. car fence post people sign.

Image only
Sengupta et al. [21] 98.3 91.3 93.9 48.5 49.3 — — 97.0 93.4 — 81.7 88.4 —
CRF−Im 97.8 61.8 87.7 94.8 97.4 87.9 85.8 100

CRF−Im∩ 3Da [3] 97.1 85.3 79.8 90.1 — 88.3 89.8 60.1
CRF−Im∪ 3D 97.0 83.6 88.5 94.6 96.6 92.1 90.9 100
aAccuracy computed over the effective coverage region.
— stands for values that are no provided in [21] or are not possible to obtain with the approach of [3].

Fig. 6: Results of different settings on KITTI dataset. From left to right: CRF−Im, CRF−Im∩ 3D and CRF−Im∪ 3D. Color code: ∎ground, ∎objects,
∎building, ∎vegetation and ∎sky.

2nd: We have already shown very simple and effective
features for each sensing modality. We will use the associated
feature functions with their proper domain, as follows:

f1(xs,zim) if s ∈ im ∖ 3D

f2(xs,zim,3D) if s ∈ im ∩ 3D

g1(xi,j ,zim) if i ∧ j ∈ im

g2(xi,j ,z3D) if i ∧ j ∈ 3D

This is the same case already shown in Fig. 2 after
removing f3 .

3rd: The weight vector to learn in this setting is
composed by [wu1 ,wu2 ,wp1 ,wp2], which is again obtained
by minimizing the negative log pseudo-likelihood. The in-
ference is carried out by loopy belief propagation because
even though the two sub-graphs are trees, the full graph
contains loops. However, we have found that convergence
was achieved in all of our experiments in very few iterations.

IV. EXPERIMENTS

We report the performance of the proposed method on two
different real environments, urban outdoors and indoors. In
outdoors we use Velodyne laser range sensor and camera and
in indoors Kinect RGB-D sensor.

A. Outdoors: Image + 3D laser scan

We use the KITTI dataset [7], which contains images
(1240x380) and 3D laser data taken for a vehicle in different
urban scenarios. There are 70 manually labelled images as
ground truth made available by [21], with a split of 45 for
training and 25 for testing. The original classes released by

[21] are: road, building, vehicle, people, pavement, vegeta-
tion, sky, signal, post/pole and fence. We have mapped those
to five more general classes: ground (road and pavement),
building, vegetation, and objects (vehicle, people, signal, pole
and fence) and sky.

In this experiment we test the three cases of sensor
overlap described in Section III; semantic segmentation using
only the image information: CRF−Im, using the intersection
between image and 3D: CRF−Im∩3D, and using the full
coverage: CRF−Im∪3D. The results are shown in Fig. 6
and Table I for a qualitative and quantitative evaluation,
respectively. As reference we show the results reported in
[21] in Table I. Using only the image information, CRF-
Im, we can obtain very good results in classes like ground,
vegetation and sky, but a poor performance in objects.
Adding 3D shape evidence, CRF-Im∩3D, the performance
on the objects class is boosted with the disadvantage of parts
of the scene with no semantic explanation. When we use
all the available information, CRF-Im∪3D, we obtain the
best average performance over all the classes and solve the
deficiencies of using only one modality without sacrificing
the coverage of the scene. For instance in Fig. 6(last row),
the mistake of assigning ground to the phone cable box is
solved with shape evidence. In the second row the propa-
gation through the graph of building class solves the wrong
assignment of sky to part of the house. The performance of
CRF-Im∪3D for objects class is as good as for CRF-Im∩3D
and for the remaining classes as good as for CRF-Im, with
no statistically significant differences.



TABLE II: NYU dataset, semantic segmentation recall accuracy in pixel-wise percentage.
ground furniture props structure Average Global In-painting Coverage

Silberman et al. [22] 68 70 42 59 59.6 58.6 Required 100
Couprie et al. [5] 87.3 45.3 35.5 86.1 63.5 64.5 Required 100
CRF−Im∩ 3D [4] 88.4 64.1 30.5 78.6 65.4 67.2 Required 100
CRF−Im∩ 3D raw-depthb 88.5 69.0 23.1 78.6 64.8 67.4 No 74.6
CRF−Im∪ 3D 87.9 63.8 27.1 79.7 64.3 67.0 No 100
bAccuracy computed over the effective coverage region.

Fig. 7: Results of different settings on NYU dataset. First three columns show the RGB, the raw depth and the in-painted depth images. The next two
columns show the results of the system of [4] for CRF−Im∩ 3D using the raw and in-painted depths. The fifth column is the result from our proposal
CRF−Im∪ 3D using RGB and raw depth channels. The last column shows the ground truth provided. Labels color code: ∎ground, ∎structure, ∎furniture
and ∎props.

In terms of efficiency the average cost, after segmentation
and feature computation, is 40ms for CRF−Im, 16ms for
CRF−Im∩3D, and 23ms for CRF−Im∪3D. Please, see [3]
for detailed timing.

B. Indoors: Kinect sensor

We use the NYU V2 RGB-D dataset [22], which contains
1449 labeled frames. A standard split for training (795) and
testing (654) is provided. The labeling spans over 894 differ-
ent classes with a mapping to 4 classes: ground, structure,
furniture and props, also used in [22].

In this experiment we want to evaluate the effectiveness of
in-painting techniques for obtaining dense depth vs using our
system CRF−Im∪3D over raw depth. In Table II we show
three state of the art results [4,5,22] using dense depth, also,
as reference the result of [4] using the raw depth (CRF-
Im∩3D raw-depth), and in the last row the result from our
proposal CRF−Im∪3D.

Our solution, CRF−Im∪3D, achieves state of the art
performance without the expensive extra in-painting stage.

A visual comparison in Fig. 7, shows the benefits of using
the union of both modalities more than their intersection.
For example, in the first to fourth rows of Fig. 7 the depth
data for the tables are missed and the in-painting does not
estimate the correct values, leading CRF−Im∩3D to assign
the class ground in those regions, something dangerous for
the navigation system in a mobile robot. Also in the second
row, the missing depth for the piano cover is filled by the in-
painting with the depth of the wall behind, resulting in wrong
labeling as structure. Those cases are correctly handled
by our CRF−Im∪3D strategy, where in the missing depth
regions only image information gives the local evidence
and the information from regions with depth is correctly
propagated through the graph to these regions. Note that for
scenes without missing depth both systems (∪ and ∩) are
equivalent (up to no overlap for different field of views).

The last two rows of Fig. 7 show examples that cause
the slight decrease in the performance of CRF−Im∪3D
compared to CRF−Im∩3D using in-painting, (5th and 3rd



rows of Table II). For instance, in Fig. 7(5th row) the floor is
not detected by the depth sensor and has enough texture to
be classified by our system as continuation of the furniture
around, while the in-painting create some artificial depth that
CRF−Im∩3D was able to classify as ground. In Fig. 7(6th
row) part of the floor is not detected by the depth sensor
and CRF−Im∪3D finds as the best assignment to extend the
structure were the depth is missed, while the in-painted depth
extends both, the floor and the walls, allowing CRF−Im∩3D
to classify as ground a larger portion of the floor.

In the indoors setting experiment the average computa-
tional cost, after segmentation and feature computation, is
7ms for CRF−Im∩3D using in-painting (15s), and 10ms for
CRF−Im∪3D using raw depth, see [4] for detailed timing.

V. CONCLUSIONS

In this work we have addressed the problem of semantic
mapping using the information from different sensors. We
exploited the versatility and flexibility of the conditional ran-
dom fields, to connect and use different sensory modalities
in case they have different coverage areas. The presented
proposal also handles the cases of missing data commonly
encountered in RGB-D sensors and correctly propagates
evidence from areas with available 3D information.

We have tested our proposal on real data, from outdoors
and indoors environments, demonstrating its advantages over
the existing alternatives to the problem of semantic segmen-
tation. In our experiments due to the non-empty intersection
between sensor coverages, we obtained a connected graph,
but this is no a requirement for our approach. In fact, if
the final graph is a forest of tree we can still carry out the
inference process. The approach presented in this paper is
very standard, and can easily be adapted to the recursive
approach described in [3] for on-line semantic segmentation.
The outcome from our system can be used and enhanced
by specific object detectors in any (combination of) sensor
modalities.

In the future work we plan to apply our semantic seg-
mentation proposal to stereo cameras alone [13], and in
combination to the 360○ 3D laser sensor [7]. The approach
proposed and evaluated here is not limited to a fixed number
of sensors or sensor modalities. For instance, we can formu-
late the system for any number, and any kind of cameras:
CRF−Im1 ∪ Im2 ∪ . . . ImN , or combination with alternative
sensors (e.g. radar, thermal, or infra-red cameras) [15,17,19]:
CRF−Im∪Th∪Radar∪ IR∪3D.

The proposed augmented CRF framework which enables
single inference of sub-graphs, induced by different sensing
modalities, can be also applied to data association in place
recognition tasks [2].
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