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Fig. 1: Change Detection Algorithm: (left) One of 10 reconstructed scene observations. (center) Reconstruction of the

static environment after 10 observations. (right) Discovered dynamic objects.

Abstract— Robots that are operating for extended periods
of time need to be able to deal with changes in their en-
vironment and represent them adequately in their maps. In
this paper, we present a novel 3D reconstruction algorithm
based on an extended Truncated Signed Distance Function
(TSDF) that enables to continuously refine the static map
while simultaneously obtaining 3D reconstructions of dynamic
objects in the scene. This is a challenging problem because map
updates happen incrementally and are typically incomplete.
Previous work on change detecting typically performs change
detection on point clouds, surfels or maps, which are not
able to distinguish between unexplored and empty space. In
contrast, our TSDF-based representation naturally contains this
information and thus allows us to more robustly solve the
scene differencing problem. We demonstrate the algorithms
performance as part of a system for unsupervised object
discovery and class recognition. We evaluated our algorithm on
challenging datasets that we recorded over several days with
RGB-D enabled tablets. To stimulate further research in this
area, all of our datasets will be made publicly available3.

I. INTRODUCTION

The ability of a robot to perceive and map the 3D structure

of its environment is crucial to many applications such as

life-long mapping and navigation. However, incrementally

incorportating new 3D observations into a consistent map

is difficult in the presence of dynamic objects. Furthermore,

observations are noisy and generally incomplete so that rea-

soning about change (and its extent) is a non-trivial task. In

this work, we propose an extension to TSDF based mapping

that allows us to estimate consistent 3D reconstructions of
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the static map. Furthermore, our approach enables object

discovery as an ongoing process during the robot’s long-

term day-to-day operation. Besides robotics, our work is

also applicable to many other domains such as 3D building

scanning where one wants all dynamic objects to be removed

or warehouse logistics where it is relevant to find leftover

objects and generally model the flow of goods.

We exploit the intrinsic properties of the volumetric TSDF-

grid representation of 3D geometry to efficiently and robustly

detect changes between different observation of the same

scene and cluster and segment these changes into object

candidates.

Our approach does not rely on viewpoint-dependent data

such as camera poses, images and depth maps, once the

reconstruction of the scene is complete. It also solves existing

limitations such as assuming non-overlapping scene changes

and completely overlapping observations. We furthermore

employ an incremental object database to match and store

the discovered objects and refine their 3D model with every

discovered object instance.

The key contributions of this paper are:

• A novel estimation technique for computing consistent

3D reconstructions in dynamic environments based on

a TSDF,

• a change detection algorithm that allows us to segment

dynamic objects,

• a qualitative and quantitative evaluation of unsupervised

object discovery and matching that combines the pro-

posed change detection algorithm with an incremental

object database, and

• a large corpus of datasets recorded with a low cost,

mobile RGB-D tablet that we provide to community for

further research and evaluation in long-term mapping in

changing environments.



II. RELATED WORK

There has been some research into solving the problem of

long-term autonomous mapping and navigation for robots.

Many approaches agree that in order to operate in a dynamic

world the robots representation of the environment needs to

either model these dynamics or has to be able to distinguish

static from dynamic map elements. There have been different

grid based approaches to model the dynamic world for

the purpose of improving 2D mapping. Walcott-Bryant et

al. [1] introduces dynamic pose graph SLAM by adding time

as an additional dimension and using change detection on

an occupancy grid to identify and discard obsolete poses.

Saarinen et al. [2] approximates the dynamic environment

using an occupancy grid map with the assumption that each

cell is an independent Markov chain.

With the advent of low-cost 3D sensors the same prob-

lem arose also in consistent dense long-term mapping and

reconstruction and lead to an increasing amount research

in this field. Andreasson et al. [3] applies a 3D version

of the Normal Distribution Transform (NDT) to detect not

only geometry but also color changes between a reference

model and a new observation. Saarinen et al. [4] recently

further improved the efficiency and real-time capability of

the system. Even though the NDT allows the computation

of probabilistic changes it is not suitable for surface recon-

struction and hence will not allow the extraction of object

surface models.

Recent publications furthermore focused on exploiting

the dynamics of the environment to learn about the scene

or more specifically about the dynamic objects. Herbst et

al. [5] employs probabilistic sensor models for depth, color

and surface normals and segments a Markov Random Field

(MRF) using graph cuts to extract dynamic objects in surfel-

based reconstructions. Their work employs spectral clus-

tering to compute object classes, however the performance

significantly decreases if the number of classes is unknown

in advance. In more recent work Herbst and Fox [6] demon-

strated a system for real-time dynamic object segmentation

and modelling on desk scenes. It keeps track of multiple

TSDF-based reconstructions of the scene that are split or

merged based on frame-to-model change detection. Finman

et al. [7] exploit change detection using a free space ray-

casting algorithm to learn the best segmentation method for

every dynamic object. This facilitates segmenting dynamic

objects in scenes where they have not moved yet. More

recent in [8] they show how these segmented objects can

then be used for place recognition.

Ambrus et al. [9] proposed a change detection system

that computes a meta-room, i.e. a 3D model of the static

environment, from point cloud based 3D reconstructions

recorded autonomously by a robotic platform. Their al-

gorithm assumes complete observation overlap and uses

occlusion checks to distinguish real changes from segments

that have been occluded by dynamic objects. The objects

are then clustered by proximity across observations and

shape using global descriptors. The meta-room algorithm has

very recently been applied by Fäulhammer et al. [10] in

a system to navigate a robotic platform towards a change

cluster to obtain a better, more detailed object model in

the process. The algorithms and data structures of [5], [7]

and [9] require recomputation or approximation of free-

space/occupancy information or visibility/occlusion checks,

whereas our approach exploits the intrinsic properties of

TSDFs, hence no additional such effort is required.

At this point it is important to point out that there are

different time scales for the dynamics in an environment. A

concept explored by Biber and Duckett [11] by introducing

a dynamic 2D laser maps that represent the environment and

its dynamics over multiple time scales. Our work as well

as [5], [7] and [9] focus solely on change that happens in

between observations. In contrast, Schmidt et al. [12] make

use of Signed Distance Function (SDF) submaps to track

articulated objects that move during a single observation.

Other work focuses on using the results of change de-

tection algorithms to analyse the spatial-temporal behaviour

of changes. Ambrus et al. [13] further improve their object

matching performance by modelling the spatial-temporal

distribution of change segments. Krajnik et al. [14] assumes

periodicity of the changes and calculates the frequency

spectra of long-term observations of the environment to

compute the probability of a certain state and hence predict

its future state.

III. METHODOLOGY

In Section III-A we describe how we obtain the aligned

3D reconstructions. In Section III-B and III-C we introduce

the change detection algorithm and dynamic objects segmen-

tation. In Section III-D we summarize the incremental object

database we employ for object discovery.

A. 3D Reconstruction

1) Input Data: The proposed algorithm processes aligned

3D reconstructions and therefore is built on top of a SLAM

system that is used to ensure the robots long-term local-

ization. It provides accurate trajectories and it allows us to

align and optimize new ones with respect to the previously

recorded map.

Hence, we assume every observation Oi ∈ O, where N =
|O|, consists of an aligned visual-inertial pose-graph based

map with RGB-D measurements associated with each camera

position.

2) TSDF Representation: After alignment, the RGB-D

data is used to create a 3D reconstruction represented in a

TSDF in the world coordinate frame. The TSDF is stored in

a volumetric grid of resolution r. This allows us to directly

compare the TSDF voxel values of each observation. A single

cell (voxel) of the volumetric grid, indexed with ι ∈ Z
3,

stores the signed distance function value f ∈ [−t,+t],
where t is the truncation distance. It also keeps track of the

voxel weight w ∈ R
+
0 and its RGB color c. A new depth

measurement d that observes point P from camera position

X is integrated into the grid by ray tracing in between X and

P and computing the truncated signed distance. We define



s to be the signed distance between voxel center V and

point P , which is positive in front and negative behind the

observed surface and can be truncated as follows:

fd =

{

t, sdf ≥ t

sdf, sdf ∈ [−t, t]
(1)

Hence, for every voxel the new measurements for fd, cd and

wd are fused with the existing values as follows:

fn+1 =
fn · wn + fd · wd

wn + wd

cn+1 =
cn · wn + cd · wd

wn + wd

wn+1 =w + n+ wd

(2)

The volumetric grid employs a voxel hashing scheme [15]

to improve the scalability of the reconstruction. A marching

cube algorithm [16] is used for surface reconstruction.

After reconstructing the scene observations all the voxels

are filtered by applying a threshold τ to the voxel weight

w. This removes sections of the reconstruction that have

received very few measurements, which also covers highly

dynamic objects passing in front of the sensor.

B. Change detection

1) Initialization: The algorithm keeps track of the follow-

ing data:

• A multi-layered volumetric grid M that stores the

TSDF grid Mi and the voxel indices Ii for each

observation such that:

∀i ∈ [0, N ] M(i, ι) =

{

Mi(ι), if ι ∈ Ii

∅, otherwise
(3)

• A set of all voxel indices containing measurements:

I =
⋃

i∈[0,N ] Ii
• A volumetric TSDF grid S and voxel indices IS that

represent the current best estimate of the static part of

the world.

• A label grid D to store intermediate voxel label results:

D(ι) ∈ {static, dynamic} ∀ι ∈ I.

With the first observation O0 the reconstruction M0 is

computed and stored in M and I is initialized to I0. S and D
are initialized to the first observation such that S(ι) = M0(ι)
and D(ι) = static ∀ι ∈ I.

2) Update Overview: The update consists of incorporat-

ing a new observation into the static reconstruction (See

Fig. 2). A new observation Oi is made and aligned against

the previous observations based on the sparse map using

keypoint-based visual loop closure and batch optimization.

The 3D reconstruction Mi is computed and stored in M
and the voxel indices I are updated with Ii. From this point

onward, the original trajectory and viewpoint dependent data,

such as camera poses, images and depth maps is not needed

any more for change detection. However the sparse, pose-

graph-based map and the keypoints need to be saved and

ideally summarized to allow for long term robot localization

and trajectory alignment.

Fig. 2: Change Detection Algorithm Overview

After alignment the new reconstruction Mi is compared to

S and coarse dynamic clusters are identified. The static map

is first updated by merging all the voxel outside the dynamic

clusters using the default weighted average update scheme

(Eq. 2). For all voxels within the dynamic cluster we apply

a more elaborate merging strategy to cope with occlusion

and noise and in the process segment the remaining static

geometry from the objects. The resulting, more fine grained,

voxel labels are then applied to the surface mesh of the

3D reconstruction Mi and the segmentation is refined using

a region-growing algorithm. Finally we use a connected-

components algorithm to segment the changes into individual

objects.

3) Identifying Dynamic Clusters: The scene differencing

happens in two steps: First we update the label grid D whose

labels are coarsely identifying the dynamic clusters, while

filtering out dynamic labels that originate from noise. To that

end we compare the new observation Mi with the previous

static reconstruction S and compute:

δι = |fMi(ι) − fS(ι)| ∀ι ∈ IS ∩ Ii (4)

By applying the threshold θ we obtain the label grid D,

such that D(ι) = dynamic if δι > θ. In order to reduce

false positive dynamic labels caused by sensor and systematic

noise we filter D using a 3D erosion kernel. We define the

kernel at voxel index ι

Kι = {κ | |κ− ι| ≤ [ρ, ρ, ρ]} (5)

and for label λ

count(ι, λ) = |{κ | κ ∈ Kι, D(κ) = λ}| (6)

A dynamic label at D(ι) is therefore removed if

count(ι, dynamic) ≤ α∗|K|. We then apply a bigger dilation

kernel to the remaining dynamic labels to recover the eroded

geometry. Fig. 3 shows the filtering process on the label map

computed from two different observations.

4) Updating the Static Reconstruction: After identifying

the dynamic clusters by labeling them in D we are able to

compute the consistent reconstruction of the static part of the

environment. To this end we exploit the intrinsic properties

of the TSDF which allows us to elegantly solve the following

two problems encountered by other 3D representation such

as point clouds, meshes and surfels: How do we identify



Fig. 3: Filtering of label grid D: Example of the first coarse change detection step applied to two reconstructions (left).

a) - c) show the state of the label grid D. For better visibility D is colored by height. a) Voxel labels that are obtained

by applying a threshold θ to the raw TSDF difference of the two reconstructions (left). b) The labels are filtered using an

erosion kernel to reduce false positives caused by sensor and systematic noise in the reconstructions. c) A dilation kernel is

applied to recover the original geometry.

changes originating from differences in scene coverage of

the observations? and How do we identify changes caused

by occlusion of dynamic objects? This occluded geometry is

needed to complete the static reconstruction.

The former can either be solved by assuming complete

overlap of the observations [9] or by recomputing the free

space information [7]. The TSDF grid already models free

space (f = t ∧ w > 0) and unobserved space (w =
0) and therefore solves this problem with no additional

computational effort.

The second problem was solved in previous work [9]

by projecting the detected change segments onto a sphere

around the viewpoint and checking for occlusion. However

this prohibits overlapping changes, e.g. a dynamic object

partially occluding another. With the TSDF grid we can solve

this without any viewpoint dependent data: Let us assume

we have N noise-free observations resulting in N perfectly

aligned TSDF grids. Hence by comparing the TSDF values

f(ι,i) for every voxel at index ι the best estimate of the static

map can simply be computed as follows:

S(ι) = max(f(ι,i) | i ∈ [0, N ] ∧ w(ι,i) > 0) (7)

An intuitive explanation is that adding an object can only

ever decrease the signed distance from each voxel to the next

surface, whereas removing an object can only ever increase

it. With this in mind the static reconstruction S is updated

as follows: In a first step all voxels that are labeled static in

D are merged with S such that:

∀κ ∈ {ι | ι ∈ I ∧ D(ι) = static}

Snew(κ) =











S(κ), if wM(N,κ) = 0

M(N,κ), if wS(ι) = 0

S(κ) ⋄M(N,κ), otherwise

(8)

where the voxel merging operation ⋄ is defined by the TSDF

update Eq. 2. For all voxel labeled dynamic we modify Eq. 7

into an algorithm that accounts for the fact that we do not

have noise-free measurements and perfect alignment.

∀κ ∈ {ι | ι ∈ I ∧ D(ι) = dynamic}

Snew(κ) =







































S(κ), if fS(κ) > (fM(N,κ) + θ)

M(N,κ), if fM(N,κ) > (fS(κ) + θ)

S(κ) ⋄M(N,κ), if |fM(N,κ) − fS(κ)| ≤ θ

S(κ) ⋄M(N,κ), if fS(κ) = t ∧ fM(N,κ) = t

S(κ), if fS(κ) = t ∧ fM(N,κ) 6= t

M(N,κ), if fS(κ) 6= t ∧ fM(N,κ) = t
(9)

Intuitively this algorithm approximates the static TSDF value

by merging a new value if it is close to the current estimate.

If a new value is found that is significantly larger it replaces

the current estimate.

C. Dynamic Object Segmentation

In order to extract the dynamic objects we compare the

reconstruction Mi to our current best estimate of the static

reconstruction S and compute a refined label grid Di.

∀κ ∈ {ι | ι ∈ Ii ∧ D(ι) = dynamic}

Di(κ) =











dynamic, if fMi(κ) < fS(κ)

or wS(κ) = 0

static, otherwise

(10)

The voxel labels are then applied to the vertices of the

surface mesh Ri. These vertex labels are then refined using

a simple mesh region-growing algorithm [17]. A region

is initialized to a single mesh face. The algorithm adds

a neighboring face to the region if its normal does not

significantly deviate from the regions current average normal.

If a region cannot grow any more a new region is initialized.

Finally small regions are merged with neighboring regions

with similar average normal. The final set of regions are then

used to grow the dynamic label across all the region if the

ratio of dynamic faces exceeds a threshold φ. Then the mesh

is segmented based on the labels. In order to get individual

objects we apply a simple connected component algorithm,

i.e. all dynamic surfaces that are connected are considered

a single object. Finally all objects are filtered by discarding

planar objects based on their singular values. Furthermore

we impose a minimum size in terms of number of vertices

on the objects.

D. Incremental Object Database

The last component of the proposed system merges and

tracks the extracted dynamic objects and improves their 3D



models with every object instance that is discovered. To that

end we employ the unsupervised incremental object database

described in [18]. For the readers convenience we will briefly

summarize the referenced system.

The system starts from an empty object database, no

previously scanned objects or any other training is involved.

A new object, represented by its 3D point cloud, is added

to the database where additional properties are computed,

e.g. scale, confidence, normals, 3D keypoints (ISS [19])

and descriptors (FPFH [20]) and a list of poses of matched

object instances. In a cleaning/merging step the new object

is matched against the database object (1 to n) or a full

database merging step is started (n to n). The database treats

identical objects in a single observation as different instances

of the same object. The object matching can be summarized

as follows:

• 3D feature-based initial alignment using RANSAC.

• Refinement of the alignment using ICP.

• The best database matches is determined based on ICP

score and inlier ratio.

• A scale- and confidence-aware surface reconstruction

algorithm [21] is used to merge the set of matching

objects and improve the object model.

IV. EXPERIMENTS AND RESULTS

A. Setup

The proposed system was implemented based on the

following existing components:

We use Google Tango tablets as sensor for all our datasets,

most notably its RGB-D sensor which has a resolution of

320 × 180px and an operating range of 0.4 − 4.0m. Hence

we use the Google Tango [22] visual-inertial odometry and

mapping framework for both the initial trajectory estimates

and the alignment of individual observations. The frame-

work creates sparse, pose-graph based maps with associated

IMU measurements, feature tracks based on lens-invariant

Freak [23] descriptors and triangulated feature matches. The

sparse maps are aligned and refined using visual keypoint

based loop closure [24] and batch optimization. The dense

3D reconstruction is based on the Google Tango framework

as well, which is closely related to its OpenSource version

OpenChisel [25].

In order to evaluate our system we recorded three chal-

lenging indoor datasets:

a) living-room: This is the baseline dataset and consists

of 9 hand-held trajectories in a controlled indoor environ-

ment, see Fig. 3 (left). It provides nearly 100% observation

overlap and also provides depth measurements from a large

variety of viewpoints for most objects resulting in 3D models

with a high coverage. The scene changes not only overlap

in between observations but the dynamic objects also come

in contact with different other objects.

b) office: This dataset consists of 4 observations of a

controlled office environment recorded from a single point

at the center of the room using a tripod, see Fig. 4 (top).

Hence the overlap of the observations is close to 100%. Its

purpose is to be able to compare our approach to the meta-

room algorithm which assumes a robotic platform with a

pan-tilt RGB-D sensor unit that scans a single, convex room

from a central point.

c) lounge: This is the most challenging dataset and

consists of 10 hand-held trajectories in an uncontrolled, chal-

lenging environment, a highly frequented meeting area/office

lounge over the course of two weeks where objects are

shifted on a daily basis, see Fig. 1. The observation overlap

varies between approx. 50−100% and many dynamic objects

are only partially observed.

Table I lists the parameters used to process each dataset.

TABLE I

Parameter office living-room lounge

Grid resolution: r [m] 0.02

Truncation distance: t [m] 0.1

TSDF diff threshold: θ [m] 0.05 0.07

Erosion kernel: ρe [voxel] 3 5

Erosion kernel: α 0.5

Dilation kernel: ρd [voxel] 5 7

Region-growing ratio: φ 0.25

Minimum TSDF voxel weight: τ 10

For all experiments we align and reconstruct all obser-

vations as described Section III. The reconstructions are

then used to compute the consistent static reconstruction.

Subsequently the most recent static reconstruction is used to

extract the dynamic objects for all the observations. Hence

the result consists of a single static reconstruction and a

set of dynamic object candidates for every observation. The

extracted dynamic objects candidates are then quantitatively

evaluated by counting the correctly identified dynamic ob-

ject and by analyzing over- and under-segmentation of the

objects based on a hand-labeled ground truth. This means we

counted the number of objects that have been split into multi-

ple object candidates and the ones that have been combined

into a single object candidate. It is important to note that

this segmentation metric also counts objects that have been

perceived as multiple objects due to the partial observation

and objects that have been in close contact with other object

and without further information are indistinguishable from a

single object. We furthermore evaluate the convergence of the

static reconstruction by comparing each intermediate result

to a manually cleaned up version of the final reconstruction.

For a qualitative evaluation of the proposed system for object

discovery, we gradually insert all object candidates into the

incremental object database and perform a cleaning/merging

step as described in Subsection III-D.

B. Experiments

We will evaluate the full change detection algorithm for

all datasets using the above described metrics. A quantitative

and qualitative comparison of our change detection algorithm

to the meta-room algorithm [9] was performed on the office

dataset. In order to demonstrate how the results of our change

detection algorithm can be used as for object discovery, we

will show qualitative result of the generated object classes

and improved 3D models after inserting the objects into the

object database (See Section III-D).



C. Results

1) Change Detection: Fig. 5 shows qualitative results

of the change detection algorithm for all 3 datasets, more

specifically the results of the dynamic object segmentation

(in red) for one of the observations (top) and the final state of

the reconstruction of the static environment after processing

all observations (bottom).

The algorithm successfully detects and removes all dy-

namic objects from the reconstruction and converges to a

consistent 3D model of the static environment. Highlighted

in blue are some minor artifacts resulting from imperfect

segmentation at the object/static environment boundaries.

TABLE II: Evaluation of change detection based on number

of correctly detected object changes.

Dataset TP FP FN Precision Recall

living-room (ours) 62 0 1 100% 98%

lounge (ours) 137 0 12 100% 92%

office (ours) 23 0 0 100% 100%

office (meta-room) 20 1 3 95% 87%

Table II shows the quantitative results of the change detec-

tion by evaluating the number of correctly extracted dynamic

objects. On the evaluated datasets we successfully main-

tained 100% precision while reaching high recall rates. Most

false negatives are caused by filtering out planar objects such

as the couch table in living-room or a partially reconstructed

cushion or table in lounge, see Fig. 1. These misclassification

errors happen at the very end of the pipeline, hence the static

reconstruction is still updated correctly.

Fig. 4: Comparison of our approach (right) to the meta-

room [9] algorithm (left). Static scene after processing all 4

observations (top). Our approach exhibits a cleaner and more

complete segmentation and a better completion of the scene

geometry that was occluded by objects. Our extracted objects

(bottom right) are more complete and some of the smaller

changes are missing with the meta-room based algorithm

(bottom left). See table II for details.

Fig. 4 shows the the comparison between our approach and

the meta-room algorithm [9] applied to the office dataset.

Our static reconstruction exhibits fewer outliers and thus

appears slightly cleaner than the one generated by meta-

room. We attribute this at least partially to our TSDF weight

based filtering as opposed to the Statistical Outlier Rejection

Fig. 7: Examples of merged database object models from

under- and oversegmented object candidates. (top) correctly

segmented and merged (center) undersegmented and partially

matched (bottom) under- or oversegmented without matches.

(SOR) filtering employed by meta-room, which filters based

on the distribution of the point neighbors. Futhermore we

observe that for the meta-room algorithm segments that were

occluded by dynamic objects appear sparser than with our

approach and most segmented dynamic objects leave point

artifacts behind.

2) Static Reconstruction: Fig. 6a, 6b and 6c show the

absolute and relative number of points whose point-to-plane

distance to the reference reconstruction is smaller than θ. For

living-room and office we observe the expected convergence,

as these controlled datasets were designed such that all

static surfaces that were occluded by dynamic objects are

eventually observed and thus can be added to the static

reconstruction. The dataset lounge requires all observations

to converge but despite the fact it was recorded in an

uncontrolled environment the final static reconstructions con-

tains only one small partial object artifact (center of the

room, highlighted in blue) and minor artifacts near the static

surface.

3) Object Segmentation: In contrast to the previous sec-

tions that focused on evaluating the change detection and

static reconstruction computation, in this section we will

evaluate the object segmentation, i.e. how well the segments

represent complete objects. Table III shows the over- and

undersegmentation of objects. Our algorithm has a clear

tendency to oversegment objects as a direct consequence of

the decision to use a connected components algorithm on the

labelled mesh. The meta-room on the other hand employs a

Euclidean clustering algorithm to obtain change segments

and performs significantly better on the office dataset. Fig. 7

shows examples of merged object models as well as under-

and oversegmented objects. Fig. 8 shows how the region-

growing algorithm is used to propagate dynamic labels across

nearly planar regions and results in a better, more complete

object segmentation.

4) Object Discovery: Fig. 7 shows examples of ob-

ject candidates that have been merged by the incremental



Fig. 5: Change detection result for all datasets: (left) office (controlled) (center) living-room (controlled) (right) lounge

(uncontrolled) (top) Discovered and segmented dynamic objects, highlighted in red. (bottom) Computed reconstruction of the

static environment after 4 (office), 9 (living-room) and 10 (lounge) observations. Artifacts, i.e. remaining dynamic surfaces,

are highlighted in blue. See table II for the quantitative change detection evaluation.
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(a) Office Dataset.
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(b) Living-room Dataset.
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(c) Lounge Dataset.

Fig. 6: Convergence of the Static Reconstruction: Comparison of static reconstruction to a manually cleaned-up

reconstruction. Number of points (absolute in blue, relative in red) with a point-to-plane distance greater than θ (5cm).

Fig. 8: Segmented dynamic objects with (right) and without

(left) label refinement/propagation using region-growing. The

refined surfaces are highlighted in red.

TABLE III: Evaluation of object segmentation. For the office

dataset we compare our approach to the meta-room [9]

Dataset/Algorithm
Over-segmented

segments
Under-segmented

segments

living-room (ours) 0 5 / 9%

lounge (ours) 30 / 23% 15 / 11%

office (ours) 26 / 68% 0

office (meta-room) 2 / 9% 0

database, colored by confidence (from low (blue) to high

(green to red)). The living-room dataset contains 9 distinct

objects (by shape), the database merged 56 object candi-

date segments into 15 database objects. The lounge dataset

contains 17 distinct objects (deformed bean bag and robot

arms are separate objects), the database merged 134 object

candidate segments into 48 database objects.

V. DISCUSSION

We have presented a change detection algorithm that

exploits the intrinsic properties of TSDF grids to solve the

scene differencing problem and maintain a consistent 3D

model of the static environment. Our approach does not



Fig. 9: Limitation: Even though region growing improves

the segmentation it cannot fully solve segmentation in case

of few observations (2) and overlapping changes.

require viewpoint dependent data once the observations are

reconstructed and filtering based on TSDF weight and 3D

erosion kernel has proven to be effective in removing noise

and outliers. We furthermore presented a method to cluster

and extract the scene changes that employs a region-growing

algorithm to improve the segmentation. We demonstrated the

application of our change detection algorithm by using an

incremental object database to match the dynamic objects

and compute merged 3D models.

We acknowledge the fact that our change detection ap-

proach is dependent on a correct, pose-graph-based align-

ment of the observations. However unlike other approaches

we refrain from further refining the scene alignment using 3D

features or ICP, because from our experience the trajectory-

based alignment is more likely to exhibit non-rigid/local

misalignment that cannot be solved with a simple global

transformation.

Fig. 9 demonstrates the limit of the segmentation despite

region-growing refinement. The most limiting factor of the

proposed system however is still the over- and underseg-

mentation of objects that complicates creating a consistent

object database. We deliberately chose to use connected

component clustering over euclidean clustering obtaining

potential oversegmentations as we believe it is easier to

merge object segments in the database than to solve segment

splits.

When planar segments are extracted from valid structural

changes we reject them because they are highly ambiguous

as object candidates for matching and merging with other

objects in the database.

We furthermore want to point out that the proposed system

does not offer a complete semantic mapping solution because

there are no semantic labels assigned for the matched objects.

In future work we would like to better identify and

separate under- and oversegmented objects by using the

observations TSDF grids to enforce visibility constraints on

the improved 3D objects. This could not only provide a

quality measure but also allow us to further improve and

filter the database objects.
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[9] R. Ambruş, N. Bore, J. Folkesson, and P. Jensfelt, “Meta-rooms:

Building and maintaining long term spatial models in a dynamic
world,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 1854–1861, IEEE, 2014.
[10] T. Fulhammer, R. Ambru, C. Burbridge, M. Zillich, J. Folkesson,

N. Hawes, P. Jensfelt, and M. Vincze, “Autonomous learning of object
models on a mobile robot,” IEEE Robotics and Automation Letters,
vol. 2, pp. 26–33, Jan 2017.

[11] P. Biber, T. Duckett, et al., “Dynamic maps for long-term operation of
mobile service robots.,” in Robotics: science and systems, pp. 17–24,
2005.

[12] T. Schmidt, R. Newcombe, and D. Fox, “Dart: dense articulated real-
time tracking with consumer depth cameras,” Autonomous Robots,
vol. 39, no. 3, pp. 239–258, 2015.

[13] R. Ambrus, J. Ekekrantz, J. Folkesson, and P. Jensfelt, “Unsupervised
learning of spatial-temporal models of objects in a long-term autonomy
scenario,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on, pp. 5678–5685, IEEE, 2015.
[14] T. Krajnı́k, J. P. Fentanes, G. Cielniak, C. Dondrup, and T. Duckett,

“Spectral analysis for long-term robotic mapping,” in International

Conference on Robotics and Automation (ICRA), 2014.
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