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Abstract— Using multiple cooperative robots is advantageous
for time critical Search and Rescue (SaR) missions as they
permit rapid exploration of the environment and provide higher
redundancy, as opposed to using a single robot. A consid-
erable number of applications such as autonomous driving
and disaster response could benefit from merging mapping
data from several sources. Online multi-robot localization and
mapping has mainly been addressed for robots equipped with
cameras or 2D LiDARs. However, in challenging real-life
scenarios, a mapping system can potentially benefit from a
rich 3D geometric solution. In this work, we present an online
localization and mapping system for multiple robots equipped
with 3D LiDARs. This system is based on incremental sparse
pose-graph optimization using sequential and place recognition
constraints, the latter being identified using a 3D segment
matching approach. The result is a unified representation of
the world and relative robot trajectories. The complete system
is evaluated with two experiments in different environments,
notably urban and disaster scenarios. The source code of the
system is open sourced and easy to run demonstrations are
publicly available.

I. INTRODUCTION

Teams of autonomous mobile robots offer several advan-
tages compared to their single robot counterpart: robustness
to single robot failure, quicker exploration of environments
in time critical SaR missions, execution of tasks of high
complexity and reduction of human risks and costs associated
to disaster response [1, 2]. Accurate online localization and
mapping is a crucial competency for enabling collaboration
between multiple mobile robots. This is however a difficult
task as stated by Saeedi et al. [3] which identified 10
major challenges to achieve online multi-robot Simultane-
ous Localization and Mapping (SLAM). The current work
addresses the challenges of closing loops, complexity and
communication. Inter-robot global associations are found and
used to solve the full 3D SLAM problem with minimum
time, memory and communication bandwidth requirements.

There are already existing vision-based multi-robot SLAM
approaches [3] which can however become unreliable when
strong changes in illumination occur, and in the presence of
strong viewpoint variations [4]. In this work, we therefore
consider 3D LiDARs for their ability to accurately represent
the inherent 3D nature of our environment while providing
higher robustness to changes in external illumination and in
view-point.

Current multi-robot SLAM systems for 3D LiDARs do
not offer a complete online solution [5, 6] which is perhaps
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Fig. 1: Top: An illustration of the presented multi-robot SLAM system.
The trajectories of three UGVs are estimated in real-time and shown in
green, yellow and red. The target map Mt is shown below in white and an
inter-robot place recognition is depicted with vertical green lines indicating
segment matches. Bottom: Two skid-steering UGVs equipped with encoders,
IMUs and rotating LiDARs and the decommissioned two-floors building
considered in the power plant experiment of Section V-E.

due to the absence of efficient algorithms to perform global
data association with dense 3D point clouds. This is con-
trastingly a well-studied problem in visual SLAM. Global
place recognition techniques for 3D point clouds based on
global descriptors [7, 8] and keypoint descriptors [9, 10] are
presented but rarely integrated in a full online SLAM system,
let alone a multi-robot one. Contrastingly, most of the current
3D LiDAR single-robot approaches propose to recognize
places based on local submap matching. These local searches
cannot correct for drift which occurs when long distances are
travelled and large estimation errors accumulate. In the multi-
robot case, finding robot-associations by performing global
search based on submaps does not scale well with increasing
number of robots and would require the raw LiDAR data to
be transmitted, which reflect the aforementioned multi-robot
challenges.

This paper presents an online 3D LiDAR SLAM system
capable of simultaneously and accurately estimating multiple
trajectories, as illustrated in Figure 1. To the best of our
knowledge, this is the first proposed solution to the online
multi-robot SLAM problem for 3D LiDARs. To achieve
this, a pose-graph formulation is adopted by incorporating
sequential and place recognition constraints. We perform
intra and inter-robot place recognition by leveraging our
previously proposed and publicly available SegMatch al-
gorithm [11] which was one key ingredient, along with



significant implementation efforts, in order to achieve a
full working system. The SegMatch technique is formed on
the basis of partitioning point clouds into sets of segments
which efficiently represent the environment by compact
yet discriminative features. This compact representation is
crucial for multi-robot applications as it reduces the required
communication bandwidth as well as the complexity and the
memory requirement of the overall system. This is reflected
in the proposed system which offers real-time performance
for the experiments considered in this paper.

To summarize, this paper presents the following contribu-
tions:

• A fully-integrated online multi-robot SLAM system for
3D LiDARs.

• An evaluation of the entire system in real-world, multi-
robot automotive and disaster scenario experiments.

• An open-source implementation accompanied with
easy-to-run demonstrations1.

The remainder of the paper is structured as follows: Sec-
tion II provides an overview of the related work in the field of
3D LiDAR-based SLAM and multi-robot SLAM. Section III
and IV describe our online multi-robot 3D pose-graph SLAM
system. The full system is evaluated in Section V, and
Section VI finally concludes with a short discussion.

II. RELATED WORK

This section gives an overview of the related work in
single-robot 3D LiDAR-based SLAM, with a focus on pose-
graph based approaches, and present current solutions to the
multi-robot mapping problem.

A. Single robot pose-graph SLAM

The recent survey of Cadena et al. [12] reviews common
approaches to the SLAM problem. This work considers the
pose-graph approach which was pioneered by Lu and Milios
[13] and became increasingly popular in recent years with
an active community performing research in this direction
[14–19].

Several works propose to apply the pose-graph approach to
perform 3D SLAM for single robots equipped with LiDAR
sensors [15–19]. These works mainly differ in terms of the
technique used for matching new 3D scans to previous ones.
For example, Pathak et al. [15] propose to register subsequent
3D scans on the basis of large planar surfaces which leads to
robust estimation of rotations and simplifies the pose-graph
relaxation to handle 3D translations only. This assumption of
an explicit plane model would however typically not hold for
unstructured environments. Droeschel et al. [16] introduce a
multi-resolution surface element representation for the 3D
scans which are obtained by accumulating scans from a
rotating 2D LiDAR sensor. Matching the scans through this

1The source code of the proposed system is open-sourced and demon-
strations including a newly available dataset for multi-robot mapping in
SaR scenarios are available at https://github.com/ethz-asl/
segmatch. A video demonstration is available at todo https://www.
youtube.com/watch?v=iddCgYbgpjE

surface elements representation allows for efficient regis-
trations. The systems proposed in [17–19], and ours are
all based on Iterative Closest Point (ICP) for registering
successive 3D scans and for augmenting the pose-graph with
the corresponding scan-matching constraints.

Although related to this work, none of the aforementioned
approaches explicitly deal with loop-closures. Instead, scan
matching is performed against submaps containing nodes in
the vicinity of the robot, assuming that only little drift oc-
curred. In our system, place recognitions are explicitly dealt
with, allowing the fusion of maps from independent workers
and enabling the joint exploration of larger environments.

B. Multi-robot pose-graph SLAM

A thorough survey on multi-robot SLAM can be found
in [3]. There is a significant amount of works proposing
solutions to the SLAM problem for robots equipped with
cameras or 2D LiDAR but much fewer works consider 3D
LiDAR sensors [5, 6, 20].

Nagatani et al. [5] propose to merge digital elevation maps
obtained from three robots where inter-robot constraints are
found on the basis of submap matching by assuming little
drift and a known good estimate of the relative transfor-
mation between the robots. The map-merging strategy is
performed offline and the experiment only consider a small
environment. Michael et al. [6] present a strategy for gen-
erating a 3D map of a building damaged by an earthquake.
The maps are locally built on each robot using a technique
which assumes the environment to be composed of walls
and horizontal ground planes. The two maps are merged
afterwards, providing a good initial guess for the relative
robot transformation which is then refined by ICP. The two
aforementioned solutions are not applicable to online multi-
robot SLAM and cannot correct for drift which might occur
in the single maps. Finally, Kurazume et al. [20] propose to
model large buildings using multiple robots, one of which
is equipped with a 3D LiDAR. The other robots are used to
improve the sensor’s localization by using direct inter-robot
detection. Although the idea is interesting, this system differs
from ours in that a single 3D LiDAR is used.

As we could not find a single work presenting an online
SLAM system for multiple robots equipped with 3D Li-
DARs, we briefly introduce major multi-robot systems based
on vision, with a focus on the back-end particularities. The
work of Kim et al. [21] addresses the multi-robot mapping
problem based on incremental optimization of multiple rel-
ative pose-graphs. These graphs are linked through anchor
nodes which allow a relative formulation of the inter-robot
encounter detections using april-tags. Anchor nodes which
are the equivalent of base nodes first introduced in [22] were
also used in a multi-session vision-based SLAM system [23].
Anchor nodes are agnostic to the sensor used and help in
the convergence of the back-end pose-graph optimization.
Contrastingly, Konolige and Bowman [24] introduced weak-
links to allow each robot’s pose-graph to grow independently
while keeping the problem constrained in the absence of
inter-robot constraints. Our system is based on weak-links
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and could easily integrate anchor nodes instead if slow
convergence is noticed during optimizations following inter-
robot place recognitions.

III. SYSTEM ARCHITECTURE

This section introduces our multi-robot localization and
mapping system based on 3D LiDAR and displacement
measurements. As illustrated in Figure 2, the system is
centralized such that a master agent is responsible of merging
sensor information transmitted by multiple robots. At the
core of the master agent lies an incremental pose-graph
optimization back-end which is responsible for estimating
the robot trajectories. On the other hand, the front-end is
distributed between the robots and the master agent and
is responsible for providing constraints to the optimiza-
tion problem. For instance, each robot is responsible of
computing sequential constraints, and of pre-processing the
laser point clouds in order to compress the information to
be transmitted over a communication channel of limited
bandwidth.

The remainder of the section presents the back-end of the
proposed multi-robot 3D SLAM system whereas Section IV
details the front-end with the computation of LiDAR odom-
etry, loop-closure and robot-association constraints.

A. Pose-graph formulation

The system is based on a pose-graph optimization ap-
proach [25] where a factor graph G=(F ,Θ, E) is the under-
lying bipartite graph which connects all relevant elements
of the system. It consists of factor nodes f i∈F , variable
nodes θi∈Θ and edges εi∈E , that connect factor nodes with
variable nodes. Variable nodes θi are the states of the system
and represent robot poses, i.e., θi ∈ SE(3). Factor nodes f i

on the other hand are constraints between several poses.
The factor graph then defines the factorization of a func-

tion f(Θ)

f(Θ) =
∏
i

f i(Θi) (1)

with Θi being the subset of variables adjacent to the factor
f i. Our system implements three different types of fac-
tor nodes, i.e., prior factors fprior(Θ0), sequential factors
fseq,i(Θi), and place recognition factors fPR,i(Θi) which
include both intra-robot loop-closures and inter-robot associ-
ations. Both fseq,i(Θi) and fPR,i(Θi) are always expressed
as relative pose measurements which is particularly practical
for multi-robot applications as the measurements are entirely
independent from the fixed frame of reference. Finally, each
factor is expressed in full 6 Degrees of Freedom (DOF).

B. Sparse incremental optimization

The aim of the back-end is to compute a Maximum A
Posteriori (MAP) estimate of f(Θ) given its observations
z̃i that minimizes a negative log-posterior E. Assuming a
Gaussian measurement model leads to Equations 2, 3 and 4.

f i(Θi) ∝ exp

(
−1

2
||zi(Θi)− z̃i||2Ωi

)
(2)

E = − log f(Θ) (3)

argmin
Θ

(E) = argmin
Θ

(
∑
i

eTi Ωiei) (4)

where ei = zi(Θi)− z̃i is the error between the prediction
function zi(Θi) and a measurement z̃i, with the information
matrix Ωi. In order to robustify the optimizer against false
place recognitions, we add a Cauchy function as M-estimator
to the place recognition factors as described in [26] which
down-weights the effect of possibly wrong factors on the
optimization objective E.

As the prediction function zi(Θ) is nonlinear, we min-
imize the error E using nonlinear optimization with the
Gauss-Newton algorithm. Specifically, we perform incremen-
tal update and optimization of the pose-graph using the
iSAM2 algorithm [14] which allows for efficient variable
re-ordering and relinearization using the Bayes tree.

Given that we use weak links, introduced by Konolige and
Bowman [24], through the prior factor fprior(θ0), the Bayes
tree approach is particularly suitable for updating the pose-
graph resulting from the multi-robot problem. Once an inter-
robot place recognition is detected, one prior is removed from
the graph and iSAM2 allows for efficient re-ordering and
relinearization of the variables.

IV. SYSTEM FRONT-END

In this section, we show one possible front-end con-
figuration where sequential factors are created using ICP
and displacement measurements and where the SegMatch
algorithm is used for generating place recognition factors.
As illustrated in the block diagram of Figure 2 the system
is modular so that one could select and integrate different
techniques for factors generation modules.

A. Sequential factors

This first front-end module is responsible for transforming
3D LiDAR and proprioceptive sensors measurements into
sequential factors fseq,i(Θi). In order to keep this module
robust to failures when doing scan matching, we separate
its contribution to the graph in two different types of factors
i.e., odometry factors fodom,i(Θi) and scan-matching factors
fscan,i(Θi).

A pose node θi is added to the graph, along with one
odometry and one scan-matching factor for every 3D laser-
scan Si, given that the robot travelled a minimum distance
dmin. This minimum travel distance is a standard practice to
help avoiding un-informative accumulation of data, and the
growth of the factor graph, when the robot is not moving.

1) Odometry factors: Odometry factors fodom,i(Θi) are
based on displacements between consecutive robot poses as
stated in Eq. 5 and are built using Eq. 2.

zodom,i(Θi) = θ
−1
i−1 ⊕ θi (5)

These odometry measurements can be obtained from differ-
ent sources of proprioceptive sensors. For instance, for the
UGVs illustrated in Figure 1, these constraints are obtained
fusing wheel encoders and IMU data using an extended
Kalman filter as proposed by Kubelka et al. [27].
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Fig. 2: A configuration of the proposed centralized multi-robot SLAM system where place recognition is based on a segment matching algorithm. The
robots Ri locally compute odometry and scan-matching factors f iodom and f iscan. The 3D source point clouds P i

s are segmented into maps M i
s which

are used by the master for generating place recognition factors fPR. Once the pose-graph is optimized by the master, the trajectories updates τ i are used
to maintain the target map Mt and transferred back to the robots. For simplicity, modules acting locally on each robot have been expanded only once.

2) Scan matching factors: The 3D LiDAR data is used
to compute scan-matching factors fscan,i(Θi) between adja-
cent nodes in the graph. These factors are obtained using ICP
by registering the current scan against a submap composed of
the m previous scans, expressed in the frame of the previous
pose. The submap size is controlled by m, the number of
previous scans and dmin, the minimum travelled distance
between consecutive scans.

Performing ICP against this submap helps dealing with
sparsity in the scans, eg. when working with Velodyne
data, and helps making the system more robust. The ICP
registration step between the submap and the new scan
results in the 6 DOF rigid transformation iTij which is a
transformation from pose θi to θj expressed in the frame
of θi. This transformation is directly used to build a laser
scan-matching factor fscan,i(Θi) using the distance between
the relative transformation prediction and measurement as an
error function, i.e. e = d(iTij , iT̃ij).

B. Place recognition factors

Our multi-robot SLAM system has a flexible imple-
mentation which can receive place recognition candidates
from different sources. In the present work, we propose
one configuration where associations are generated using
the SegMatch algorithm introduced in [11]. This algorithm
takes as input (i) a source point cloud Ps representing
local LiDAR measurements and (ii) a target point cloud Pt

against which place recognition is performed. Segments are
extracted and described from both Ps and Pt to respectively
generate a source map Ms and a target map Mt which
contain lists of low dimensional segments descriptors. In
this work we consider two region growing algorithms for
extracting segments from 3D point clouds: one based on
Euclidean distance [11] and the other based on smoothness
constraints [28]. Compact eigenvalue based features are used
for describing the segments [11]. Associations are made
between Ms and Mt and a geometrical verification step is
used to identify clusters of matches which represent place
recognitions as illustrated in Figure 3.

The remainder of this section will detail how segment
matching is used within the full system and the reader is

(a) First inter-vehicle association.

(b) Last intra-vehicle association.

Fig. 3: Two autonomous vehicles mapping KITTI sequence 05 using LiDAR
information only. The trajectories are shown in red and green and the source
map segments are shown in colors. The optimized associations are show in
blue with the latest association shown by segment matches with vertical
green lines. The target map Mt is shown in white below.

encouraged to consult our prior work for more information
about the SegMatch algorithm [11].

1) Source map generation: As illustrated in Figure 2,
each robot in the system is responsible of generating its
own segment source map M j

s where j denotes the robot’s
unique identifier. M j

s is, along with the sequential factors
f j
odom,i(Θi) and f j

scan,i(Θi), the only information commu-
nicated to the centralized master. Converting the raw point
cloud P j

s into M j
s induces a high level of compression which

is a key advantage for reducing the required communication
bandwidth in multi-robot systems.

The intermediate source point cloud representation P j
s is

created by accumulating the 3D scans Si once the corre-
sponding nodes θi are optimized by the back-end. Noisy



data is filtered using a voxel grid of resolution resvoxel with
nmin, a minimum number of points per voxel to consider
them as occupied. An octomap [29] can also be used if
one further wishes to filter dynamics. The growth of P j

s is
limited by extracting a cylindrical neighbourhood of radius
R, centred around the current robot location. Applying this
cylindrical filter inevitably results in cut objects, which then
results in ‘incomplete segments’ in M j

s that can interfere
with ‘complete views’ in the target map Mt. These ‘incom-
plete segments’ are detected by filtering P j

s with a smaller
radius r = R− b, where b is the thickness of the outer zone.
Segments containing points within that zone are discarded
from M j

s which is transferred to the master and used for
both matching and building the target map Mt.

2) Incremental target map management: Given our cen-
tralized approach, the master agent is responsible of incor-
porating incoming source maps M j

s into a single target map
representation Mt. For each segment in M j

s , we check for
a duplicate in Mt, i.e. a segment resulting from the same
object part, but extracted at different times. As single-robot
odometry is locally accurate, these ‘duplicate segments’ can
efficiently be detected by comparing the distances to the
closest segments centroids in Mt with a minimum distance
dseg . As we prefer to keep the latest view of a segment,
we choose to remove the oldest of these duplicates. Future
work will include techniques for merging these ‘duplicate
segments’.

In event of place recognitions, Mt is updated with a similar
approach. Given the updated robot trajectories, the positions
of the target segments are first refreshed, knowing the origin
of their segmentation relative to the trajectories. In case of
successful place recognitions, segments of the target map
will correctly align and can safely be filtered for removing
duplicates as described above.

3) Place recognition factor generation: Given Ms and
Mt, segment matching is performed through k-Nearest
Neighbors (k-NN) retrieval. Afterwards, a geometric verifica-
tion step based on RANSAC identifies clusters containing at
least minRANSAC segment matches that are geometrically
consistent with a resolution resRANSAC . In order to convert
these segment matches in the form of place recognition
factors fPR,i(Θi), the nodes to be constrained by the factors
are first identified. For both the source and the target, we
select the trajectory node that is, on average, the closest to all
corresponding segments and which lies within a time window
defined by the segments’ timestamp.

As the segments centroids are represented in world frame
when doing geometrical verification, the resulting relative
transformation will also be given in world frame, i.e. wTij .
This transformation can be expressed in the frame of the first
node θi using Eq. 6 and converted into a factor as described
in Section IV-A.

iTij = θi
−1 ⊕w Tij ⊕ θj (6)

Given these new factors, the pose-graph is incrementally
optimized and Mt is updated as explained in IV-B.2. As

shown in Figure 2, the resulting trajectory updates τ j are
transmitted back to the individual robots which then update
P j
s to follow the transformation applied to the trajectory

head. The performances of this SegMatch based place-
recognition module are evaluated in the following section.

V. EXPERIMENTS

In this section we demonstrate the performance of the
proposed system through two different multi-robot experi-
ments. In the first experiment, we adapt sequence 05 of the
KITTI odometry dataset [30] in order to generate a multi-
robot scenario. The second experiment is based on data
collected during a SaR mission performed by the “Long-
Term Human-Robot Teaming for Robots Assisted Disaster
Response” (TRADR) consortium2 at the Gustav Knepper
Power Station in Dortmund, Germany.

A. Implementation details

This section briefly presents implementation details which
can be relevant when exploring the system. The system is
built on multiple available libraries, as for instance, the incre-
mental optimization back-end which is based on the iSAM2
implementation of the GTSAM library3. The factor’s Jaco-
bians are evaluated using the block automatic differentiation
functionality of GTSAM. For creating scan-matching factors
we use the ICP implementation of libpointmatcher4. The
place recognition implementation is based on the SegMatch
library5 which itself uses PCL6 for voxel grid filtering and
geometric verification functionalities and libnabo [31] for
segment matching with fast k-NN search in low dimensional
space. The system has a full ROS interface with integration
to the TF tree for publishing the estimated robot poses.

B. Experiments setup

The two following experiments are performed on a sin-
gle computer equipped with an Intel i7-4900MQ CPU @
2.80GHz and 32 GB of DDR3 RAM. In order to realize
the multi-robot scenarios, the system is implemented with
multiple threads. One thread per robot is used for computing
the sequential factors and the local maps whereas the place
recognition, pose-graph optimization and target map manage-
ment functionalities are all running on a separate thread. For
real missions, the latter thread would run on the master agent
and the computational load would be distributed amongst the
multiple computers.

C. System parametrization

The front-end parameters used for both experiments are re-
sumed in Table I. For the place recognition module, segment
retrieval is always performed using k-NN. However, different
segmentation algorithms and segment descriptors are used
which reflects the difference in sensor configuration, vehicle

2http://www.tradr-project.eu/
3https://research.cc.gatech.edu/borg/gtsam
4https://github.com/ethz-asl/libpointmatcher
5https://github.com/ethz-asl/segmatch
6http://pointclouds.org/
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TABLE I: Front-end parameters for the two experiments.

Parameter KITTI Power plant

Min. distance between poses (dmin) 0.05 meter 0.1 meter
Number of scans per submap (m) 5 10
Voxel grid resolution (resvoxel) 0.1 meter 0.1 meter

Min. point count per voxel (nmin) 1 2
Source map radius (R) 60 meters 25 meters

Number of neighbors (k) 45 20
Min. RANSAC cluster size (minRANSAC ) 5 5

RANSAC resolution (resRANSAC ) 0.45 meter 0.55 meter
Min. segment distance (dseg) 2 meters 2 meters

speed and environment between the two experiments. For the
multi-robot KITTI experiment, Euclidean segmentation and
eigenvalue based features are adopted, as described in [11].
For the power plant experiment, segments are obtained based
on region growing with smoothness constraints as described
in [28]. Normals are computed with a radius of 0.5 meters
and the 15 nearest neighbours of each seed are considered
for growing segments. The threshold on the difference of
normals is set to 8 degrees and we keep only segments having
a minimum of 75 points. In addition to the eigenvalue based
features, we use the fact that the power plant environment
contains many vertical and horizontal planar surfaces and
make a distinction between these by adding a single value
feature describing its orientation. This can efficiently be
computed by comparing the x, y, and z dimensions of the
segments.

For the two platforms considered in the experiments, the
noise models could easily be adjusted on different datasets
in order to yield good localization results.

D. LiDAR-only multi-vehicular KITTI

In this first experiment, we split sequence 05 of the KITTI
odometry dataset which lasts 2.2 km and 287 seconds into
two sequences of equal duration. A multi-robot scenario is
simulated by simultaneously playing back the two sequences.

With this experiment, we aim to show the capabilities
of our system for performing online multi-robot SLAM by
using LiDAR information only. In other words, the scan-
matching factors fscan,i(Θi) are the only sequential factors
considered in this experiment. A constant velocity model is
adopted for generating initial guesses to the ICP based reg-
istrations, acting as measurement functions for these factors.
The rest of the parametrization is introduced in V-C.

On this multi-robot sequence and using LiDAR measure-
ments only, our system could in real-time detect 18 valid
intra and inter-robot global associations. The first and last
associations are illustrated in Figure 3 along with the two
estimated trajectories. The timings for each module are stated
in Table II with an indication whether this module should
be executed by the robot (R) or by the master agent (M).
Cumulative computation times are given in Figure 4.

During this experiment, 154 source point clouds P i
s were

processed for place recognition and contained in average
96200 points (after downsampling, voxelization and cylindri-
cal filtering). With each point defined by three doubles and

TABLE II: Timing of each module (in ms).

Module (Agent) KITTI Power plant

Scan-matching (R) 78.9 916.8
Trajectories estimation (M) 3.7 4.3

Trajectories estimation after PR (M) 43.1 24.9
Segmentation and description (R) 600.1 1176.0

Segment matching (M) 8.1 6.0
Geometric verification (M) 57.2 13.8

Duplicates removal (M) 91.8 21.2

Fig. 4: Cumulative computation time for each module during the LiDAR-
only multi-robot KITTI experiment. The 18 valid place recognitions are
shown with vertical lines. During this experiment, no false place recognition
was detected.

assuming a typical size of 8 bytes per double, communicating
the source clouds to the master computer would require the
transmission of 356 MB of data. In comparison, 5MB would
be transmitted if one would select 100 keypoints per source
cloud and describe these with Fast Point Feature Histograms
(FPFH) [32] of dimension 1x33. With our segment approach,
the source maps M i

s contained in average 30.4 ± 9.9
descriptors for a total of 4682 descriptors transmitted to
the master computer. With the compact representation of
eigenvalue based features [1x7], this results in only 562 kB
of data to be transmitted over 143 seconds of operation. Note
that for these computations, six doubles and two unsigned
int are additionally required to link each descriptor to the
trajectories. We also only treat the useful data and do not
consider the data transfer overhead.

E. Gustav Knepper Power Station

For this experiment, we use data collected during a SaR
mission performed by the TRADR consortium at the decom-
missioned Gustav Knepper Power Station. The experiment
took place in one large two-floors utility building measuring
100m long by 25m wide illustrated in Figure 1. During the
exercise held in November 2016, three UGVs equipped with
multiple encoders, an Xsens MTI-G IMU and a rotating 2D
SICK LMS-151 LiDAR were teleoperated by firemen end-
users in order to efficiently explore the scenario. With their
skid-steering climbing capabilities, the TRADR UGVs can
traverse and map challenging 3D environments.

The power plant mission lasted 950 seconds with the three



robots starting at different locations and traversing different
paths with a cumulative distance of 694 meters. As can
be seen in Figure 1, UGVgreen began its mission outside,
entered the building and performed a loop in clock-wise
direction of the ground floor. Simultaneously, UGVred first
climbed challenging metal stairs at the right side of the
ground floor in order to reach and explore the upper level
whereas UGVyellow started at the left side of the upper floor,
went down and explored the ground floor.

For this experiment, the odometry factors fodom,i(Θi)
are obtained by fusing encoders and IMU measurements
with the technique presented by Kubelka et al. [27]. This
odometry information is also used for accumulating mea-
surements from the rotating 2D LiDAR sensor into dense 3D
point clouds which are used to compute the scan-matching
factors fscan,i(Θi) as described in Section IV-A.2. The
parametrization of the other modules is defined in Section V-
C and Table I.

During the three-robot power plant experiment, our SLAM
system with the presented configuration was capable of
detecting 20 valid place recognitions, in real-time and on
one single computer. Eight of these successful SegMatch
detections were in challenging scenarios where the UGVs
drove in opposite directions. The three trajectories, as esti-
mated at different moments of the mission, are depicted in
Figure 5. Figures 5b and 5c specifically illustrate the case
where a global prior factor fprior(Θ0) is removed from the
pose-graph due to a first inter-robot association, as described
in Section III-B. Two of the eight place recognitions in
areas visited in opposite directions are shown in Figure 5c
and 5d. The final trajectories are illustrated in Figure 1 and
a top-down view is given in Figure 6. As for the previous
experiment, the timings are stated in Table II.

VI. CONCLUSION

This paper presented a SLAM system for multiple robots
equipped with 3D LiDAR sensors. After important devel-
opment efforts, our system successfully integrates different
state of the art modules that are advantageous for multi-
robot systems with regards to closing loops, computational
complexity, and communication bandwidth requirements.

The system’s back-end is based on a pose-graph optimiza-
tion approach where updates and inference are performed
incrementally using the Bayes tree. We showed how this
architecture can easily be configured to handle multiple
trajectories without any prior information on their relative
position. The front-end is responsible of providing the graph-
ical model with LiDAR odometry and place recognition con-
straints. The LiDAR odometry constraints relate successive
nodes using ICP scan-matching between the latest scan and a
submap of previous scans. Place recognition is performed by
leveraging a segment extraction and matching algorithm. We
demonstrated through two experiments in different scenarios
that the presented system enabled multiple-robots to jointly
map large areas in real-time and with a high rate of successful
place recognitions. During these experiments, we found that

(a) Start of the mission with each robot in its own frame of reference.

(b) At t = 180s, first global association between UGVred and
UGVgreen.

(c) At t = 380s, first encounter of UGVgreen and UGVyellow when
exploring the lower floor in opposite directions.

(d) At t = 476s, another association is made between the same UGVs in
a corridor traversed in opposite directions.

Fig. 5: A demonstration of our multi-robot SLAM system based on data
collected in a two-floor building of the Gustav Knepper Power Station
in Dortmund, Germany. The trajectories of UGVred, UGVgreen and
UGVyellow are estimated in real-time. The vertical green lines repre-
sent segment matches which resulted in one of the 20 inter-robot place
recognitions. For visualization purposes, the source maps are coloured by
height and the target map is illustrated in white below. The final trajectories
are illustrated in Figure 1. The reader is encouraged to consult the video
demonstration for a better visualization.



Fig. 6: A top down view of the multi-robot experiment in the Gustav
Knepper Power Station. The target map Mt is coloured by height.

identifying valid and accurate place recognitions is a crucial
capability when dealing with multiple robots.

In the context of multi-robot systems acting in difficult
scenarios and under limited communication bandwidth, one
important challenge is to limit the data to be transmitted
for finding robot associations [3]. One key advantage of the
proposed system is to detect these associations on the basis
of segments that offer a high level of descriptiveness and
information compression.

Whereas this paper proposed a centralized system, future
work could include a distributed system which would also
directly benefit from these advantages. To this end, the
implementation of the complete system is available online
with easy to run demonstrations, along with the new SaR
dataset introduced in this work.
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