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Abstract

In this paper1 we describe the Combined Kalman-Information Filter SLAM algorithm (CF SLAM),
a judicious combination of Extended Kalman (EKF) and Extended Information Filters (EIF) that
can be used to execute highly efficient SLAM in large environments. CF SLAM is always more
efficient than any other EKF or EIF algorithm: filter updates can be executed in as low asO(log n)
as compared with O(n2) for Map Joining SLAM, O(n) for Divide and Conquer (D&C) SLAM,
and the Sparse Local Submap Joining Filter (SLSJF). In the worst cases, updates are executed in
O(n) for CF SLAM as compared with O(n2) for all others. We also study an often overlooked
problem in computationally efficient SLAM algorithms: data association. In situations in which
only uncertain geometrical information is available for data association, CF SLAM is as efficient
as D&C SLAM, and much more efficient than Map Joining SLAM or SLSJF. If alternative infor-
mation is available for data association, such as texture in visual SLAM, CF SLAM outperforms
all other algorithms. In large scale situations, both algorithms based on Extended Information
filters, CF SLAM and SLSJF, avoid computing the full covariance matrix and thus require less
memory, but still CF SLAM is the most computationally efficient. Both simulations and experi-
ments with the Victoria Park dataset, the DLR dataset, and an experiment using visual stereo are
used to illustrate the algorithms’ advantages, also with respect to non filtering alternatives such
as iSAM, the Treemap and Tectonic SAM.
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1. Introduction

In recent years, researches have devoted much effort to develop computational efficient al-
gorithms for SLAM. The goal is being able to map large scale environments in real time [1].
Given a map of n features, the classical EKF SLAM algorithm is known to have a cost of O(n2)
per update step. One important contribution has been the idea of splitting the full map into local
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maps and then putting the pieces back together in some way. Decoupled Stochastic Mapping
[21], Constant Time SLAM [22] and the ATLAS system [4] are local mapping solutions close to
constant time, although through approximations that reduce precision. Map Joining [32] and the
Constrained Local Submap Filter [37] are exact solutions (except for linearizations) that require
periodical O(n2) updates. Exact solutions also include Treemap [13], incremental Smoothing
and Mapping (iSAM) [20], Divide and Conquer (D&C) SLAM [30], Tectonic SAM [28] and
Sparse Local Submap Joining (SLSJF) SLAM [18]. Two recent algorithms have provided im-
portant reductions in computational cost: D&C SLAM has an amortized cost O(n) per step, and
SLSJF SLAM reports a cost O(n1.5) per step in the worst cases. The Treemap has a cost O(log n),
although with topological restrictions on the environment, and a rather complex implementation.

The SLAM problem has also been addressed using particle filters [33]. The particle filter
keeps a number k of possible locations of the robot, and computes an alternative map for each.
The most efficient SLAM algorithms based on particle filters factorize the problem so that only
the vehicle location is represented with a set of particles, and have a cost O(nk) per step [9, 16,
24, 36]. The consistency and robustness of these algorithms depends on the number k of particles
in the filter. In order not to underestimate the uncertainty, this number must grow with the size
of the environment that is expected to map.

When the application requires mainly to have a very accurate localization of the robot, and a
detailed map is of secondary importance, the use of Pose based SLAM [10, 29, 15], or Topolog-
ical Maps [8], can be interesting. These algorithms keep a state vector containing all or some the
poses of the robot, the map must be calculated a posteriori.

In this paper we describe the Combined Filter SLAM (CF SLAM) algorithm, a highly effi-
cient filtering algorithm; in the best cases it can reduce the computational cost from O(n) down
to O(log n) per step; the total computational cost can be reduced from O(n2) down to O(n log n);
in the worst cases the cost is reduced from O(n2) down to O(n) per step; and in the total compu-
tational cost from O(n3) down to O(n2) [6]. The CF SLAM algorithm is a judicious combination
of Extended Kalman and Extended Information Filters, combined with a divide and conquer
local mapping strategy and using the sparse Cholesky decomposition with a minimum degree
preordering. Being a local mapping algorithm, it provides more consistent results, compared
with Treemap, reported to have the same O(log n) cost but computing an absolute map [17]. CF
SLAM is also conceptually simple and rather easy to implement. We also show that CF SLAM
can compute the data association and remain much more efficient than any other EKF and EIF
based SLAM algorithms [7]. In this paper we study in detail the computational complexity of
methods based on filtering to show the advantages of CF SLAM. We also compare our results
using benchmark datasets, like the Victoria Park and DLR datasets, with other state of the art
algorithms such as the Treemap, iSAM and Tectonic SAM.

This paper is organized as follows: the next section contains a detailed description of the
improvements that have been reported on the use of Kalman and Information filters for SLAM,
leading to the algorithm that we propose. Section 3 contains a description of our algorithm and a
study of its computational cost and consistency properties. We discuss the main factors that may
influence the computational cost in section 4. In section 5 we describe the process to solve the
data association problem for both geometrical information only and appearance-only information
in the CF SLAM algorithm. In section 6 we test the algorithm using four experiments: one
simulated environment, the Victoria Park dataset, the DLR dataset and an experiment done with
a stereo camera-in-hand. In the final section we summarize the results and draw the fundamental
conclusions of this work.
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EKF-SLAM EIF-SLAM
Jacobians Ft =
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∂µt−1

∣∣∣∣
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∂ut

∣∣∣∣
ût
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∂h(µt|t−1)
∂µt|t−1

∣∣∣∣
µ̂t|t−1

O(r)

µt−1 = Ωt−1\ξt−1 O(nr2)-O(n2r)
Prediction µt|t−1 = g(ut , µt−1) O(1) Φ = F−T

t Ωt−1F−1
t O(1)

Σt|t−1 = FtΣt−1FT
t + GtRt−1GT

t O(n) Ωt|t−1 = Φ − ΦGt(Rt−1 + GT
t ΦGt)−1GT

t Φ O(n)
ξt|t−1 = Ωt|t−1g(ut , µt−1) O(nr)

Innovation νt = zt − h(µt|t−1) O(r) νt = zt − h(µt|t−1) O(r)
S t = HtΣt|t−1HT

t + Qt O(r3) S t = Ht(Ωt|t−1\HT
t ) + Qt O(nr2)

Test χ2 D2 = νT
t S −1

t νt O(r3) D2 = νT
t S −1

t νt O(r3)
Kt = Σt|t−1HT

t /S t O(nr2)
Update Σt = (I − KtHt)Σt|t−1 O(n2r) Ωt = Ωt|t−1 + HT

t Q−1
t Ht O(r)

µt = µt|t−1 + Ktνt O(n) ξt = ξt|t−1 + HT
t Q−1

t (νt + Htµt|t−1) O(r)
Cost per step O(n2) O(n) to O(n2)

Table 1: Formulations of the computational cost of each of the operations carried out using the Extended Kalman Filter
(left) and the Extended Information Filter (right) in the SLAM problem. Variable n is the size of the final state µt or
information vector ξt , and r is the size of the measurement vector zt , constant in EKF-SLAM and EIF-SLAM. The test
χ2 is only required for data association.

2. The Extended Kalman Filter, The Extended Information Filter and Map Joining Filters

In this section we summarize the basic concepts about the basic Kalman Filter and the basic
Information Filter, as well as about Map Joining techniques and the state of art SLAM algorithms
that use them.

2.1. The Extended Kalman Filter

The Extended Kalman Filter (EKF) is one of the main paradigms in SLAM [34, 35]. In EKF
SLAM, a map (µ,Σ) includes the state µ to be estimated, which contains the current vehicle
location and the location of a set of environment features. The covariance of µ, represented by
Σ, gives an idea of the precision in the estimation, 0 meaning total precision. EKF SLAM is an
iterative prediction-sense-update process whose formulation we believe is widely known and is
thus summarized in Table 1 (left). During exploratory trajectories, and using a sensor of limited
range thus providing a constant number of r features per observation, the size of the map (n)
grows linearly. Given that each EKF update step is O(n2), the total cost of carrying out EKF
SLAM is known to be O(n3).

2.2. The Extended Information Filter

In Extended Information Filter (EIF) SLAM, a map (ξ,Ω) consists of the information state
ξ to be estimated and the information matrix Ω, which gives an idea of the information known
about the estimation (0 meaning no information). EIF SLAM is also an iterative prediction-
sense-update process, its formulation is also summarized in Table 1, right. The Information filter
is an algebraic equivalent to the Kalman filter, because the following equivalences hold [34]:

Ω = Σ−1 and ξ = Σ−1µ (1)

For this reason, KF and IF are considered dual filters [25]. Unfortunately, in the nonlinear
case the filters are not completely dual, since both the transition function g and the measurement
function h require the state as input [34]. For this reason, the initial required computation during
the prediction step is to derive the state variables µt−1. In the general case, the EIF is considered
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Join with EKF Join with EIF
Jacobians G =

∂g(µ)
∂µ

∣∣∣∣
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O(n2)
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[
µ1
µ2

]
O(n) ξ− =

[
ξ1
0

]
O(n)

Σ− =

[
Σ1 0
0 Σ2

]
O(n2) Ω− =

[
Ω1 0
0 0

]
O(np)

Innovation ν = −h(µ−) O(s) ν = µ2 − h(µ−) O(s)
S = HΣ−HT O(s2) Q−1 = Ω2 given
K = Σ−HT /S O(n2)
Σ+ = (I − KH)Σ− O(n2 s) Ω = Ω− + HTΩ2H O(n2 p)

Update µ+ = µ− + Kν O(ns) ξ = ξ− + HTΩ2(ν + Hµ−) O(n2 p)
µ = g(µ+) O(n2) µ = Ω\ξ O(np2) to O(n2 p)
Σ = GΣ+GT O(n2

2)
Cost per join O(n2 s) O(n) to O(n2)

Table 2: Formulations of the computational cost of each of the operations carried out for Map Joining using the Extended
Kalman Filter (left) and using the Extended Information Filter (right) in the best case. Variables n1, n2 and n are the size
of the first, second and final state or information vector respectively, s is the size of the overlap between both submaps,
and p is the size of the local map, constant with respect to the size of the map.

computationally more expensive than the EKF: computing the state µt−1 is O(n3) because of the
inversion of the the information matrix Ωt−1. In the SLAM context, the information matrix has
special structural properties, thus state vector recovery can be carried out by solving a equation
system of size n very efficiently through the Cholesky decomposition (we shall discuss this more
in section 4). An important insight into reducing the computational cost of EIF SLAM was to
observe that the information matrix Ω is approximately sparse [34], and can be easily sparsified.
This Sparse Extended Information Filter (SEIF) allows a computational cost of O(n) (pure ex-
ploration) up to O(n2) (repeated traversal), although because of sparsification SEIF SLAM is not
an exact algorithm.

Another important observation regarding EIF SLAM is that if all vehicle locations are in-
corporated into the information vector, instead of the current one only, the information matrix
becomes exactly sparse [10]. In this Exactly Sparse Delayed-State Filter (ESDF) SLAM, the
reduction in the computational cost is the same as in SEIF. Additionally, since no approxima-
tions due to sparsification take place, the results are more precise [11]. When the state or the
information vector contain only the current vehicle location, we have an online SLAM problem;
if it contains all vehicle locations along the trajectory, we have full SLAM.

The total cost of ESDF is known to be range from O(n2) (pure exploration) to O(n3) (re-
peated traversal), as compared with the always cubic cost of EKF SLAM. Note however that
the information vector is ever increasing. Even during revisiting, every new vehicle location is
incorporated in the state vector, thus increasing n. The term r refers to the field of view of the
sensor, we note again that in these cases is constant with respect to n.

2.3. Map Joining SLAM with EKF

Local mapping (or submapping) algorithms were the next contribution to the reduction of the
computational cost of SLAM. In these algorithms, sequences of local maps of constant size p
are sequentially built (in constant time because of the size limitation) and then put together into
a global map in different ways.
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One of such solutions, Map Joining SLAM [32], works in the following way: given two
consecutive local maps (µ1,Σ1) and (µ2,Σ2), the map (µ,Σ) resulting from joining their informa-
tion together is computed in three initialization-innovation-update steps, summarized in Table 2,
left. A specialized version of the Extended Kalman Filter is used, where the full state vectors
and covariance matrices are simply stacked in the predicted map; correspondences can then be
established between features from both maps through a prediction function h, equivalent to con-
sidering a perfect measurement z = 0,Q = 0. Notice that this is possible because EKF allows
the consideration of 0 covariance measurements. In this case, h computes the discrepancy of
features from both maps in the same reference. The update step includes a computation using the
function g to first delete duplicate features appearing in both maps, and then transform all map
features and vehicle locations to a common base reference, usually the starting vehicle location
in the first map.

Map Joining SLAM is constant time most of the time, when working with local maps. How-
ever, map joining operations are O(n2) on the final size of the map, and although it results in
great computational savings (it may slash the cost by a large constant), Map Joining SLAM is
still O(n2) per step, just as EKF SLAM is.

2.4. Map Joining SLAM with EIF

The Extended Information filter can also be used to carry out the map joining operations, as
reported in the Sparse Local Submap Joining filter (SLSJF) SLAM [18]. Its application is not
as straightforward as the Map Joining with EKF for two reasons. First, in Map Joining with
EKF, correspondences are established by considering a perfect measurement z = 0,Q = 0. In
the information form, 0 covariance measurements are not allowed since Q−1 is required in the
formulation. For this reason, in SLSJF SLAM, having two consecutive local maps (µ1,Σ1) and
(µ2,Σ2) to join, the resulting map (ξ,Ω) is predicted in the information form with the information
of the first map, and an initial 0 (no information) from the second map. The innovation is com-
puted considering the second map as a set of measurements for the full map (zt = µ2, Qt = Ω−1

2 ),
and the final update step computes the information state ξ and information matrix Ω using the
standard EIF equations. Note in table 2 that g has the same functionality as in the previous sec-
tion, and function h transforms the features revisited from the first map to the reference of the
second map.

An important observation made in [18] is that the information matrix resulting from the map
joining operation using EIF is exactly sparse if the vehicle locations coming from each local map
are maintained in the final information state. This is a situation very similar to the full SLAM
problem, except that not all vehicle locations remain, only a fraction corresponding to the final
vehicle locations in each local map. There is an additional final computation of the final state
µ, to make it available for potential future map joining operations. This state recovery can be
done with a preordering of minimum degree of the information matrix and the sparse Cholesky
factorization to solve the linear system, such as was pointed out by [18]. In the section 4.1 we
shall see that the cost of this computation can be proportional to n during exploration, and up to
O(n2) in the worst case.

2.5. Divide and Conquer with EKF

In the Divide and Conquer (D&C) SLAM algorithm [30] it was pointed out that SLAM can
be carried out in linear time per step if map joining operations are carried out in a hierarchical
binary tree fashion, instead of a sequential fashion. The leafs of the binary tree represent the
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sequence of l local maps of constant size p, computed with standard EKF SLAM. These maps are
joined pairwise to compute l/2 local maps of double their size (2p), which will in turn be joined
pairwise into l/4 local maps of size 4p, until finally two local maps of size n/2 will be joined
into one full map of size n, the final map. The O(n2) updates are not carried out sequentially, but
become more distant as the map grows. An O(n2) computation can then be amortized in the next
n steps, making the amortized version of the algorithm linear with the size of the map. It can
also be shown that the total cost of D&C SLAM is O(n2), as compared to the total cost of EKF
SLAM, O(n3).

3. Our proposal: Combined Filter SLAM

The algorithm proposed here, Combined Filter SLAM, has three main highlights (see algo-
rithm 1):

1. Local mapping is carried out using standard online EKF SLAM to build a sequence of
maps of constant size p. Each local map (µi,Σi) is also stored in information form (ξi,Ωi);
both the information vector and the information matrix are computed in O(p3), constant
with respect to the total map size n. Each local map only keeps the final pose of the robot.
EKF SLAM in local maps allows robust data association, e.g. with JCBB [26], and small
local maps remain consistent.

2. Map joining is carried out using EIF, keeping vehicle locations from each local map in
the final map. This allows to exploit the exact sparse structure of the resulting information
matrix and the join can be carried out in as low as linear time with the final size of the map.
The covariance matrix is not computed after joins at the lower level.

3. In contrast with the sequential map joining strategy followed by SLSJF, the D&C strategy
is followed to decide when map joining takes place. We will see that this will result in
a total computation cost as low as O(n log n), as compared with the total cost of SLSJF,
O(n2). Additionally, the computation per step can be amortized to O(log n), as compared
with O(n) for SLSJF. This makes CF SLAM, the most efficient SLAM filtering algorithm.

Algorithm 1 The CF SLAM Algorithm
maps← {}
while data from sensor do

map← ek f slam
if isempty(maps) then

maps← {map}
else

while size(map) ≥ size(maps{last})
or global map is needed do

map← ei f map join(maps{last},map)
maps{last} ← {}

end while
maps← {maps,map}

end if
end while
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3.1. Computational complexity

We study initially the case of pure exploration, in which the robot is always observing new
territory, and thus the sensor measurements have a constant overlap with the map already built.
This case is very interesting because is the first situation that any SLAM algorithm will face, and
it is also the case where the size of the map increases, and thus also the size of the problem. We
discuss several other cases in section 4.

In exploratory trajectories, the process of building a map of size n using the proposed CF
SLAM follows the divide and conquer strategy: l = n/p maps of size p are produced (not
considering overlap), at cost O(p3) each, which are joined into l/2 maps of size 2p, at cost O(2p)
each. These in turn are joined into l/4 maps of size 4p, at costO(4p) each. This process continues
until two local maps of size n/2 are joined into one local map of size n, at a cost of O(n) (other
types of trajectories are considered in section 4.1). SLSJF SLAM and our algorithm carry out
the same number of map joining operations. The fundamental difference is that in our case the
size of the maps involved in map joining increases at a slower rate than in SLSJF SLAM.

The total computational complexity of CF SLAM in this case is:

C = O

p3l +

log2 l∑
i=1

l
2i (2i p)


= O

p3n/p +

log2 n/p∑
i=1

n/p
2i (2i p)


= O

p2n +

log2 n/p∑
i=1

n


= O

(
n + n log n/p

)
= O

(
n + n log n

)
= O

(
n log n

)
Therefore, CF SLAM offers a reduction in the total computational cost to O

(
n log n

)
, as

compared with the total cost O
(
n3

)
for EKF SLAM, and O

(
n2

)
for D&C SLAM and SLSJF

SLAM. Furthermore, as in D&C SLAM, the map to be generated at step t will not be required
for joining until step 2 t. This allows us to amortize the cost O(t) at this step by dividing it up
between steps t + 1 to 2 t in equal O(1) computations for each step. In this way, our amortized
algorithm becomes O(log n) per step. In the worst cases the cost can grow up to O(n), but the
cost of D&C SLAM and SLSJF SLAM will grow too (see Section 4).

3.2. CF SLAM vs. other filtering algorithms

To illustrate the computational efficiency of the algorithm proposed in this paper, a simulated
experiment was conducted using a simple MATLAB implementation of CF SLAM, D&C SLAM
[30], and SLSJF [18] (with reordering using symmmd instead of the heuristic criteria proposed
there). The simulated environment contains equally spaced point features 1.33m apart, a robot
equipped with a range and bearing sensor with a field of view of 180 degrees and a range of 2m.
Local maps are built containing p = 30 features each. All tests are done over 100 MonteCarlo
runs. Fig. 1 shows the resulting execution costs of the three algorithms. We can see that the total
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(a) (b) (c)

Figure 1: Computational time in the simulated execution for D&C SLAM (blue), SLSJF SLAM (red) and our algorithm,
CF SLAM (green): Time per step (a); Total time of execution (b); Time per step for SLSJF vs. amortized time per step
for D&C SLAM and our algorithm, CF SLAM (c). The final map contains 1093 features from 64 local maps.

costs of D&C SLAM and the SLSJF tend to be equal (Fig. 1, b). This is expected, since both
have a total cost of O(n2). We can also see that the total cost of our algorithm increases more
slowly, it is expected to be O(n log n). We can finally see that the amortized cost of our algorithm
exhibits an O(log n) behavior, always smaller than the cost of the other two algorithms (Fig. 1,
c).

3.3. Consistency

When the ground truth is available as in this simulated experiment, we can carry out a sta-
tistical test on the estimation (µ,Σ) for filter consistency. We define the consistency index, CI,
as:

CI =
D2

χ2
n,1−α

(2)

where D2 is the Mahalanobis distance or Normalized Estimation Error Squared (NEES) [2],
n = dim(µ) and (1 − α) is the confidence level (95% typically). When CI < 1, the estimation is
consistent with the ground truth, otherwise the estimation is optimistic, or inconsistent.

It is known that local map-based strategies, (e.g. SLSJF and D&C SLAM) improve the
consistency of SLAM by including less linearization errors than strategies based on one global
map, (e.g. Treemap) [17]. We tested consistency of SLSJF, D&C SLAM and CF SLAM on
the simulated experiments with 100 MonteCarlo runs. Fig. 2 shows the evolution of the mean
consistency index of the vehicle position in x (top) and y (middle), and orientation φ (bottom),
during the steps of the trajectory. We can see that the performance of the index for D&C SLAM
and for our proposal a very similar and clearly better than for SLSJF. This is due to that both D&C
SLAM and our proposal follow a tree structure to carry out the map joining process. In contrast,
in SLSJF map joining is sequential, thus errors increase faster in the global map. Recently, a
more consistent filter based on SLSJF, I-SLSJF, has been proposed [19]. This filter, in addition
to being more computationally expensive than the original SLSJF, requires setting a threshold
empirically to decide when it is necessary to solve the least squares problem and recompute the
state vector from all the local maps stored.
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Figure 2: Mean consistency index CI in x, y, and φ for SLSJF, D&C SLAM and our proposal.

4. Factors that have influence in the computational cost

4.1. Vehicle trajectory
Given that local mapping is a constant time operation, we concentrate on the computational

cost of map joining in CF SLAM. The state recovery is the most computationally expensive oper-
ation in this case. State recovery is carried out using the Cholesky factorization, with a previous
minimum degree ordering of the information matrix. The cost of this operation depends on the
sparsity pattern of the information matrix and the density of non-zero elements [14, 18]. This in
turn depends on the environment, on the sensor used and more importantly, on the trajectory of
the robot.

We have used the simulated experiments to study the effect of the trajectory of the vehicle in
the computational cost of the map joining operation. Fig. 3 shows the trajectory studied (left),
the sparsificacion pattern of the information matrix of the final map (middle), and the mean cost
(for the 100 Monte Carlo runs) of state recovery and joining between maps versus the dimension
of the state vector after joining (right).

To determine the order of the computational cost, we compute a fit to equation y = axb for the
state recovery and for map joining costs. The independent variable is the dimension of the state
vector resulting from each map joining. The dependent variable is the cost of the operation: sr
for the state recovery µ = Ω\ξ, and jEIF is the cost of all operations involved in map joining with
EIF, including sr. The results of the fit can be seen in Table 3. The sum of squared errors (SSE),
the coefficient of correlation squared (R2) and root mean squared errors (RMSE) are reported.

The most important results are:

• In pure exploratory trajectories, fig. 3 (top), the fit suggests that the exponent b can be
considered equal to 1 in both state recovery and map joining operations, see Table 3 (top).
Thus, as we said in the previous section, in the case of exploration, the cost of map joining
has a linear behavior with respect to the dimension of the state vector, and can be amortized
in CF SLAM to attain O(log n).
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• We have also studied lawn mowing, fig. 3 (upper middle). This type of trajectory is
frequent in underwater mosaicing applications [10]. In this case, the cost can increase to
O(n1.3) (see the exponent from the fit, Table 3).

• In another type of trajectory, outward spiral, fig. 3 (lower middle), the cost can increase to
O(n2). Outward spirals are frequent in airborne mapping applications [5].

• In the worst case, repeated traversal (in this case a loop), fig. 3 (bottom), the cost of map
joining is linear most of the time, except in the full overlap, when the operation is quadratic
with the dimension of the state vector.

Three things are important to note:

1. Whatever the cost of the map joining operation, it can be amortized in CF SLAM. This
means that in the worst case, when map joining is O(n2), CF SLAM is O(n) per step.

2. In these cases, the computational cost of D&C SLAM and SLSJF also increase in the same
manner: in the worst case, both will be O(n2) per step, so CF SLAM will always be better.

3. Worst case situation will probably not very frequent, once a map of the environment of
interest is avaiable, the robot can switch to localization using an a priori map, a much less
expensive task computationally.

Table 4 summarizes the computational costs of all algorithms in the best and worst cases.

Trajectory b (95%) SSE R2 RMSE

Exploration
sr 1.01 (0.956, 0.1385 0.9976 0.13161.058)

jEIF 0.97 (0.955, 0.0094 0.9999 0.03420.977)

sr 1.30 (1.21, 0.6849 0.9976 0.2926Lawn 1.39)
mowing jEIF 1.18 (1.13, 0.2900 0.9991 0.19041.237)

sr 1.99 (1.816, 0.9726 0.9993 0.3497Out-ward 2.157)
spiral jEIF 1.81 (1.695, 0.6629 0.9995 0.287971.92)

sr 1.06 (0.982, 0.0072 0.9985 0.0379Inside 1.139)
the loops jEIF 0.96 (0.884, 0.0119 0.9976 0.04871.03)

Exploration sr 1.14 (1.097, 0.1151 0.9990 0.1023with 1.174)
smallest jEIF 1.08 (1.032, 0.1958 0.9980 0.1334local maps 1.123)

Table 3: Results of the fit to y = axb, both the cost of state recovery (sr) and the joining with EIF (jEIF). We can see
the value of the exponent b with 95% confidence bounds, the sum of squared errors (SSE), the coefficient of correlation
squared (R2) and root mean squared errors (RMSE) for the simulations of Fig. 3 and Fig. 4(right).

4.2. Local map size

The selection of the local map size p can also influence the computational cost of CF SLAM.
Local maps of a large size p (for example p = 350) cannot be computed in real time, and also
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Figure 3: Computational cost of state recovery in four cases: exploration with 27651 features (top), lawn mowing
with 9056 features (upper middle), out-ward spiral with 7423 features (lower middle), several loops with 3456 features
(bottom), all from 1024 local maps. From left to right: ground truth environment and trajectory, sparse information matrix
obtained by our algorithm and execution time for to do joining and recovery state versus the state vector’s dimension
with their fit functions. In order to concentrate in studying computational costs these simulations were carried out with
noise equal to zero.

11



Cost per step Total cost
Best Worst Best Worst

SLSJF O(n) O(n2) O(n2) O(n3)
D&C SLAM O(n) amort. O(n2) amort. O(n2) O(n3)
CF SLAM O(log n) amort. O(n) amort. O(n log n) O(n2)

Table 4: Computational costs for all filtering algorithms in the best case (pure exploration) and in the worst case (repeated
traversal). Note that the CF SLAM is the most efficient always.

increase the density on non-zero elements in the information matrix (see Fig. 4, top left). If on
the contrary the local map size is too small (p = 4), a large number of robot poses will appear
in the state vector (Fig. 4, top right). Both situations may result in the cost of map joining not
being linear anymore (Fig. 4, bottom).

In the first case, the density of non-zero elements inΩ is 1 in every 12, and thus map joining in
the lower levels of the tree (the most frequent) are very expensive, more than 4s in the simulation.
In the case of small local maps, the exponent from the fit increases to 1.14. (see Table 3). The
density is much lower, 1 in 1070, but the state vector is much larger because we have many
more poses. In fig. 4 the number of features is different because the memory requirements of
the scenario on the left overflowing the capacity of MATLAB. In our experience, a good rule of
thumb is that we should select p to keep the feature variable vs. pose variable ratio between 5
and 20.

5. The Data Association problem

The problem of data association is often ignored when evaluating the efficiency and effec-
tiveness of a SLAM algorithm. Here we show that the CF SLAM algorithm remains in the worst
of case as computationally effective as D&C SLAM, the fastest to our knowledge that maintains
the full covariance matrix and thus allows data association based on stochastic geometry. In
the order of thousands of features, CF SLAM will outperform D&C SLAM because of reduced
memory requirements.

Data association can be usually solved in two ways. If a covariance matrix is available, we
can carry out statistical tests to find possible matches based on stochastic geometry. If additional
information is available, such as texture or appearance in vision sensors, we can obtain matchings
based not on location but on appearance.

In the following we describe two data association algorithms, one belonging to each category,
that can be used in CF SLAM.

5.1. Data association using geometrical information

In some situations, only geometrical information, the uncertain location of features relative
to the sensor location, is available for data association. Such is the case of 2 points or straight
walls obtained with a laser sensor.

In CF SLAM, data association inside a local map is carried out using JCBB [26] because the
corresponding covariance matrix is available. The data association that remains to be solved is
the identification of features that appear in two consecutive maps, lets call them M1 = {µ1, ξ1,Ω1}

and M2 = {µ2, ξ2,Ω2}, either local maps at the lower level, or maps resulting from previous
joins in the D&C map joining process. When the two maps to be joined are local maps, their
corresponding covariances are available and data association can be done with the JCBB also.
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Figure 4: Results of different sizes of local maps. (Top) The sparse matrix information and (bottom) execution time of
state recovery and map joining, both in exploration trajectory. On the left the local map size is 350 features, note the time
needed for a final map of 5564 features from 16 local maps. On the right the local map size is 4 features (field of view of
the sensor) and the final map has 18431 features from 8192 local maps

If not, we first determine the overlap between the two maps, features that can potentially have
pairings, and then we recover the covariance matrix for those features only. We proceed as
follows:

1. Identify the overlap, a set of potential matches
This is denominated individual compatibility, IC. Individually compatible features are
obtained by tessellating the environment space, as was proposed in [30], but in our case
we represent the grid in polar coordinates, see Fig. 5. For each feature in the second local
map M2, we assign an angular window of constant width in angle and height proportional
to its distance from the origin, so that more distant features will have a larger region of
uncertainty. The features in the first local map M1 are referenced on M2 through the
last vehicle pose in M1, µx1, which is the origin of map M2. The uncertainty of µx1 is
recovered using equation 3 (below) and propagated on the these features, transformed to
polar coordinates and embedded to angular windows. Features that intersect are considered
individually compatible, giving IC.

2. Partial recovery of covariances
For intermediate maps that are not at the lower local level CF SLAM does not compute
covariances. As shown in [18], we can recover some columns of the covariance matrix by
solving the sparse linear equation 3. The columns that we require are given by IC. We
form a column selection matrix EIC to obtain the columns that are given by IC. If column
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M1

M2M2

Figure 5: Computing the individual compatibility matrix for two local maps using polar coordinates. The angular
windows for the features in the M2 have constant width in angle and height proportional to the distance to the origin.
Blue ellipses represent the uncertainties of the predicted features of the first local map with respect to the base reference
of the second. The ellipses are approximated by bounding windows.

i of the covariance matrix is required, we include this column vector in EIC:

ei = [

i︷      ︸︸      ︷
0, · · · , 0, 1, 0, · · · , 0]T

The sparse linear system to be solved is as follows:

ΩΣIC = EIC (3)

This partial recovery of the covariance matrix allows to use robust joint compatibility tests
for data association. The efficiency of solving equation 3 is the same as for the recovery
of the state vector: in the best case, in exploration trajectories, the order is O(n), amortized
O(log n). In the worst case, repeated traversal, the overlap will be the full map, and the
cost will be O(n3), amortized O(n2). Here we reuse the Cholesky decomposition used for
the state vector recovery.

3. Prediction and Observation
At this point the features of M1 that have potential matches according to IC, and their
covariances, are transformed to be referenced on M2.

4. Randomized Joint Compatibility
We use the RJC algorithm of [30], a combination of JCBB and RANSAC that allows to
carry out robust data association very efficiently, without traversing the whole solution
space.
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Algorithm 2 Data association for the Combined Filter using geometrical information only
Require: Two maps: 〈M1 = {µ1, ξ1,Ω1},M2 = {µ2, ξ2,Ω2}〉

Ensure: HypothesisH
Find the set of potential matches IC ← (µ1, µ2)
if covariance matrices are available then

extract covariances
(Σ1i,Σ2 j)← select(Σ1,Σ2, IC)

else
recover partial covariances
(Σ1i,Σ2 j)← recoveryP(Ω1,Ω2, IC) eq: 3

end if
predictions = (h,HΣH)← predict map(µ1i,Σ1i)
observations = (z,R)← (µ2 j,Σ2 j)
H ← RJC(predictions, observations, IC)

In the experimental section we will show that using this algorithm, CF SLAM is computa-
tionally as efficient as D&C SLAM but requires less memory because the full covariance matrix
is not computed.

5.2. Data association using appearance information
In some cases, features in local maps can have associated appearance information, such as

texture coming from vision. In these cases, appearance can be coded using a descriptor vector d,
then M = {µ, ξ,Ω, d}, for example SIFT [23] or SURF [3]. In these cases, we proceed as follows
in CF SLAM:

1. Obtain a set of potential matches
We find the best possible matches between the descriptors in M1 and M2 by searching
for the nearest neighbor in the descriptor space. In this way we obtain the individual
compatibility matrix, IC.

2. Obtain a pairwise hypothesis using RANSAC
For each pair of minimum local maps, map i belonging to M1 and map j belonging to M2,
that have a minimum number of matches (5 in our case) in IC, we use RANSAC [12] to
find the subset Hi j of matches that corresponds to the best rigid-body transform between
the two local maps. In Fig. 6, the transformations between the pairs (i = 1, j = 3),
(i = 2, j = 3) and (i = 3, j = 2) are not evaluated because they do not have sufficient
matches.

3. Obtain the final hypothesis
In most cases, the final hypothesisH is simply the result of joining allHi j. When there is
ambiguity (one local map matched with two or more other local maps), we prefer the hy-
pothesis for pairs of maps that have a smallest relative distance, because they have smaller
relative errors. In fig 6 there is ambiguity between H41 and H42. In this case we accept
hypothesisH41.

6. Simulations and Experiments

To compare the performance of the Combined Filter with other popular EKF and EIF based
algorithms we use simulations, publicly available datasets, and our own stereo visual SLAM
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Figure 6: Computing the data association hypothesis from two local maps. The rectangles and circles show the minimum
local maps of M1 and M2 respectively. All lines are potential matches, and form IC. The lines that are not dotted belong
to a hypothesis between a pair of the minimum local maps,Hi j. The solid lines represent the final hypothesisH .

Algorithm 3 Data association using appearance information
Require: Two maps: 〈M1 = {µ1, ξ1,Ω1, d1},M2 = {µ2, ξ2,Ω2, d2}〉

Ensure: HypothesisH
Find set of potential matches IC ← (d1, d2)
for each pair minimum local maps i, j in IC do
Hi j ← RANS AC(µ1i, µ2 j)

end for
H ← select(Hi j)

experiment2. All algorithms were implemented in MATLAB and executed on 2.4 GHz Intel
Core 2 CPU 6600 and 3GB of RAM.

6.1. Simulated experiment
We simulated a robot moving in a 4-leaf clover trajectory, fig. 7(a). The robot is equipped

with a range and bearing sensor. The features are uniformly distributed with a separation between
them of 6m. Data association was determined based only on geometric information using algo-
rithm 2. Fig. 7(b) (left) shows the computation cost per step of Map Joining SLAM and SLSJF
vs. the amortized cost for the D&C SLAM and CF SLAM: top, cost of map updates, center: cost
of data association, bottom: total cost including local map building. We can see the sublinear
cost of CF SLAM in the map updates as expected. Fig. 7(b) (right) shows the cumulative costs
of map updates (top), data association (center) and total cost (bottom). The algorithms based on
EKFs did not solve the problem completely because they exceeded the available memory before
the end of the experiment.

2Videos are available at http://webdiis.unizar.es/~ccadena/research.html
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(a)

(b)

Figure 7: Simulated experiment of a 4-leaf clover trajectory (a). In (b) the computational costs. Left: map update time per
step (top), data association time per step (center), total time per step (bottom). Right: cumulative times for all algorithms.
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Figure 8: Results using the Victoria Park dataset. Top: cumulative cost for map updates (left) and data association (right).
Bottom left, cumulative total cost including local map building, map joining and data association. Bottom right, the final
map with CF SLAM.

6.2. The Victoria Park dataset
The figure 8 shows the resulting map obtained by CF SLAM on the Victoria Park dataset.

All algorithms solve this dataset correctly. The trajectory of the vehicle explores and revisits
frequently, so the uncertainty does not grow much and errors are kept small. The data association
was determined with algorithm 2. This dataset is interesting to compare CF SLAM and SLSJF.
Both algorithms require the recovery of the covariance submatrix for the overlap between the
maps to be joined. There are some areas where the overlap is almost complete, thus requiring the
recovery of almost the full covariance matrix. The cumulative computational costs are in fig. 8.
We can see that CF SLAM is the most efficient for map updates, but Map Joining SLAM is most
efficient for data association. In total, both algorithms that use the D&C strategy tend to be most
efficient.

Different setups of Victoria Park are used in the literature, considering a different number of
odometry steps and also different noise models for the sensor data. We sample one in every two
odometry steps, processing a total of 3615. The iSAM algorithm has also used this dataset for its
tests, sampling at every odometry step. In [20], it is implemented in OCaml on a 2 GHz Pentium
M laptop computer. The authors report a cumulative time of 270s for the iSAM including the
cost of data association, 159s with known data association. Comparatively, CF SLAM takes
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38s for solving all the dataset: 3s for building local maps, 2.98s for map joins, and 32s for
data association. Although our sampling frequency is one half, this only affects the speed of
computation of the local maps, potentially doubling 3s of the 38s for a total of 41s, still much
lower. The work in [27] recently reports results of Tectonic SAM (TSAM 2), a batch algorithm
of smoothing and mapping with submapping, using also Victoria Park. They report a total time of
4.5s on an Macbook Pro with 2.8GHz CPU, without computing data association, or suggesting
how this can be done in batch algorithms.

6.3. The DLR dataset

In the DLR dataset, the robot is equipped with a camera, and carries out a trajectory almost
all indoors. Features are white cardboard circles placed on the ground. This dataset has 560 fea-
tures and 3297 odometry steps. The path consists of a large loop with several smaller loops in the
way. Position errors grow enough so that sequential algorithms (Map Joining SLAM and SLSJF)
become weak and fail in the data association to close the loop (see fig. 9, bottom right). The
D&C algorithms, D&C SLAM and CF SLAM have better consistency properties, and both solve
the data association for the loop closing in this dataset (see fig. 9, left). The cumulative com-
putational costs are show in fig. 9, right. In this mostly exploratory dataset, both D&C SLAM
algorithms are clearly superior than both sequential algorithms. During loop closing, the cost of
data association for both D&C algorithms is higher than that of both sequential algorithms, for
the good reason that data association is computed correctly and the loop can be closed.

Figure 9: Results using the DLR-Spatial-Cognition dataset with D&C SLAM and CF SLAM (left), and with Map Joining
SLAM and SLSJF (bottom right). Cumulative cost per map joining (center top), data association (top right) and total
cost including local map building (center bottom).
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Figure 10: Final 3 map using 132 shoots of dense stereo data from a Triclops Pointgrey camera with the CF SLAM (left).
We show the cumulative cost per map joining (center top), data association (top right) and total cost including build local
maps, map joining and data association (center bottom). Map Joining SLAM and D&C SLAM exceed available memory
capacity in shoots 24 and 32, respectively. The incorrect final map with SLSJF (bottom right).

In [13] a total execution time of 2.95s was reported with the Treemap for this dataset, without
computing data association, implemented in C++ on an Intel Xeon, 2.67 GHz. Our algorithm
implemented in MATLAB spent 4.84s, not counting the time devoted to data association. We
believe that the CF SLAM algorithm is much more simple to implement and use. Furthermore,
Treemap is expected to be less consistent in general, it being an absolute map algorithm [17].

6.4. The visual stereo SLAM experiment

Finally, the CF SLAM was tested in a 3D environment with a high density of features. The
sensor is a Triclops camera carried in hand. The path consists of a loop inside the Rose Building
at the University of Sydney. We obtain the 3D position of points from the computation of the
dense stereo point cloud that corresponds to each SIFT feature. The experiment consists of 132
shoots, with a total of 6064 features. Fig. 10 (left) shows the map obtained with the CF SLAM.
The SLSJF obtains an incorrect map, fig. 10, bottom right. SLSJF is a sequential map joining
algorithm, thus it is expected to provide less consistent results than D&C algorithms. In this
experiments, this results in incorrect loop closure.

Both Map Joining SLAM and the D&C SLAM exceeded available memory in MATLAB.
The data association is obtained with algorithm 3. Cumulative computational costs are shown in
fig. 10: for map updates (top center), for data association (top right), and total cumulative cost
(bottom center). CF SLAM clearly outperforms all the other algorithms.
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7. Discussion and conclusions

In this paper we have proposed the Combined Filter, an algorithm that is always more efficient
than any other filtering algorithm for SLAM. It can execute in as low as O(log n) per step. CF
SLAM brings together the advantages of different methods that have been proposed to optimize
EKF and EIF SLAM. There is no loss of information, because the solution is computed without
approximations, except for linearizations. It is conceptually simple and easy to implement. There
are no restrictions on the topology of the environment and trajectory, although, as it is the case
in many SLAM algorithms, the computational efficiency will depend on this.

An important property of a SLAM algorithm is whether it is on-line, or provides the full ve-
hicle and map estimation in every step, delayed, or providing a suboptimal estimation of the map
and vehicle states at every step, but requiring additional computation in case the mission requires
to have the best estimation, and finally off-line, or batch, carrying out the full computation only
in case the vehicle and map states are required at a certain step. EKF and EIF SLAM, Map Join-
ing, SLSJF, Treemap, and iSAM are on-line; D&C SLAM and CF SLAM, the algorithm that we
present here, are delayed, and finally algorithms like Tectonic SAM are off-line. The selection of
an appropriate algorithm for a specific mission must take this into account, it can an overkill to
use an on-line algorithm in applications where the map is only required at the end of the mission
or very infrequently during the mission.

CF SLAM provides the robot with a local map with all the information needed for local
navigation tasks for a very low computational cost. This allows using processor time for other
important tasks, such as image processing and data association. This can be essential in situations
of limited computational power such as space exploratory rovers. If at a certain moment the robot
needs all the environment information with respect to a global reference, for example to make
decisions on global navigation like returning home, CF SLAM can provide the full map carrying
out a single additional computation step for a cost as low as O(n). In these situations, the robot
will have a precise map to switch from SLAM to navigation using an a priori map. We think that
such orders are usually less frequent during a mission in many applications, specially in large
scale. For applications requiring global knowledge of the map and vehicle position at every step
CF SLAM may be less adequate than sequential algorithms like Map Joining SLAM, SLSJF
or iSAM, given the accumulated delay in computing the global map that CF SLAM incurs in.
Finally, in applications where off-line processing is acceptable, we have shown that CF SLAM
provides a solution in less time than any other algorithm discussed in this paper. Being a local
mapping algorithm, the solution provided will have good consistency properties. Algorithms like
Tectonic SAM that relinearize the full problem might provide even more consistent solutions.
This is an interesting issue to be investigated.

The frequently overlooked problem of data association has also been addressed in this paper.
We have shown that we can provide data association based on stochastic geometry that makes
the CF SLAM algorithm as efficient as the most efficient algorithm that computes covariance
matrices, with far less memory requirements. If appearance information is available for data
association, then CF SLAM outperforms all algorithms discussed in this paper.

From our experiments it is clear that the greatest computational weight can lie in data as-
sociation. Our future work includes the development of more robust and more efficient data
association techniques to use in CF SLAM. Among the most promising appearance-based tech-
niques, we will consider the ’bag-of-words’ methods [8] and Conditional Random Fields [31].
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