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Abstract— We present a place recognition algorithm for
SLAM systems using stereo cameras that considers both
appearance and geometric information. Both near and far
scene points provide information for the recognition pro-
cess. Hypotheses about loop closings are generated using a
fast appearance technique based on the bag-of-words (BoW)
method. Loop closing candidates are evaluated in the context
of recent images in the sequence. In cases where similarity is
not sufficiently clear, loop closing verification is carried out
using a method based on Conditional Random Fields (CRFs).
We compare our system with the state of the art using visual
indoor and outdoor data from the RAWSEEDS project, and
a multisession outdoor dataset obtained at the MIT campus.
Our system achieves higher recall (less false negatives) for full
precision (no false positives), as compared with the state of
the art. It is also more robust to changes in appearance of
places because of changes in illumination (different shadow
configurations in different days or time of day). We discuss the
promise of learning algorithms such as ours, where learning
can be modified on-line to re-evaluate the knowledge that the
system has about a changing environment.

I. INTRODUCTION

In this paper, we consider the problem of recognising
locations based on scene geometry and appearance. This
problem is particularly relevant in the context of environment
modeling and navigation in mobile robotics. Algorithms
based on visual appearance are becoming popular to detect
locations already visited, also known as loop closures, be-
cause cameras are inexpensive, lightweight and provide rich
scene detail.

Many methods focus on place recognition, and mainly use
the bag-of-words representation [1], supported by some pro-
babilistic framework [2]. Techniques derived from BoW have
been successfully applied to loop closing-related problems
[2,3], but could exhibit false positives in cases when the same
features are detected although in a different geometric con-
figuration. An incorrect loop closure can result in a critical
failure for SLAM algorithms. On the issue of recognition
of revisited places we consider the state of the art is the
FAB-MAP [3]. It has proved very high precision although
with reduced recall. In other words, the low proportion of
false positives is attained by sacrificing many true positives
[4]. This system also presents problems in applications using
front facing cameras [5].

To avoid mismatches in these appearance-based ap-
proaches, some geometrical constraint is generally added
in a verification step. The epipolar geometry is the most
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common technique used to enforce consistency in matches
[2,4]. Recently proposed by Paul and Newman [6], the FAB-
MAP 3D uses the same FAB-MAP framework including 3D
information provided by a laser scanner for the distances
between features, but can only make such inferences about
visual features in the laser range.

The algorithm for place recognition presented here, first
proposed in [7] and improved in [8], uses two complementary
techniques. Candidate loop closing locations are generated
using an improved bag-of-words method (BoW) [1], which
reduces images to sparse numerical vectors by quantising
their local features. This enables quick comparisons among
a set of images to find those which are similar. Hierarchical
implementation improves efficiency [9]. Hypothesis verifi-
cation is based on CRF-Matching. CRF-Matching is a pro-
babilistic model able to jointly reason about the association
of features. It was proposed initially for 2D laser scans [10]
and monocular images [11]. The CRF infers over the scene’s
image and 3D geometry. Insufficiently clear loop closure
candidates from the first stage are verified by matching the
scenes with CRFs. This algorithm takes advantage of the
sequential nature of the data in order to establish a suitable
metric for comparison of candidates, resulting in a highly
reliable detector for revisited places.

The basic idea of the algorithm is to exploit the efficiency
of BoW for detecting revisited places in real-time and the
higher robustness of CRF-Matching to ensure that revisiting
matches are correct. In order to keep the real time execution,
only insufficiently clear results of BoW are input to CRF-
Matching.

In the next section we provide a description on our place
recognition system. In section III we present experimental
results on real data that demonstrate the improvement in
robustness and reliability of our approach. Finally, in section
IV we discuss the results and discuss the applicability of our
system to operations over time.

II. THE PLACE RECOGNITION SYSTEM

The place recognition system [7,8] is a loop closing
candidate generation-verification scheme. In this section, we
describe both components of the system.

A. Loop Candidates Detection

The first component is based on the bag-of-words method
(BoW) of [1] which is implemented in a hierarchical way,
thus improving efficiency [9]. In this implementation we use
64-SURF-features, see Fig. 1(a). λt is the BoW score com-
puted between the current image and the previous one. The
minimum confidence expected for a loop closure candidate is



α−; the confidence for a loop closure to be accepted without
further verification is α+. The images from one session
are added to the database at one frame per second. This
implementation enables quick comparisons of one image at
time t with a database of images in order to find those that
are similar according to the score s. There are 3 possibilities:

1) if s ≥ α+λt the match is considered highly reliable
and accepted;

2) if α−λt < s < α+λt the match is checked by CRF-
Matching in the next step of verification.

3) otherwise. the match is ignored.

B. Loop Closure Verification

When further verification is required, loop closing candi-
dates are verified for consistency in 3D and in image space
with CRF-Matching, an algorithm based on Conditional
Random Fields (CRF) [12]. CRF-Matching is a probabi-
listic graphical model for reasoning about joint association
between features of different scenes. We model the scene
with two graphs, the first one for SURF-features with 3D
information (near), and the second one over the remaining
SURF-features (far), see Fig. 1(b). The graph structure is
given for the minimum spanning tree over the euclidean
distances, either the 3D metric coordinates (G3D) or 2D pixel
coordinates (GIm). We use the CRF-Matching stage over the
loop closing candidates provided by the BoW stage. Then,
we compute the negative log-likelihood (Λ) from the MAP
associations between the scene in time t, against the loop
closing candidate in time t′, Λt,t′ , and the scene in t − 1,
Λt,t−1.

The negative log-likelihood Λ3D of the MAP association
for G3D provides a measure of how similar two scenes are in
terms of close range, and ΛIm for GIm in terms of far range.
Thus, we compare how similar the current scene is with the
scene in t′ with respect to t − 1 with Λt,t′ ≤ βΛt,t−1 for
each graph. With the β parameters we can control the level
we demand of similarity to (t, t− 1), a low β means a high
demand. By choosing different parameters for near and far
information we can make a balance between the weight of
each in our acceptance. Our place recognition system can be
summarized in the algorithm 1.

III. EXPERIMENTS

We have evaluated our system with the public datasets
from the RAWSEEDS Project [13]. The data were collected
by a robotic platform in static and dynamic indoor, outdoor
and mixed environments. We have used the data correspond-
ing to the Stereo Vision System with an 18cm baseline.
Images are (640x480 px) taken at 15 fps.

We used 200 images uniformly distributed in time, from
a static mixed dataset taken on 01-Sep-2008, for training
the vocabulary for BoW and for learning the weights for
CRF-Matching. In order to learn the weights for the CRF-
Matching, we obtained the SURF features from the right im-
age in the stereo system and computed their 3D coordinates.
Then, we ran a RANSAC algorithm over the rigid-body
transformation between the scene at time t and the scene at

(a) BoW step

(b) CRF step

Fig. 1. Outdoor scene from the MIT campus. We get the SURF-features
for the BoW stage over one image of the stereo pair 1(a). For the CRF stage
we compute the two minimum spanning trees (MST), one for features with
3D information (near features), and the second for the remaining ones, with
image information (far features). In 1(b), we show the two resulting graphs:
in blue the graph for far features (GIm), in dark red the graph for near
features (G3D). We apply CRF-Matching over both graphs. The minimum
spanning tree of G3D is computed according to the metric coordinates,
projected over the middle image only for visualisation. In the bottom, we
show G3D in metric coordinates with the 3D point cloud (textured) of each
vertex in the tree. The MST gives us an idea of the dependencies between
features in a scene, and allows for robust consistency checks of feature
associations between scenes.

time t−δt. The results from RANSAC were our labels. Since
the stereo system has high noise in the dense 3D information,
we selected δt = 1/15s. The same procedure is done over
the SURF features with no 3D information, where we obtain



TABLE I
PARAMETERS FOR THE EXPERIMENTS

FAB-MAP 2.0 Our System
RAWSEEDS MIT RAWSEEDS MIT

Indoor Outdoor Mixed Campus Indoor Outdoor Mixed Campus
p 50% 96% 62% 33% α+ 60% 60% 60% 60%
P (obs|exist) 0.31 0.39 0.37 0.39 α− 15% 15% 15% 15%
P (obs|!exist) 0.05 0.05 0.05 0.05 β3D 1 1.5 1.5 1.5
Motion Model 0.8 0.8 0.6 0.6 βIm 1.3 1.7 1.7 1.7

Algorithm 1 Pseudo-algorithm of our place recognition
system
Input: Scene at time t, Database 〈1, . . . , t− 1〉
Output: Time t′ of the revisited place, or null
Output = Null
Find the best score st,t′ from the query in the database of the
bag-of words
if st,t′ ≥ α+st,t−1 then
Output = t′

else
if st,t′ ≥ α−st,t−1 then

Build the G3D and GIm
Infer with CRFs and compute the neg-log-likelihoods Λ
if Λ3D

t,t′ ≤ β3DΛ3D
t,t−1 ∧ ΛIm

t,t′ ≤ βImΛIm
t,t−1 then

Output = t′

end if
end if

end if
Add current scene to the Database

the labels by calculating with RANSAC the fundamental
matrix between the images. Thus, we obtained a reliable
enough labelling for the training. Although this automatic
labelling can return some outliers, the learning algorithm has
demonstrated being robust in their presence. Afterwards, we
tested the whole system in three other datasets: static indoor,
static outdoor and dynamic mixed. The four datasets were
collected on different dates and in two different campuses.
Refer to the RAWSEEDS Project [13] for more details. In
the fig. 2 we show the ground truth trajectories and results.

For the first bag-of-words stage, we have to set the
minimum confidence expected for a loop closure candidate,
α−, and the minimum confidence for a trusted loop closure,
α+. We selected the working values α− = 15% and
α+ = 60% in all experiments. Since these datasets are
fairly heterogeneous, we think these values can work well in
many situations. As It might depend on the datasets and the
vocabulary size, though. Then, for the CRF-Matching stage,
we set the β parameters in order to obtain 100% precision.
This allows comparisons with alternative systems in terms
of reliability. All the parameters used are shown in Table I.

We have compared the results from our system against the
state-of-the-art technique FAB-MAP 2.0 [4]. The FAB-MAP
software1 provides some predefined vocabularies. We have
used the FAB-MAP indoor vocabulary for the RAWSEEDS
indoor dataset and the FAB-MAP outdoor vocabulary for the
others datasets. This technique has a set of parameters to tune

1The software and vocabularies were downloaded from http://www.
robots.ox.ac.uk/˜mobile/

in order to obtain the best performance in each experiment.
The parameters that we have modified are the following ones
(for further description please see [3] and [4]):

• p: Probability threshold. The minimum matching proba-
bility required to accept that two images were generated
from the same place.

• P (obs|exist): True positive rate of the sensor. Prior
probability for detecting a feature given that it exists
in the location.

• P (obs|!exist): False positive rate of the sensor. Prior
probability for detecting a feature given that it does not
exist in the location.

• Motion Model: Model Motion Prior. This biases the
matching probabilities according to the expected motion
of the robot. A value of 1.0 means that all the probability
mass goes forward, and 0.5, means that probability goes
equally forward and backward.

In both systems, our and FAB-MAP, we disallow the matches
with frames in the previous 20 seconds. The final values
used by us are shown in Table I. We have chosen the
parameter set in order to obtain the maximum possible recall
at one hundred percent precision. All the place recognition
experiments are carried out at 1 fps.

TABLE II
RESULTS FOR ALL DATASETS

Precision Recall
RAWSEEDS
Outdoor (04-Oct-2008)

FAB-MAP 100% 3.82%
BoW-CRF 100% 11.15%

Mixed (06-Oct-2008)
FAB-MAP 100% 13.47%
BoW-CRF 100% 35.63%

Indoor (25-Feb-2009)
FAB-MAP 100% 26.12%
BoW-CRF 100% 58.21%

Multisession MIT
19-20 of July/2010

FAB-MAP 100% 38.89%
BOW-CRF 100% 38.27%

The results of our system and of FAB-MAP over the
RAWSEEDS datasets are shown in Fig. 2, and the statistics
in Table II.

In the outdoor dataset, FAB-MAP does not detect all the
loop closures zones, as shown in Fig. 2(a). The biggest loop
is missed in the starting and final point of the experiment,
in the top-right area of the map. One sample of this false
negative area is shown in Fig. 3(a). The result of our system
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Fig. 2. Loops detected by each of the methods in the RAWSEEDS datasets. On the left results from FAB-MAP and on the right results from our system
BoW + CRF-Matching. Black lines and triangles denote the trajectory of the robot; light green lines, actual loops, deep blue lines denote true loops
detected.



is shown in Fig. 2(b). At 100% of precision we can detect
all the loop closure areas.

For the experiment in the dynamic mixed environment we
get 100% precision with both systems. Though the recall is
lower in the FAB-MAP, see table II. Furthermore, all the
loop closure zones are not detected, see Fig. 2(c), with false
negatives as shown in Fig. 3(c), as compared with our results,
see Fig. 2(d).

The indoor experiment is shown in Fig. 2. In Fig. 2(e),
some loop closures are not detected by FAB-MAP, including
the big area on the left hand side of the map (Fig. 3(d)),
especially important in the experiment because if no loop is
detected in that area, a SLAM algorithm can hardly build a
correct map after having traversed such a long path (around
300 metres). The result from our system is shown in Fig. 2(f).
At 100% precision we can detect all the loop closure areas.

The system also was evaluated using a dataset taken in the
MIT campus in multiple sessions around of the Stata Center
building, with indoor and outdoor routes taken on July of
2010. The stereo images were collected with a BumbleBee2,
from PointGrey, with an 8cm baseline. We used 200 images
(512x384 px) uniformly distributed in time, from an indoor
session from April of 2010 to learn the weights for CRF-
Matching. In the fig. 4 we sketch the trajectories (using
Google Maps) and results. Both, our system and FAB-MAP
obtain similar results in precision and recall. The results of
our system spread more uniformly over the trajectory, see
Fig. 5.

IV. DISCUSSION AND FUTURE WORK

We have presented a system that combines a bag-of-words
algorithm and conditional random fields to robustly solve
the place recognition problem with stereo cameras. We have
evaluated our place recognition system in public datasets
and in different environments (indoor, outdoor and mixed).
In all cases the system can attain 100% precision (no false
positives) with higher recall than the state of the art (less
false negatives), and detecting all (especially important) loop
closure zones. No false positives mean that the environment
model will not be corrupted, and less false negatives mean
that it will be more precise. Our system also is more robust
in situations of perceptual aliasing.

In the context of place recognition over time, our system
performs well in multi-day sessions using parameters learned
in different months, and this is also true of alternative sys-
tems such as FAB-MAP. The environment can also change
during the operation in the same session, see Fig. 3(a-c). Our
algorithm is also able to detect places revisited at different
times of day, while alternative systems sometimes reject them
in order to maintain high precision.

Several extensions are possible for operation in longer
periods of time. The vocabulary for the BoW has shown
to be useful in different environments, which suggests that a
rich vocabulary needs not be updated frequently. The learned
parameters in the CRF stage can be re-learned in sliding
window mode depending on the duration of the mission. The
system will then be able to adjust to changing conditions. In

(a) Outdoor (start-final)

(b) Mixed (shadows)

(c) Mixed (start-final)

(d) Indoor (biggest loop)

Fig. 3. False negatives of FAB-MAP in the RAWSEEDS datasets. These
scenes correspond to the biggest loop in the trajectories. In 3(a) the place
was revisited 39 min later, and 36 min later in 3(c)

cases of periodical changes, such as times of day or seasons,
incorporating a clock and calendar in the learning process
would allow to maintain several environment models and
select the most appropriate for a given moment of operation.

One issue to consider is the stability of the extracted
descriptors in changing circumstances. In our case, SURF
descriptors are useful when there is not much drift from its
invariance properties [14]. For example they are still useful
in the presence of outdoor seasonal changes [15], [16]. The
same descriptors however do not seem useful to recognize
places with totally different illuminations, e.g. an outdoor
scene from day to night.

When object locations change in a scene, we think that the
MSTs still allows to properly encode the scene. The MST
codifies mainly local consistency (features belonging to the



Fig. 5. Loops closure(green lines and stars) detected in the Stata Center multi-session dataset with FAB-MAP (top-left and bottom-middle) and our system
(top and bottom right). Different colours correspond to different sessions (blue, red and yellow). On the top, we show the query of the current frame vs.
the database with the frames already added. Ground truth (GT) is showed on bottom-left with magenta lines, on top with magenta circles.

Fig. 4. Multisession experiment in the MIT campus. Different colours
correspond to different sessions.

same object keep the same graph structure). Therefore, the
inference process will still match features belonging to the
same object. Some cases of perceptual aliasing are possible
if the same objects appear in different localizations, but these
cases will be much less frequent.

In our experiments, the β thresholds for acceptance of
the CRF matching turned out to be clearly different for
indoor and for outdoors scenarios. These parameters will
also depend on the velocity of motion, mainly due to the fact
that we use images from the previous second as reference
in the comparisons. Incorporating the computation of these

thresholds as part of the learning stage would also make the
system more flexible.
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