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1 Introduction

This document is a summary of the 2022 edition of the
lecture Introduction to Machine Learning at ETH Zurich.
I do not guarantee correctness or completeness, nor is
this document endorsed by the lecturers. If you spot
any mistakes or find other improvements, feel free to
open a pull request at github.com/DannyCamenisch/iml-
summary. This work is published as CC BY-NC-SA.

cbna

2 Regression

In this first part we are gonna focus on fitting lines to dat-
apoints. For this we will introduce the machine learning
pipeline. It consists of three parts and has the goal to
find the optimal model f̂ for given data D, that we can
use to predict new data.

The three parts of the ML Pipeline are the function class
F, the loss function ℓ and the optimization method.

In the coming sections f∗ will be the ground truth function
and f̂ will be used for our (learned) prediction model.

2.1 Linear Regression

Given the data (xi, yi) we use models of the form f(x) =
w⊤x + b to fit the data. To find the optimal values for w
and b we try to reduce the squared loss:

ℓ(y, f(x)) :=
1

n

󰁛
(yi − f(xi))

2 =
1

n
||y −Xw||22

In the matrix notation b is part of w. The closed form so-
lution for linear regression is given by the normal equation
Ax− b ⇒ x = (A⊤A)−1A⊤y:

ŵ = (X⊤X)−1X⊤y

We can also get the closed form solution by using the fact
that the squared loss is a convex function and ŵ is the
global minima of this function. Therefore we can calculate
the gradient ∇ℓ(y, f(x)) and solve for 0 to find ŵ. Later,
we will see a more efficient way of finding ŵ.

2.1.1 Different Loss Functions

The square loss penalizes over- and underestimation the
same. Further it puts a large penalty on outliers (grows
quadratically). While this is often good, we might want a
different loss function, some possibilities are:

• Huber loss - ignores outliers (a = y − f(x)

ℓδ(y, f(x)) :=

󰀫
1
2a

2 for |a| ≤ δ

δ · (|a|− 1
2 · δ) otherwise

• Asymmetric losses - weigh over- and underestimation
differently

2.2 Nonlinear Functions

Linear functions helped us to keep the calculations ”sim-
ple” and find good solutions. But often there are problems
that are more complex and would require nonlinear func-
tions. The avoid using nonlinear functions we introduce
feature mapping.

From our input vector x we extract a feature vector φ(x)
by using a fixed mapping φ that can consist of any nonlin-
ear function. On this feature vector we can use the already
known methods for linear functions to find a solution.

2.3 Regularization

We will later see that too complex models are not always
good, as they use too many features. If we want to re-
duce the number of features, we can encourage sparsity by
introducing a penalty term.

We commonly use:

• Lasso Regression: argmin
w∈Rd

||y − Φw||22 + λ||w||1

• Ridge Regression: argmin
w∈Rd

||y − Φw||22 + λ||w||22

Lasso regression sets a lot of weights to zero, while ridge
regression just puts the focus on lower weights.

3 Optimization

If the closed form is not available or desirable, as calcu-
lating it is expensive, we use the gradient descent algo-
rithm. It works by initializing w0 and iteratively moving
it towards the optimal solution. We choose the direction
by calculating ∇ℓ(w) and then multiply it by the stepsize
/ learning rate η:

wt+1 = wt − ηt ·∇ℓ(wt)

Convergence is only guaranteed for the convex case, else
we might get stuck at any stationary point.

As the slope gets smaller, we want to decrease η, so that we
do not overshoot. For the linear regression case we have:

||wt − w∗||2 ≤ ρt||w0 − w∗||2, ρ = ||I − ηX⊤X||op
Where ρ is the convergence speed for constant stepsize η.
This leads to an optimal fixed stepsize of:

η =
2

λmin + λmax

We stop when new iterations do not cause any change any-
more (below a certain threshold).
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To make gradient descent more stable / robust against ill-
conditioned landscapes we might add momentum:

wt+1 = wt + γ∆wt−1 − ηt∇ℓ(wt)

3.1 Stochastic Gradient Descent

When we have a lot of data, it is costly to compute the
gradient, so we only use a minibatch S of the dataset D
(randomly sampled without replacement). Now the update
step looks like this:

wt+1 = wt − ηt ·∇ℓS(w
t)

Where the loss is only calculated over the minibatch S.
This method also gives us a chance to escape saddle
points.

4 Model Error

We generally want to minimize the estimation error
ℓ(f̂(x), f∗(x)), since we do not know f∗ we can not ac-
tually compute this value. Instead, we usually observe
yi = f∗(xi)+󰂃i. For each observed sample we can compute

the prediction error ℓ(f̂(x), y), in fact we are often in-
terested in the average prediction error or generalization
error:

R(f̂) := Ex,y[ℓ(f̂(x), y)] = Ex[ℓ(f̂(x), f
∗(x))] + 󰂃

The generalization error computed over all possible (x, y)
pairs weighted by how likely each is.
The training loss is often to optimistic to approximate the
generalization error. To get a better approximation we
split our data into training and test set.

By only using the training set to fit our model, we have
the test data to get a better estimate of the generalization
error.

4.1 Cross-Validation

When choosing between different models, we might choose
the model with the lowest test set error, this may introduce

a systematic bias. To prevent this from happening we can
split the training set again, creating a validation set. Now
the idea is to choose the model with the best validation
error and use the test set only to get the estimate for the
generalization error.
Setting aside so much data can be wasteful. So we intro-
duce k-fold cross-validation

We proceed as follows:

1. For all folds k = 1, ...,K:

(a) Train f̂k on D′ −D′
k

(b) Compute val. error Rk = 1
|D′

k|
󰁓

x,y ℓ(f̂k(x), y)

2. Compute cross-validation error CV = 1
K

󰁓K
i=1 Ri

3. Pick model with lowest cross-validation error CV

4. Evaluate the model using the test set D′′

For K very large, we can get the best approximation,
if K = |D′| we call it leave-one-out cross-validation
(LOOCV).

4.2 Model Complexity

Model complexity is closely related to training and gener-
alization error.

4.3 Bias and Variance

For different datasets D1, ..., DK we define:

• Bias - distance of the average model f̄ = 1
K

󰁓K
i=1 f̂i

to the ground truth Ex[ℓ(f̄(x), f
∗(x))]

• Variance - average distance of the models to the
average model Ex[

1
K

󰁓K
i=1 ℓ(f̂i(x), f̄(x))]

5 Classification

Instead of predicting y ∈ R, we limit y to be in a finite,
discrete set Y (e.g. {−1,+1}). When looking at binary
classification we often use the labels −1,+1 and let the
predicted value be equal to ŷ = sgnf̂(x). Similar to re-
gression we care about the generalization error:

R(f̂) = Px,y[y ∕= sgnf̂(x)] = Ex,y[ℓ0−1(f̂(x), y)]

Where we call ℓ0−1(f̂(x), y) = Iy ∕=sgnf̂(x) the zero-one
loss. Since this loss is neither convex nor continuous,
we can not efficiently minimize the training error with it.
Therefore we introduce different type of loss functions:

• Exponential loss: ℓexp(f̂(x), y) = eyf̂(x)

• Logistic loss: ℓlog(f̂(x), y) = log(1 + eyf̂(x))

• Hinge loss: ℓhinge(f̂(x), y) = max(0, 1− yf̂(x))

• Linear loss: ℓlin(f̂(x), y) = yf̂(x)
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We will mainly focus on the logistic loss (also called lo-
gistic regression), as in practice it is the most used. We
can derive that the logistic loss is the negative conditional
log likelihood P[y = +1|x] or P[y = −1|x] that is param-

eterized by f̂(x) via the softmax transformation. We
define (similar for y = −1):

P[y = +1|x] = 1

1 + e−f̂(x)

Using this we can define the probability vector:

p̂(x) = (P[y = −1|x], P[y = +1|x])

If we want to extend the log loss to multiple classes, we
define a vector f̃(x) = (f̂1(x), ..., f̂K(x)) and transform it
using softmax:

p̂k =
ef̂k(x)

󰁓K
i=1 e

f̂j(x)

For the multiclass case we choose the classifier error to be
the maximal entry of p̂ if y ∕= ŷ.

5.1 Linear Classifiers

Linear classifiers use functions form the class F =
{f | f(x) = w⊤x, w ∈ Rd}. We already know that
this class of functions makes training and prediction sim-
ple. The decision boundary of the function is given by
{x | f(x) = 0}.

To train our classifier we can use gradient descent. The
gradient of the logistic loss is given by:

∇ℓ(f̂(x), y) =
yixi

1 + eyif̂(x)

For linearly separable data, gradient descent on the logis-
tic loss converges to the direction wMM that maximizes the
minimum ℓ2-distance between the decision boundary and
yi. We call this the maximum-margin solution.
In particular we can write:

wMM = argmax
||w||2=1

min
i

yiw
⊤xi = argmax

||w||2=1

margin(w)

Instead of just linear functions, we can again use feature
mapping to receive nonlinear classifiers.

5.2 Support Vector Machines

For general w that correctly separates the data, margin(w)
||w||2

is the min. distance of any point to the decision boundary.
If we use general w the solution is not unique anymore.
But we can rescale any unit norm w by α = 1

margin(w) such

that αw = w̃. So instead of searching within unit norm w
to find wMM with maximum margin, we can search within
all w̃ with margin(w̃) = 1 to find the one that maximizes:

margin(w̃)

||w̃||2
=

1

||w̃||2

This is how support vector machines work. More formal:

ŵ = min
w

||w||2 s.t. yiw
⊤xi ≥ 1 for all i = 1, ..., n

If the data is not linearly separable, we might want to use
a soft-margin SVM. Since not all constraints can hold,
we want to allow some ”slack” in the constraints:

ŵ = min
w,ξ

1

2
||w||22 + λ

n󰁛

i=1

max(0, 1− yiw
⊤xi)

The later part penalizes any margin violations. To find the
optimal λ one might use cross-validation.

6 Hypothesis Testing

We focused a lot to derive good surrogate losses for the
0-1 loss. But is this error really a good metric? Hypothe-
sis testing is a way to express asymmetry in classification
tasks. For this we introduce the confusion matrix:

Further we define:

error1/FPR =
FP

TN + FP
, error2/FNR =

FN

TP + FN

We want to find a test that minimizes the FPR, while con-
trolling the FNR. This can be viewed as defining a null
hypothesis H0(x) and then deciding to accept or reject it
(H0 is always the positive class). When choosing H0 we
want it to represent the more crucial class one to get right,
e.g. it is more important to truly classify a person as sick
than to classify them as healthy. To decide it we accept
or reject H0 we fix τ , where we accept H0(x)(ŷ = −1) if
p̂(x) < τ and the opposite way around.
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6.1 AUROC

We want to have a large recall TP
#[y=+1] but also a small

FPR. Based on these metrics we can draw the ROC curve
by varying τ .

We can either choose our model by caring about a specific
point, e.g. TPR @ FPR = 5%, or we choose whichever
courve gets closer to the ideal curve, that is maximizing
the area under the curve.

7 Kernels

We have previously seen how we can get nonlinear func-
tions via feature maps φ. But there are limits to these
feature maps, they can introduce a lot of computational
complexity (feature explosion) and there are also infinite
feature maps we can not get this way. If we want to avoid
these limitations we use the kernel trick. It consists of
two steps:

1. We know that the solution ŵ is in the column space
of Φ⊤. Therefore among the global minimizers one
has the form ŵ = Φ⊤α̂ with α̂ ∈ Rn so that:

f̂(x) = ŵ⊤φ(x) = α̂⊤Φφ(x) =

n󰁛

i=1

α̂i · φ(xi)
⊤φ(x)

Notice that α̂ only depends on xi via inner products
φ(xi)

⊤φ(xj). Using this we can define a symmet-
ric kernel function k(x, z) = φ(x)⊤φ(z) and a corre-
sponding kernel matrix K = ΦΦ⊤.

2. Sometimes we can more efficiently compute
the inner products / evaluate the kernel func-
tion, e.g. for the feature vector φ(x) =
[1,

√
2x1,

√
2x2, x

2
1, x

2
2,
√
2x1x2], the inner product

is:

φ(x)⊤φ(z) = (1+x1z1+x2z2)
2 = (1+x⊤z)2 = k(x, z)

This kernel function is a lot less expensive to com-
pute.

7.1 Example for Ridge Regression

Remember w = Φ⊤α and K = ΦΦ⊤, applying this to ridge
regression we get:

1

n
||y − Φw||22 + λ||w||22 =

1

n
||y − ΦΦ⊤α||22 + λ||Φ⊤α||22

=
1

n
||y −Kα||22 + λα⊤Kα

7.2 Different Kernels

A valid kernel must have the following properties:

• K is symmetric because of the inner products:
k(x, z) = k(z, x)

• K is positive-semidefinite for any choice of inputs
x1, ..., xn, i.e. z

⊤Kz ≥ 0

Common kernel choices are:

• linear: k(x, z) = x⊤z

• polynomial: k(x, z) = (x⊤z + 1)m

• rbf : k(x, z) = exp
󰀓
− ||x−z||α

τ

󰀔

An RBF kernel with α = 2 is also called a gaussian kernel
and one with α = 1 is a laplacian kernel. Special about the
RBF kernel is that it corresponds to infinite dimensional
features.
Given valid kernels we can compose new ones by conserv-
ing kernel convexity:

• k = k1 + k2

• k = k1 · k2

• k = c · k1 ∀c > 0

• k = f(k1) ∀f convex

Mercers Theorem: Any valid kernel can be decomposed
into a linear combination of inner products.

8 Other Nonlinear Methods

8.1 KNN Classification

This method does not need any training and classification
is done during test time. For a given training set D it
works as follows:

1. Pick k and distance metric d

2. For given x, find among x1, ..., xn ∈ D the k closest
to x → xi1 , ..., xik

3. Output the majority vote of labels yi1 , ..., yik

This method is very sensitive to k and becomes unstable in
high dimensions. We might need large n for good results
but computation can be reduces when allowing for some
error probability.

8.2 Decision Trees

A decision tree returns a partition of X with sets aligned
with the main axis. A given x is assigned the majority
class of the partition it lands in. The partitions can be
modelled as leaf nodes of a binary tree. Single trees can
easily overfit to noise, we have to choose the depth of the
tree carefully.
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9 Neural Networks

Success in learning crucially depends on the quality of the
features. The key idea of neural networks is to parameter-
ize the feature maps and optimize over the parameters.
We want to build a complex model out of simple compo-
nents:

φ(x, θ) = ϕ(θ⊤x)

Hereby, θ ∈ Rd are the weights and ϕ : R 󰀁→ R is a non-
linear activation function. Possible activation functions
are:

• Identity: ϕ(z) = z

• Sigmoid: ϕ(z) = 1
1+exp(−z)

• Tanh: ϕ(z) = tanh z = exp(z)−exp(−z)
exp(z)+exp(−z)

• ReLU: ϕ(z) = max(0, z)

Nesting these components we create networks of the form:

Where vi = ϕ(zi) and zi is the sum of inputs times their
weight. To deal with biases we introduce a ”constant” 1
feature to each layer. Note that we can have as many lay-
ers as we want and use different activation functions per
layer. Such networks are typically trained via SGD.
By the universal approximation theorem, we can approxi-
mate any arbitrary smooth target function, given at least
one layer with sufficient width.

9.1 Forward Propagation

This is the process of calculating the output for a given
input.

• For input layer
v(0) = [x; 1]

• For each hidden layer 1 : L− 1

z(l) = W (l)v(l−1) and v(l) = [ϕ(z(l)); 1]

• For output layer

f = W (L)v(L−1)

9.2 Backpropagation

We can use the loss functions we already know to com-
pute the loss. For multi output networks, we use the sum
of per-output for regression tasks and cross-entropy loss
for classification tasks. As mentioned we use SGD to fit
our neural network. We want to jointly optimize over all
weight for all layers. This is generally a non-convex op-
timization problem. Nevertheless, we can try to find a
local optimum. In order to apply SGD, need to compute

∇W ℓ(W ;x, y) w.r.t. each weight w
(l)
i,j :

Notice that we can reuse calculations from the previous
layer , forwards pass and only have to compute the
gradient for each layer.
Since the optimization problem is non-convex the initial-
ization of the weights matters. With inappropriate weights
we can run into exploding or vanishing gradients. To avoid
this we randomly initialize the weights based on some dis-
tribution assumption for the activation function.

9.3 Overfitting

Since any deep neural network has a lot more parameters
then data points to train on, overfitting can happen easily.
To avoid this we use:

• Regularization: add a penalty on the weights to
the cost function

• Early Stopping: stop training once validation error
stop to decrease

• Dropout: randomly ignore hidden units during
training with probability p, after training all units
are used and weights are multiplied by p

• Batch Normalization: normalize the input data
(mean 0, variance 1) in each layer

9.4 Convolutional Neural Networks

CNN are a specialized architecture for neural networks.
The idea is that predictions should be unchanged under
some transformations of the data, e.g. rotation of images.

Each layer is not fully connected but structured. The acti-
vation function is applied to the element-wise convolution:

ϕ(W ∗ v(l))

The output dimension when applying m different f × f
filters to an n× n image with padding p and stride s is:

l =
n+ 2p− f

s
+ 1

Additionally we might use average or max pooling layers
to aggregate several units into a single one, or use stride
layers to skip units to decrease size.
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10 Unsupervised Learning

10.1 k-Means Clustering

Given an unlabelled dataset, we try to learn feature sim-
ilarities based on proximity in feature space. Data points
with similar features then should be grouped into the same
cluster. k-Means tries to represent each cluster by a single
(center) point µi.

Each data points is assigned by:

zj = argmin
i

||xj − µi||2, zj ∈ {1, ..., k}

To pick the optimal centers we try to minimize the sum of
squared distances:

R̂(µ) =

n󰁛

i=1

min
j∈{1,...,k}

||xi − µj ||22

This is a non-convex optimization problem and NP-hard.

One way of finding a good solution is Lloyd’s heuristics:

1. Initialize cluster centers µ(0)

2. While not converged:

(a) Assign each point to closest center:

zi ← argmin
j∈{1,...,k}

||xi − µ
(t−1)
j ||2

(b) Update centers as mean of assigned data points:

µ
(t)
j ← 1

nj

󰁛

i|zi=j

xi

This guarantees to monotonically decrease the average
squared distance in each iteration and converges to a lo-
cal optimum. This local optimum is strongly dependent
on the initialization. One way to initialize the centers is
k-Means++:

1. Start with random data point as center µ1 = xi

where i ∼ Unif{1, ..., n}

2. Add centers 2, ..., k randomly, proportionally to the
squared distance to closest selected center:

given µ1:j pick µj+1 = xi

where p(i) =
1

z
min

l∈{1,...,j}
||xi − µl||22

To find the optimal number of clusters k can not be done
by cross-validation, as the loss keeps decreasing with larger
k. We can either keep increasing k until we reach a negli-
gible decrease in loss or we can use regularization to add a
penalty term for larger k.

10.2 Principal Component Analysis

PCA is used for dimensionality reduction. Given data
xi ∈ Rd we want to obtain a low-dimensional represen-
tation zi ∈ Rk where k < d. One of the benefits of low-
dimensional representation is that we can visualize data
that we otherwise could not. Feature discovery is another
use case for PCA, it can help us to discover features from
data, e.g. Eigenfaces. We assume that our data is centered
around the origin.

Our goal is to learn the function f(x) = Ax that maps
the high dimensional data to the lower dimensions, while
minimizing the reconstruction error. First we will look at
the case k = 1.

min
w,z

n󰁛

i=1

||xi − ziw||22 s.t. ||w||2 = 1

We limit w to be of unit length to guarantee a unique
solution.

Since for a given w the minimal distance vector x̄i − xi

is perpendicular to w, we find that the optimal solution
for zi = w⊤xi. We can now substitute zi and receive the
following optimization goal:

ŵ = argmin
||w||2=1

n󰁛

i=1

||xi − ww⊤xi||22

Which again can be reformulated as:

ŵ = argmax
||w||2=1

n󰁛

i=1

(w⊤xi)
2 or ŵ = argmax

||w||2=1

w⊤Σw

Where Σ = 1
n

󰁓n
i=1 xix

⊤
i is the empirical covariance. Since

we still have an argmax this is not a minimization prob-
lem anymore and we can not find a solution like in previous
problems. There still exists a closed form solution given
by the principal eigenvector of Σ, i.e. w = v1 where for
λ1 ≥ ... ≥ λd ≥ 0:

Σ =

d󰁛

i=1

λiviv
⊤
i
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Up until now everything was for k = 1. For k > 1 we have
to change the normalization from ||w||2 = 1 to W⊤W = I
everything else is basically the same, we just take the first
k principal eigenvectors so that W = [v1, ..., vk].
Choosing the optimal k is different depending on our goal,
for feature induction we use cross-validation else we often
pick k so that the variance of our data is mostly explained
(other dimensions would add little information).

10.2.1 PCA through SVD

Another way of obtaining the PCA is through singular-
value decomposition. Recall that we can represent any
data matrix X as USV ⊤ where S is a diagonal matrix
containing the singular values (singular values being the
square root of eigenvalues). Now the top k principal com-
ponents are exactly the first k columns of V .

10.2.2 Kernel PCA

Again we run into problems trying to work with complex
arrangements of data, e.g. circles, swiss roll, etc.

Similar to supervised learning where we worked with ker-
nels, we can take the same approach for unsupervised
learning. Since it holds Σ = 1

n

󰁓n
i=1 xix

⊤
i = X⊤X we can

apply the kernel trick. We start by assuming w = Φ⊤α,
plugging this into our objective and the constraint we end
up with:

α̂ = argmax
α

α⊤K⊤Kα

α⊤Kα

We arrive at the general closed form solution:

α(i) =
1√
λi

vi K =

n󰁛

i=1

λiviv
⊤
i λ1 ≥ ... ≥ λn ≥ 0

Given this, a new point x is projected as z where:

zi =

n󰁛

j=1

α
(i)
j k(xj , x)

10.3 Autoencoders

Autoencoders are neural networks with a bottleneck layer
and din = dout. We want to minimize 1

n

󰁓n
i=1 ||xi − x̂i||22.

The idea is to learn the identity function:

x̂ = f(x; θ) where f(x; θ) = fdec(fenc(x, θenc); θdec)

If linear activation functions and the square loss between
input and output are used, then the encoder learns PCA.
Otherwise it learns some nonlinear embedding z of the fea-
tures.

11 Statistical Perspective

In this part we will explore a statistical perspective on su-
pervised learning by estimating the data distribution and
then deriving a decision rule from the distribution. This
allows us to express prior knowledge about the data. We
start with the fundamental assumption that our data is
generated iid. by some unknown distribution, note that
this assumption is often violated in practice:

(xi, yi) ∼ p(x, y)

We want to find a hypothesis f : X 󰀁→ Y that minimizes
the expected loss / prediction error / population
risk (over all possible data):

R(f) =

󰁝
p(x, y)ℓ(y, f(x))dxdy = Ex,y[ℓ(y, f(x))]

We have already seen that the empirical risk / train-
ing error R̂D(f) often underestimates the population risk.
But by the law of large numbers we have that empirical
risk approaches the population risk. We call this differ-
ence |R̂D(f)−R(f)| the generalization error w.r.t. f .

11.1 Optimal Predictor for the Squared
Loss

The population risk for the squared loss is:

R(f) = Ex,y[(y − f(x))2]

Suppose we knew p(x, y) which f minimizes the population
risk?

f∗ = min
f

Ex,y[(y − f(x))2]

= min
f

Ex[Ey[(y − f(x))2 | X = x]]

= Ex[min
f

Ey[(y − f(x))2 | X = x]]

Now we focus on the inner part, suppose we are given a
fixed x:

f∗(x) = argmin
ŷ

Ey[(ŷ − y)2 | X = x)] = E[y | X = x]

We therefore have shown that f∗ minimizing the popula-
tion risk is given by the conditional mean, which can be
calculated by:

f∗(x) = E[y | X = x] =

󰁝
y · p(y | x)dy
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Note that we only need the conditional distribution p(y | x)
and not the full joint distribution p(x, y). Thus one strat-
egy is for estimating a predictor from training data is to
estimate the conditional distribution p̂(y | x) and then use
it to predict labels via the conditional mean.

One common approach to estimate the conditional distri-
bution is to choose a particular parametric form and then
estimate the parameters θ with the maximum (log) likeli-
hood estimation:

θ∗ = argmax
θ

p̂(y1, ..., yn | x1, ..., xn, θ)

= argmin
θ

−
n󰁛

i=1

log p(yi | x, θ)

11.1.1 Example: Conditional Linear Gaussian

Let us look at the case where we make the assumption
that the noise is Gaussian. We have y = f(x) + 󰂃 with
󰂃 ∼ N (0,σ2) and f(x) = w⊤x. Therefore the conditional
probability is:

Then we can find the optimal ŵ by using the definition of
the normal distribution (some steps are left out):

ŵ = argmax
w

p̂(y1:n | x1:n, w,σ)

= argmin
w

n󰁛

i=1

− logN (yi | xi, w
⊤x,σ2)

= argmin
w

n󰁛

i=1

(yi − w⊤xi)
2

Therefore we have shown that under the conditional linear
Gaussian assumption, the MLE is equivalent to the least
squares estimation.

11.1.2 Bias-Variance Tradeoff

Recall that the following hold:

Prediction Error = Bias2 +Variance + Noise

Where we have:

• Bias: Excess risk of best model considered compared
to minimal achievable risk knowing p(x, y)

• Variance: Risk incurred due to estimating model
from limited data

• Noise: Risk incurred by optimal model (irreducible
error)

The MLE for linear regression is unbiased, further it is the
minimum variance estimator among all unbiased estima-
tors. However, we have also seen that it can overfit.

11.2 Maximum a Posteriori Estimate

It is often favourable to introduce some bias (make assump-
tions) to reduce variance drastically. One such assumption
could be that the weights are small. We can capture this
assumption with a Gaussian prior wi ∼ N (0,β2). Then,
the posterior distribution of w is given by:

p(w | x̄, ȳ) = p(w, x̄, ȳ)

p(x̄, ȳ)

=
p(w, ȳ | x̄) · p(x̄)
p(ȳ | x̄) · p(x̄)

=
p(w) · p(ȳ | w, x̄)

p(ȳ | x̄)
Hereby we used that w is apriori independent of x̄ (note
that x̄ = x1:n, ȳ = y1:n). Now we want to find the maxi-
mum a posteriori estimate (MAP) for w:

ŵ = argmax
w

p(w | x̄, ȳ)

= argmin
w

− log p(w)− log p(ȳ | w, x̄) + log p(ȳ | x̄)

= argmin
w

σ2

β2
||w||22 +

n󰁛

i=1

(yi − w⊤xi)
2

Which is exactly the same as ridge regression with λ = σ2

β2 .
More generally, regularized estimation can often be under-
stood as MAP inference, with different priors (= regular-
izers) and likelihoods (= loss functions).

11.3 Statistical Models for Classification

We now want to do the same risk minimization for classi-
fication. The population risk for the 0-1 loss is:

R(f) = P[y ∕= f(x)] = Ex,y[Iy ∕=f(x)]

Suppose we knew p(x, y) which f minimizes the population
risk?

f∗(x) = argmin
ŷ

Ey[Iy ∕=ŷ | X = x]

= argmax
ŷ

p(ŷ | x)

This hypothesis f∗ minimizing the population risk is given
by the most probable class, this hypothesis is called the
Bayes’ optimal predictor for the 0-1 loss.
Similar to the regression we can now look at logistic re-
gression and assume that we have iid. Bernoulli noise.
Therefore the conditional probability is:

p(y | x,w) ∼ Ber(y;σ(w⊤x))

Where σ(z) = 1
1+exp(−z) is the sigmoid function. Using

MLE we get:

ŵ = argmax
w

p(ȳ | w, x̄)

= argmin
w

n󰁛

i=1

log(1 + exp(−yiw
⊤xi))

Which is exactly the logistic loss. Instead of solving MLE
we can estimate MAP, e.g. with a Gaussian prior:

ŵ = argmax
w

p(w | x̄, ȳ)

= argmin
w

λ||w||22 +
n󰁛

i=1

log(1 + exp(−yiw
⊤xi))

12 Bayesian Decision Theory

We now want to use these estimated models to inform deci-
sions. Suppose we have a given set of actions A. To act un-
der uncertainty we assign each action a cost C : Y ×A 󰀁→ R
and pick the action with the maximum expected utility.

a∗ = argmin
a∈A

Ey[C(y, a) | x]

This is called Bayesian decision theory or maximum ex-
pected utility principle. If we had the true distribution
this decision implements the Bayesian optimal decision.
In practice we can only estimate this distribution, e.g. via
logistic regression.
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12.1 Asymmetric Costs

We can then use this to implement an asymmetric cost
function, e.g.:

C(y, a) =

󰀻
󰁁󰀿

󰁁󰀽

cFP if y = −1, a = +1

cFN if y = +1, a = −1

0 otherwise

12.2 Abstention

Another cost function could be used to decline to make a
classification (action D):

C(y, a) =

󰀫
Iy ∕=a if a ∈ {−1,+1}
c if a = D

12.3 Uncertainty Sampling

Labelling is often expensive since we need an expert to clas-
sify the samples. We want to minimize the actual number
of labels that need to be hand classified. There is a simple
strategy for this, always pick the sample that we are most
uncertain about, by estimating p(y | x), and then asking
the expert to label this sample.

13 Generative Modeling

In the previous part we looked at discriminative mod-
els with the aim to estimate the conditional distribution
p(y | x). Generative models aim to estimate the joint dis-
tribution p(x, y). This will help us to model much more
complex situations. Remember Bayes’ rules:

p(y | x) = 1

z
p(y) · p(x | y)󰁿 󰁾󰁽 󰂀

p(x,y)

Where z is the normalization constant p(x). Generative
modeling can be seen as the seen as the attempt to infer
the process, according to which examples are generated.

13.1 Naive Bayes Model

We want to apply generative modeling for classification
tasks. We starte by making the assumption that given
some class label, each feature is independent of all the
other features (therefore naive). This helps us estimating

p(x̄ | ȳ) as it is equal to
󰁔d

i=1 p(xi | yi).

13.2 Gaussian Naive Bayes Classifier

We model the features by conditionally independent Gaus-
sians and estimate the parameters via maximum likelihood
estimation:

1. MLE for class prior:

p(y) = p̂y =
Count(Y = y)

n

2. MLE for feature distribution:

p(xi | y) = N (xi; µ̂y,i,σ
2
y,i)

Where:

µy,i =
1

Count(Y = y)

󰁛

j | yj=y

xj,i

σ2
y,i =

1

Count(Y = y)

󰁛

j | yj=y

(xj,i − µ̂y,i)
2

Predictions are then made by:

y = argmax
ŷ

p(ŷ | x) = argmax
ŷ

p(ŷ) ·
d󰁜

i=1

p(xi | ŷ)

This is equivalent to the following decision rule for binary
classification:

y = sgn

󰀕
log

p(Y = +1 | x)
p(Y = −1 | x)

󰀖

󰁿 󰁾󰁽 󰂀
f(x)

Where f(x) is called the discriminant function. We can
rewrite this and get:

f(x) =

d󰁛

i=1

1

σ2
i

(µ+1,i − µ−1,i)

󰁿 󰁾󰁽 󰂀
wi

·xi

+ log
p

1− p
+

d󰁛

i=1

1

2σ2
i

(µ2
−1,i − µ2

+1,i)

󰁿 󰁾󰁽 󰂀
w0

If the conditional independence assumption is violated, we
can run into some serious issues, e.g. the classifier can
become overconfident.

13.3 Gaussian Bayes Classifier

We drop the independence assumption and model our fea-
tures as generated by a multivariant GaussianN (x;µy,Σy)
with:

µy =
1

Count(Y = y)

󰁛

j | yj=y

xj

Σy =
1

Count(Y = y)

󰁛

j | yj=y

(xj − µ̂y)(xj − µ̂y)
⊤

This is also called the quadratic discriminant analysis
(QDA).
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If we impose the restriction that Σ+ = Σ− this leads us
to the linear discriminant analysis LDA and if we further
restrict p(y) = 1

2 we get the Fisher LDA.

Gaussian Bayes classifiers can also be used for outlier de-
tection by introducing a threshold τ such that all data
points x with p(x) ≤ τ are outliers.

13.4 Avoiding Overfitting

From previous examples we know that MLE is prone to
overfitting. We can avoid this by employing the techniques
already seen:

• Restricting Model Class: fewer parameters (e.g.
GNB)

• Using Priors: restrict (”smaller”) parameter values

Using a prior for the parameters leads us again to MAP
estimation.

13.5 Generative vs. Discriminative

Discriminative models:

• Model p(y | x) and do not attempt to model p(x, y)

• Cannot detect outliers

• Are typically more robust, since accurately modeling
x may be difficult

Generative models:

• Model joint distribution p(x, y) and are therefore
more ambitious

• Can be more powerful (e.g. dectect outliers, missing
values) if model assumptions are met

• Are typically less robust against outliers

14 Gaussian Mixture Model

Gaussian mixture models make the assumption that data
is generated from Gaussians. To be more precise a convex-
combination of Gaussian distributions:

p(x | θ) = p(x | µ,Σ, w) =
k󰁛

j=1

wj · N (x;µj ,Σj)

We do not know the labels z for the data and can only see
the level-set on the right, now we want to cluster this data.
The problem we try to solve is to estimate the parameters
for the Gaussian distributions (minimize log-likelihood).

(w∗
i:k, µ

∗
i:k,Σ

∗
1:k) = argmin−

n󰁛

i=1

log

k󰁛

j=1

wj · N (xi | µj ,Σj)

This is a non-convex objective, but we can still try to ap-
ply SGD. But there is a better way to fit this model. The
idea is that fitting a GMM is similar to training a GBC
without labels. We want to apply an iterative approach
where we first start with some guess for our parameters,
predict the unknown labels and then impute the missing
data. Now we can get a closed form update for our model
which we then use to refine our parameters.

14.1 Hard-EM Algorithm

First we are gonna look at the simpler version of the EM
(expectation maximization) algorithm:

• Initialize the parameters θ(0)

• For t = 1, 2, ... :

– E-Step: predict the most likely class for each
data point:

z
(t)
i = argmax

z
p(z | xi, θ

(t−1))

= argmax
z

p(z | θ(t−1)) · p(xi | z, θ(t−1)))

– M-Step: compute MLE of θ(0) as for GBC

There are some problems with this approach, for one points
are assigned a label even though the model is uncertain.
Further it tries to extract too much information from a
single point. In practice, this may work poorly if clus-
ters are overlapping. Hard-EM with uniform weights and
spherical covariances is equivalent to k-Means with Lloyd’s
heuristics.

14.2 Soft-EM Algorithm

Instead of predicting hard class assignments for each data
point we want to predict class probabilities.

• Initialize the parameters θ(0)

• For t = 1, 2, ... :

– E-Step: calculate the cluster membership
weights for each point:

γ
(t)
j (xi) = p(zi = j | xi, θ

(t−1)
j )

=
wj · p(xi; θ

(t−1)
j )

󰁓
k wk · p(xi; θ

(t−1)
k )
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– M-Step: compute MLE with closed form solu-
tion:

w
(t)
j =

1

n

n󰁛

i=1

γ
(t)
j (xi) µ

(t)
j =

󰁓n
i=1 xi · γ(t)

j (xi)
󰁓n

i=1 γ
(t)
j (xi)

Σ
(t)
j =

󰁓n
i=1 γ

(t)
j (xi)(xi − µ

(t)
j )(xi − µ

(t)
j )⊤

󰁓n
i=1 γ

(t)
j (xi)

In general, Soft-EM will typically result in higher likeli-
hood values, as it can better deal with ”overlapping” clus-
ters. When speaking of EM we usually refer to Soft-EM.

The EM algorithm is sensitive to initialization. We usually
initialize the weights as uniformly distributed, the means
randomly or with k-Means++ and for variances we use
spherical initialization or empirical covariance of the data.
To select k, in contrast to k-Means, we can use cross-
validation.

14.3 Degeneracy of GMMs

GMMs can overfit when only having limited data, we want
to avoid that the Gaussians get too narrow and fit to a
single data point. To avoid this we add v2I to our vari-
ance. This makes sure that the variance does not collapse
and is equivalent to placing a Wishart prior the covariance
matrix, and computing the MAP. We choose v by cross-
validation.

14.4 Gaussian-Mixture Bayes Classifiers

We can also use GMMs for classification tasks, by assum-
ing that the conditional distribution for each class can be
modelled by a GMM.

p(x | y) =
ky󰁛

j=1

w
(y)
j N (x;µ

(y)
j ,Σ

(y)
j )

We can then use this model for classification, giving us
highly complex decision boundaries:

p(y | x) = 1

z
p(y)

ky󰁛

j=1

w
(y)
j N (x;µ

(y)
j ,Σ

(y)
j )

14.5 GMMs for Density Estimation

So far, we used GMMs primarily for clustering and clas-
sification. Another natural use case for GMMs is density
estimation, which in turn can be used for anomaly detec-
tion or data imputation.

To determine outliers, we simply compare the estimated
density of a data point against a threshold value τ . This
allows us to control the FP rate. As we vary the threshold
we trade FPs and FNs. We can use ROC curves as evalu-
ation criterion and optimize using cross-validation to find
the optimal value for τ .

14.6 General EM Algorithm

The framework of soft EM can also be used for more gen-
eral distributions than gaussians. We formulate the two
steps:

• E-Step: Take the expected value over latent vari-
ables to generate a likelihood function Q(θ; θ(t−1)):

Q(θ; θ(t−1)) = EZ [log p(X,Z | θ) | X, θ(t−1)]

=

n󰁛

i=1

k󰁛

zi=1

γzi(xi) log p(xi, zi | θ)

with γz(x) = p(z | x, θ(t−1))

• M-Step: Compute MLE / Maximize:

θ(t) = argmax
θ

Q(θ; θ(t−1))

It is important to note that we have guaranteed mono-
tonic convergence, where each EM-iteration monotonically
increases the data likelihood.

15 Generative Adversarial Net-
works

Until now the models we explored failed to capture com-
plex, high-dimensional data types (e.g. images and audio).
The key idea is to use a neural network to learn a func-
tion that takes a ”simple” distribution (e.g. Gaussian)
and returns a non linear distribution. This leads us to the
problem that it becomes to compute the likelihood of the
data needed for the loss. Therefore we need an alternative
objective for training.

We simultaneously train two neural networks, a generator
G trying to produce realistic examples and a discriminator
D trying to detect ”fake” examples. This whole process
can be viewed as a game, where the generator and dis-
criminator try to compete against each other. This leads
to the following objective:
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min
wG

max
wD

Ex∼pdata
[logD(x,wD)]

+Ez∼pz
[log(1−D(G(z, wG), wD))]

Training a GAN requires to find the saddle point rather
than a (local) minima. For a fixed generator G, the opti-
mal discriminator is such that:

DG(x) =
pdata(x)

pdata(x) + pG(x)

In general it is important that the discriminator is not too
powerful, as this could lead to memorization on finite data.
Other issues that can occur are oscillations/divergence or
mode collapse.

Evaluation GANs is still an open research question. One
possible performance metric is the so called duality gap:

DG(wG, wD) = max
w′

D

M(wG, w
′
D)−min

w′
G

M(w′
G, wD)

Where M(wG, wD) is the objective used in training.
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