
Numerical Methods for CS 1

🔢
Numerical Methods for CS

❗ This and many more summaries can be found on https://n.ethz.ch/~dcamenisch. Feel free to
leave a comment in the document if you spot any mistakes! As always no guarantees for
completeness or correctness are made.

0. Table of Contents
0. Table of Contents
1. Computing with Matrices and Vectors

1.2.1 Eigen
1.2.3 Dense Matrix Storage Formats
1.4 Computational Effort

1.4.2 Cost of Basic Linear-Algebra Operations
1.4.3 The Kronecker product

1.5 Machine Arithmetic and Consequences
1.5.2 Machine Numbers
1.5.3 Roundoff Errors
1.5.4 Cancellation

2. Direct Methods for Square Linear Systems of Equations
2.1 Introduction: Linear Systems of Equations (LSE)
2.3 Gaussian Elimination (GE)

2.3.1 Basic Algorithm
2.3.2 LU-Decomposition
2.3.3 Pivoting

2.6 Exploiting Structure when Solving Linear Systems
2.7 Sparse Linear Systems

2.7.1 Sparse Matrix Storage Formats
3. Direct Methods for Linear Least Squares Problems

3.1 Least Squares Solution Concepts
3.1.1 Least Squares Solutions: Definitions
3.1.2 Normal Equations
3.1.3 Moore-Penrose Pseudoinverse

3.2 Normal Equation Methods
3.3 Orthogonal Transformation Methods

3.3.1 Transformation Idea
3.3.2 Orthogonal/Unitary Matrices
3.3.3 QR-Decomposition
3.3.4 QR-Based Solver for Linear Least Squares Problems

https://n.ethz.ch/~dcamenisch

Numerical Methods for CS 2

3.4 Singular Value Decomposition (SVD)
3.4.1 SVD: Definition and Theory
3.4.2 SVD in Eigen
3.4.3 Solving General Least-Squares Problems by SVD
3.4.4 SVD-Based Optimization and Approximation

Solving Linear Systems of Equations Overview
4. Filtering Algorithms

4.1 Filters and Convolutions
4.1.1 Discrete Finite Linear Time-Invariant Casual Channels/Filters
4.1.2 LT-FIR Linear Mappings
4.1.3 Discrete Convolutions
4.1.4 Periodic Convolutions

4.2 Discrete Fourier Transform (DFT)
4.2.1 Diagonalizing Circulant Matrices
4.2.2 Discrete Convolution via Discrete Fourier Transform
4.2.5 Two-dimensional DFT

4.3 Fast Fourier Transform (FFT)
5. Data Interpolation and Data Filtering in 1D

5.1 Abstract Interpolation
5.2 Global Polynomial Interpolation

5.2.1 Uni-Variante Polynomials
5.2.2 Polynomial Interpolation: Theory
5.2.3 Polynomial Interpolation: Algorithms
5.2.4 Polynomial Interpolation: Sensitivity

5.3 Shape-Preserving Interpolation
5.3.1 Shape Properties of Functions and Data
5.3.2 Piecewise Linear Interpolation
5.3.3 Cubic Hermite Interpolation

5.4 Splines
5.4.2 Cubic-Spline Interpolation
5.4.3 Structural Properties of Cubic Spline Interpolation

5.6 Trigonometric Interpolation
5.6.1 Trigonometric Polynomials
5.6.2 Reduction to Lagrange Interpolation
5.6.3 Equidistant Trigonometric Interpolation

5.7 Least Squares Data Fitting
8. Iterative Methods for Non-Linear Systems of Equations

8.1 Introduction
8.2 Iterative Methods

8.2.1 Fundamental Concepts
8.2.2 Speed of Convergence
8.2.3 Termination Citeria / Stopping Rule

8.3 Fixed-Point Iteration
8.4 Finding Zeros of Scalar Functions

8.4.1 Bisection
8.4.2 Model Funtion Methods
8.4.3 Asymptotic Efficiency of Iterative Methods for Zero Finding

8.5 Newton’s Method in R^n
8.5.1 The Newton Iteration
8.5.3 Termination of Newton Iteration
8.5.4 Damped Newton Method

8.6 Quasi-Newton Method
8.7 Non-Linear Least Squares

Numerical Methods for CS 3

1. Computing with Matrices and Vectors
1.2.1 Eigen
The method .block(int i, int j, int m, int n) returns a sub-matrix starting at the top left corner with
size .

1.2.3 Dense Matrix Storage Formats
All numerical libraries store the entries of a dense matrix in a linear array of length .

1.4 Computational Effort

1.4.2 Cost of Basic Linear-Algebra Operations
Performing elementary operations through simple (nested) loops, we arrive at the following complexity
bounds:

Computational Cost of Basic Operations

Operation Description asymptotic complexity

dot product O(n)

tensor product O(mn)

matrix * vector O(mn)

matrix product O(mnk)

1.4.3 The Kronecker product
Definition: The Kronecker product of two matrices and is the -
matrix

1.5 Machine Arithmetic and Consequences

1.5.2 Machine Numbers
Computers are finite automatons, which therefore can only handle finitely many number, not .

8.7.1 (Damped) Newton Method
8.7.2 Gauss-Newton Method

10. Additional Content

(i, j)
m,n

A ∈ Km,n mn

A =
⎣

⎡1
4
7

2
5
8

3
6
9⎦

⎤

Row major: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Column major: [1, 4, 7, 2, 5, 8, 3, 6, 9]

(x ∈ R , y ∈n R) →n x yH

(x ∈ R , y ∈m R) →n xyH

(x ∈ R ,A ∈n R) →m,n Ax

(A ∈ R ,B ∈m,n R) →n,k AB

A⊗B A ∈ Km,n B ∈ Kl,k (ml) × (nk)

A⊗B := ∈

⎣

⎡ (A) B11
(A) B21

⋮
(A) Bm1

(A) B12
(A) B22

⋮
(A) Bm2

⋯
⋯

⋯

(A) B1n
(A) B2n

⋮
(A) Bmn

⎦

⎤

Kml, nk

R

https://www.notion.so/dot-product-027ce610b96e47e7b634a2e4c8fd884b
https://www.notion.so/tensor-product-a411f9460b724c159683f3764727ef84
https://www.notion.so/matrix-vector-8f6c7cf87682491999f41e144371d549
https://www.notion.so/matrix-product-b21f02211eb04396a622a9456377d2ea

Numerical Methods for CS 4

The set of machine numbers cannot be close under elementary arithmetic
operations that is, when adding, multiplying, etc. This leads to the
fact, that roundoff errors are inevitable.

1.5.3 Roundoff Errors
Definition: Let be an approximation of . Then the absolute error is given by

and its relative error is defined as

The number of correct digits of an approximation of is defined through the relative error: If
, then has correct digits, .

1.5.4 Cancellation
We define the term cancellation as the subtraction of almost equal numbers (with both having some
relative error), which leads to an extreme amplification of the relative errors. It is important to see that
cancellation only happens if we have substraction, therefore it is advisable to avoid it or have it at the
innermost part of an equation.

A important formula to avoide cancelation is given by:

Further the logarithmic formulas can be useful.

2. Direct Methods for Square Linear Systems of
Equations

2.1 Introduction: Linear Systems of Equations (LSE)
The problem: solving a linear system

We are given the following input and are looking for the output as shown below:

Input/data: square matrix , vector

Output/result: solution vector , such that

We call the system matrix or coefficient matrix and the right hand side vector

Definition: The rank of a matrix , denoted by , is the maximal number of linearly
independent rows/columns of . Equivalently, .

Theorem: A square matrix is invertible/regular if one of the following
equivalent conditions is satisfied:

M
+, −, ⋅, /,

∈x~ K x ∈ K

ϵ :=abs ∣x− ∣,x~

ϵ :=rel .
∣x∣

∣x− ∣x~

x~ x ∈ K
ϵ ≤rel 10−l x~ l l ∈ N0

a− b =
a+ b

a − b2 2

A ∈ Kn,n b ∈ Kn

x ∈ Kn Ax = b

A b

M ∈ Km,n rank(M)
M rank(M) = dimR(A)

A ∈ Kn,n

Numerical Methods for CS 5

1.
2. the columns or rows of are linearly independent
3.
4.

2.3 Gaussian Elimination (GE)

2.3.1 Basic Algorithm

The computational cost of Gaussian elimination is given by

forward elimination: Ops.

backward elimination: Ops.

which yields a total asymptotic complexity for GE without pivoting for a generic LSE of .

2.3.2 LU-Decomposition
A matrix factorization expresses a general matrix as the product of two special matrices.

We can perform LU-Decomposition by performing the known Gaussian elimination algorithm, but keeping
track of the negative multipliers and let them take the places of matrix entries mate to vanish.

After performing the above Gaussian elimination, we get the following decomposition

Definition: Given a square matrix , an upper triangular matrix and a normalized
lower triangular matrix form an LU-decomposition of , if .

The asymptotic complexity for LU-factorization of is given by if . But if we
once solve the decomposition, we can reuse it with an asymptotic complexity of .

❗ If we give a matrix to the .solve() function, each column gets threated like a vector, meaning we
solve systems of linear equation. Therefore we get a runtime of for the backwards
substitution.

2.3.3 Pivoting
When doing pivoting in numerical methods we usually choose the relatively largest pivot.

Lemma: For any regular there is a permutation matrix , a
normalized lower triangular matrix , and a regular upper triangular matrix

, such that .

∃B ∈ K :n,n BA = AB = I

A

det(A) = 0
rank(A) = n

Ax = b⇒ A x =′ b , if A =′ ′ TA, b =′ Tb.

n(n− 1)(n+3
2) ≈6

7 n3

n2

O(n)3

A

A = LU ⇒ =
⎣

⎡1
2
3

1
1
−1

0
−1
−1⎦

⎤

⎣

⎡1
2
3

0
1
4

0
0
1⎦

⎤

⎣

⎡1
0
0

1
−1
0

0
−1
3 ⎦

⎤

A ∈ Kn,n U ∈ Kn,n

L A A = LU

A ∈ Rn,n O(n)3 n→∞
O(n)2

n O(n)3

A ∈ Kn,n P ∈ Kn,n

L ∈ Kn,n

U ∈ Kn,n PA = LU

Numerical Methods for CS 6

2.6 Exploiting Structure when Solving Linear Systems
By structure of a linear system we mean prior knowledge that

either certain entries of the systems vanish,

or the system matrix is generated by a particular formula.

System matrix: coefficient matrix of an linear system of equations

Triangular linear systems

Triangular linear systems are linear systems of equations whose system matrix is a triangular matrix. They
can be solved by backward/forward elimination within compared to for a generic dense
matrix.

Linear Systems with arrow matrices

From , a diagonal matrix and , we can build an
 arrow matrix

In this case we have that

This yields an asymptotic complexity for solving arrow systems of for .

Solving LSE subject to low-rank modification of system matrix

Given a regular matrix , let us assume that at some point we are in a position to solve any linear
system "fast" because

either has a favorable structure, eg. triangular,

or an LU-decomposition of is already available

Now, a is obtained by changing a single entry of . This modification represent so-called rank-1-
modification of . A generic rank-1-modification reads

We consider the block partitioned linear system

The Schur complement system after elimination of reads . We do block
elimination again, now getting rid of first, which yields the other Schur complement system

O(n)2 O(n)3

n ∈ N D ∈ K , c ∈n,n K , b ∈n K ,n α ∈ K (n+ 1) ×
(n+ 1)

A = ⇒

⎣

⎡
D

b

c

α ⎦

⎤

⎣

⎡⋱

⋯
⋱
⋯

⋮

⋮
⋅⎦

⎤

Ax = =[
D

bT
c

α
] [
x1
ζ

] y := [
y1
η

]

⇒ ζ = , x =
α− b D cT −1

η− b D yT −1
1

1 D (y −−1
1 ζc).

O(n) n→∞

A ∈ Kn,n

Ax = b

A

A

A
~

A

A

A ∈ K →n,n :=A
~

A+ uv , u, v ∈H K .n

=[
A

vH
u

−1
] [
x~

ζ
] .[

b

0
]

ζ (A+ uv) =H x~ b⇔ =A
~
x~ b

x~

H 1 H 1

Numerical Methods for CS 7

2.7 Sparse Linear Systems
Notion: is said to be sparse, if

The matrix is said to be dense otherwise.

2.7.1 Sparse Matrix Storage Formats
Sparse matrix storage formats for storing a sparse matrix are designed to achieve two
objectives:

1. Amount of memory required is only slightly more than scalars.

2. Computational effort for matrix vector multiplication is proportional to .

Triplet/coordinate list (COO) format

This format stores triplets :

The vector of triplets in a TripletMatrix has size We write because repetitions of index
pairs are allowed. The matrix entry is defined to be the sum of all values associated with
the index pair .

Compressed row-storage (CRS) format

The CRS format for a sparse matrix keeps the data in three contiguous arrays:

std::vector<scalar_t> val → size

std::vector<size_t> col_ind → size

std:vector<size_t> row_ptr → size and row_ptr[m] =

(1 + v A u)ζ =H −1 v A bH −1

⇒ A =x~ b− b.
1 + v A uH −1

uv AH −1

A ∈ K , m,n ∈n,n N

nnz(A) := #{(i, j) ∈ {1, ...,m} × {1, ...,n} : a =ij  0} << mn.

A ∈ Km,n

nnz(A)

× nnz(A)

(i, j, α), 1 ≤ i ≤ m, 1 ≤ j ≤ n

≥ nnz(A). ≥
(i, j) (A)ij αij

(i, j)

A ∈ Km,n

nnz(A)

nnz(A)

m+ 1 nnz(A) + 1

Numerical Methods for CS 8

3. Direct Methods for Linear Least Squares Problems
Overdetermined (OD) linear systems of equations, a linear system with a "tall" rectangular system matrix:

3.1 Least Squares Solution Concepts
Recall from linear algebra that has a solution, if and only if the right hand side vector lies in the
image of the matrix :

Following the notation for important subspaces associated with a matrix :

image/range: ,

kernel/nullspace: .

3.1.1 Least Squares Solutions: Definitions
Definition: For a given the vector is a least squares solution of the linear
system of , if

We write for the set of least squares solutions of the linear system of equations

Theorem: For any a least squares solution of exists.

3.1.2 Normal Equations
Theorem: The vector is a least squares solution of the linear system of equations if and
only if it solves the normal equations

Theorem: For holds

Lemma: For any matrix holds

"Ax = b" : x ∈ R , b ∈n R , A ∈m R , m ≥m,n n

=

⎣

⎡

A

⎦

⎤

⎣

⎡
x
⎦

⎤

⎣

⎡

b

⎦

⎤

Ax = b b

A

∃x ∈ R :n Ax = b⇔ b ∈ R(A).

A ∈ Km,n

R(A) := {Ax, x ∈ K } ⊂n Km

N (A) := {x ∈ K :n Ax = 0}

A ∈ R , b ∈m,n Rm x ∈ Rn

Ax = b

x ∈ argmin ∣∣Ay−y∈Rn b∣∣2
2

lsq(A, b) Ax = b, A ∈
R , b ∈m,n R :m

lsq(A, b) := {x ∈ R :n x is a least squares solution of Ax = b} ⊂ R .n

A ∈ R , b ∈m,n Rm Ax = b

x ∈ Rn Ax = b,

A Ax =T A b.T

A ∈ R , m ≥m,n n,

N (A A) =T N (A),
R(A A) =T R(A).T

A ∈ Km,n

H ⊥

Numerical Methods for CS 9

Corollary: If and , then the linear system of equations
 has a unique least squares solution

that can be obtained by solving the normal equations.

3.1.3 Moore-Penrose Pseudoinverse
Theorem: Given the generalized solution of the linear system of equations

 is given by

where is any matrix whose columns form a basis of .

The matrix is called the Moore-Penrose pseudoinverse of .
Note, that the Moore-Penrose pseudoinverse does not depend on the choice of .

3.2 Normal Equation Methods
We can give a simple algorithm for the normal equation method for solving full-rank least squares
problems :

1. Compute regular matrix .

2. Compute right hand side vector .

3. Solve symmetric positive definite (s.p.d.) linear system of equations .

The asymptotic complexity of the normal equation method is given by for .

3.3 Orthogonal Transformation Methods

3.3.1 Transformation Idea
In this chapter we consider the full-rank linear least squares problem given and we
try to find . We furthermore know that and has full rank:

.

The idea is that if we have a transformation matrix satisfying , then

where and .

3.3.2 Orthogonal/Unitary Matrices
Definition: Unitary and orthogonal matrices

 is unitary, if

 is orthogonal, if

N (A) = R(A)H ⊥

N (A) =⊥ R(A).H

m ≥ n N (A) = {0} Ax = b, A ∈ R , b ∈m,n

R ,m

x = (A A) A b,T −1 T

A ∈ R , b ∈m,n R ,m x†

Ax = b

x =† V (V A AV) (V A b),T T −1 T T

V N (A)⊥

A :=† V (V A AV) V A ∈T T −1 T T Rn,m A

V

Ax = b

C := A A ∈T Rn,n O(n m)2

c := A bT O(nm)

Cx = c O(n)3

O(n m+2 n)3 m,n→∞

A ∈ R , b ∈m,n Rm

x = argmin ∣∣Ay−y∈Rn b∣∣2 m ≥ n A

rank(A) = n

T ∈ Rm,m ∣∣Ty∣∣ =2 ∣∣y∣∣ ∀y ∈2 Rm

argmin ∣∣Ay−y∈Rn b∣∣ =2 argmin ∣∣ y−y∈Rn A
~ ∣∣ ,b

~
2

=A
~

TA =b
~

Tb

Q ∈ K , n ∈n,n N, Q =−1 QH

Q ∈ K , n ∈n,n N, Q =−1 QT

Numerical Methods for CS 10

Theorem: A matrix is unitary/orthogonal, if and only if the associated linear mapping preserves the 2-
norm:

From the above theorem we can directly state the following conclusions. If a matrix is
unitary/orthogonal, then

all rows/columns have Euclidean norm

all rows/columns are pairwise orthogonal

, and all eigenvalues

 for any matrix

3.3.3 QR-Decomposition
3.3.3.1 QR-Decomposition: Theory

Theorem: If is linearly independent, then the Gram-Schmidt algorithm computes
orthogonal vectors satisfying

 for all .

Theorem: For any matrix with there exists

1. a unique matrix that satisfies , and a unique upper triangular Matrix
 with , such that

2. a unitary Matrix and a unique upper triangular matrix with
, such that

If , all matrices will be real and is then orthogonal.

3.3.3.2 Computation of QR-Decomposition

Corollary: The product of two orthogonal/unitary matrices of the same size is again orthogonal/unitary.

The following so called Householder matrices (HHM) effect the reflection of a vector into a multiple of the
first unit vector with the same length:

where is the first Cartesian basis vector.

Suitable successive Householder transformations determined by the left most column of shrinking
bottom right matrix blocks can be used to achieve upper triangular form . Writing for the Householder
matrix used in the -th factorization yields for the QR-decomposition of

Q ∈ K unitary ⟺n,n ∣∣Qx∣∣ =2 ∣∣x∣∣ ∀x ∈2 K .n

Q ∈ Kn,n

= 1

∣detQ∣ = 1, ∣∣Q∣∣ =2 1 ∈ {z ∈ C : ∣z∣ = 1}
∣∣QA∣∣ =2 ∣∣A∣∣2 A ∈ Kn,m

{a , ...,a } ⊂1 n Rm

q , ...q ∈1 n Rm

Span{q , ..., q } =1 l Span{a , ...,a },1 l

l ∈ {1, ...,n}

A ∈ Kn,k rank(A) = k

Q ∈0 Rn,k Q Q =0
H

0 Ik R ∈0
Kk,k (R) >ii 0, i ∈ {1, ...,k}

A = Q ⋅0 R ("economical" QR-decomposition)0

Q ∈ Kn,n R ∈ Kn,k (R) >ii 0, i ∈
{1, ...,n}

A = Q ⋅R (full QR-decomposition)

K = R Q

Q = H(v) := I − 2 with v =
v vT
vvT

a± ∣∣a∣∣ e2 1

e1

R Ql

l A ∈ C , A =n,n QR :

T T

Numerical Methods for CS 11

The following orthogonal transformation, a Givens rotation, annihilates the -th component of a vector
. Here stands for and for , the angle of rotation:

The QR-decomposition by successive Householder transformations has asymptotic complexity
for .

3.3.4 QR-Based Solver for Linear Least Squares Problems
We consider the full-rank linear least squares problem: Given , seek

 such that . We assume that we are given a QR-decomposition:
 orthogonal, regular upper triangular matrix.

We then apply the orthogonal 2-norm preserving transformation encoded in to :

Normal equations vs. orthogonal transformations methods

Use orthogonal transformation methods for least squares problems, whenever is dense
and is small.

Use normal equations in the expanded form, when is sparse and are big.

3.4 Singular Value Decomposition (SVD)

3.4.1 SVD: Definition and Theory
For any there are unitary/orthogonal matrices and a generalized
diagonal matrix such that

Definition: The decomposition is called the singular value decomposition (SVD) of .
The diagonal entries of of are the singular values of . The columns of are the left/right
singular vectors of .

Remark: As in the case of QR-decomposition we can also drop the bottom zero rows of and the
corresponding columns of in the case of . Thus we end up with an economical singular value
decomposition, also called thin SVD in literature.

Lemma: The squares of the non-zero singular values of are the non-zero eigenvalues of
 with associated eigenvectors respectively.

Q ⋅n−1 Q ⋯Q A =n−2 1 R and Q := Q ⋯Q .1
T

n−1
T

k

a = [a , ...,a] ∈1 n
T Rn γ cosϕ σ sinϕ ϕ

G (a ,a)a :=1k 1 k ⋅

⎣

⎡ γ

⋮
−σ

⋮
0

⋯

⋱
⋯

⋯

σ

⋮
γ

⋮
0

⋯

⋯

⋱
⋯

0

⋮
0

⋮
1⎦

⎤

=

⎣

⎡a1

⋮
ak

⋮
an⎦

⎤

,

⎣

⎡a1

⋮
0

⋮
an⎦

⎤

γ = , σ =
∣a ∣ + ∣a ∣1

2
k
2

a1

∣a ∣ + ∣a ∣1
2

k
2

ak

O(mn)2

m,n→∞

A ∈ R , m ≥m,n n, rank(A) = n

x ∈ Rn ∣∣Ax− b∣∣ →2 min A =
QR, Q ∈ Rm,m R ∈ Rm,n

Q Ax− b

∣∣Ax− b∣∣ =2 ∣∣QRx− b∣∣ =2 ∣∣Q(Rx−Q b)∣∣ =T
2 ∣∣Rx− ∣∣ , :=b

~
2 b
~

Q b.T

A ∈ Rm,n

n

A ∈ Rm,n m,n

A ∈ Km,n U ∈ K , V ∈m,m Kn,n

Σ = diag(σ , ...,σ) ∈1 p R , p :=m,n min{m,n}, σ ≥1 σ ≥2 ⋯≥ σ ≥p 0

A = UΣV .H

A = UΣV H A

σi Σ A U/V
A

Σ
U m > n

σi
2 A

A A, AAH H (V) , ..., (V) , (U) , ..., (U):,1 :,p :,1 :,p

Numerical Methods for CS 12

Lemma: If, for some the singular values of satisfy
 then

 (the number of non-zero singular values)

3.4.2 SVD in Eigen
The asymptotic complexity for the economical SVD is

3.4.3 Solving General Least-Squares Problems by SVD
In this chapter we consider the most general setting

We can use the invariance of the 2-norm of a vector with respect to multiplication with
together with the fact that is unitary:

With this equation we arrive at the generalized solution

Theorem: If has the SVD decomposition then its Moore-Penrose pseudoinverse
is given by .

3.4.4 SVD-Based Optimization and Approximation
3.4.4.1 Norm-Constrained Extrema of Quadratic Forms

We consider the following problem of finding the extrema of quadratic forms on the Euclidean unit sphere
 :

This problem can be solved with SVD with the minimizer from which we can obtain
the minimal value .

Lemma: If has singular values , then its
Euclidean matrix norm is given by . If and is regular/invertible, then its 2-norm
condition number is .

3.4.4.2 Best Low-Rank Approximation

TLDR: for the best k-rank approximation you turn the sigma into matrix (cut everything else away)
then you take away the columns in U and V accordingly.

Solving Linear Systems of Equations Overview

1 ≤ r ≤ p := min{m,n}, A ∈ Km,n σ ≥1 ⋯≥
σ >r σ =r+1 ⋯σ =p 0,

rank(A) = r

N (A) = Span{(V) , ..., (V) }:,r+1 :,n

R(A) = Span{(U) , ..., (U) }:,1 :,r

O(min{m,n} ⋅2 max{m,n})

Ax = b ∈ R with A ∈m R , rank(A) =m,n r ≤ min{m,n}.

U := [U U]1 2

U

∣∣Ax− b∣∣ =2 [U U] x−
∣
∣
∣
∣

1 2 [
Σr
0

0
0] [

V1
T

V2
T] b =

∣
∣
∣
∣
2

−
∣
∣
∣
∣

[
Σ V xr 1

T

0] .[
U b1
T

U b2
T]

∣
∣
∣
∣
2

x =† V Σ U b, ∣∣r∣∣ =1 r
−1

1
T

2 ∣∣U b∣∣ .2
T

2

A ∈ Km,n A = UΣV H

A =† V Σ U1 r
−1

1
H

{x ∈ K :n ∣∣x∣∣ =2 1}

given A ∈ K , m ≥m,n n, find x ∈ K , ∣∣x∣∣ =n
2 1, ∣∣Ax∣∣ →2 min.

x =∗ V e =n (V):,n
∣∣Ax ∣∣ =∗

2 σn

A ∈ Km,n σ ≥1 σ ≥2 ⋯≥ σ ≥p 0, p := min{m,n}
∣∣A∣∣ =2 σ (A)1 m = n A

cond (A) =2 σ /σ1 n

k × k

Numerical Methods for CS 13

Given , there are 6 different cases we have to differentiate:

Case 1.1 :

Algorithm: We use LU-Decomposition with Gauss elimination to solve this LSE.
 Alternatively we could use QR-Decomposition.
Runtime:

Case 1.2 :

Algorithm: We use SVD to compute a LSQ solution.
Runtime:

Case 2.1 :

Algorithm: We use QR-Decomposition to get the LSQ.
 Alternatively we could use the normal equation with LU-Decomposition.

Runtime: /

Case 2.2 :

Algorithm: We use SVD to compute a LSQ solution.
Runtime:

Case 3.1 :

Algorithm: We use SVD to compute a LSQ solution.
Runtime:

Case 3.2 :

Algorithm: We use SVD to compute a LSQ solution.
Runtime:

4. Filtering Algorithms

4.1 Filters and Convolutions

4.1.1 Discrete Finite Linear Time-Invariant Casual Channels/Filters
Mathematically speaking, a discrete channel / filter is a function or mapping from
the vector space of bounded input sequences ,

to the vector space of bounded output sequences .

Ax = b,A ∈ Rm,n

m = n & rank(A) = n

O(n)3

m = n & rank(A) < n

O(n)3

m > n & rank(A) = n

O(mn +2 n) =2 O(mn)2 O(mn +2 n) =3 O(mn)2

m > n & rank(A) < n

O(mn)2

m < n & rank(A) = m

O(m n)2

m < n & rank(A) < m

O(m n)2

F : l (Z) →∞ l (Z)∞

l (Z)∞ {x }j j∈Z

l (Z) :=∞ {(x) :j j∈Z sup∣x ∣ <j ∞},

l (Z)∞ (y)j j∈Z

Numerical Methods for CS 14

Definition: A channel/filter is called finite, if every input signal of finite duration
produces an output signal of finite duration,

Since it should not matter when exactly signals are fed into a channel, we introduce the time shift
operator for signals. For :

Hence, by applying we delay a signal by .

Definition: A filter is called time-invariant (TI), if shifting the input time leads to the same output shifted in
time by the same amount:

Definition: A filter is called causal, if the output does not start before the input:

With the above definitions we can state the following acronym:

LT-FIR: finite, linear, time-invariant, and causal filter

4.1.2 LT-FIR Linear Mappings
We aim for a precise mathematical description of the impact of a finite, time-invariant, linear, causal filter
on an input signal: Let be the impulse responses of that LT-FIR

:

In compact notation we can write the non-zero components of the output signal as

Superposition of impulse responses: The output of a LT-FIR for finite length input
 is a superposition of -weighted time-shifted impulse

F : l →∞ l (Z)∞

{∃M ∈ N : ∣j∣ >M ⇒ x =j 0} ⇒ ∃N ∈ N : ∣k∣ > N ⇒ (F((x))) =j j∈Z k 0

m ∈ Z

S :m l (Z) →∞ l (Z), S ((x)) =∞
m j j∈Z (x) .j−m j∈Z

Sm ∣m∣ ⋅ Δt

∀(x) ∈j j∈Z l (Z), ∀m ∈∞ Z : F(S ((x))) =m j j∈Z S (F((x))).m j j∈Z

F : l (Z) →∞ l (Z)∞

∀M ∈ N : (x) ∈j j∈Z l (Z), x =∞
y 0 ∀j ≤M ⇒ F((x)) =j j∈Z k 0 ∀k ≤M.

(..., 0, h , h , ..., h , 0, ...), n ∈0 1 n−1 N,
F : l (Z) →∞ l (Z)∞

F((δ)) =j ,0 j∈Z (..., 0, h , h , ..., hn− 1, 0, ...).0 1

(y)j j∈Z

y =k F((x)) =j j∈Z k h x , k =
j=0

∑
m−1

k−j j 0, ..., m+ n− 2

(h :=j 0 for j < 0 and j ≥ n).

(..., y , y , y , ...)0 1 2

x = (..., 0, x , ..., x , 0, ...) ∈0 n−1 l (Z)∞ xj jΔt

Numerical Methods for CS 15

responses.

Definition: Given two sequences at least one of which is finite or decays sufficiently
fast, their convolution is another sequence defined as

If well-defined, the convolution of sequences commutes

4.1.3 Discrete Convolutions
Given their discrete convolution is the vector

 with components

where we have adopted the convention for or . We denote a discrete convolution by
.

4.1.4 Periodic Convolutions
An -periodic signal, , is a sequence satisfying

Though infinite, an -periodic signal is uniquely determined by the finitely many values
 and can be associated with a vector .

The discrete periodic convolution of two -periodic sequences yields the -periodic
sequence

We denote a discrete periodic convolution by .

Definition: A matrix is circulant if

4.2 Discrete Fourier Transform (DFT)

4.2.1 Diagonalizing Circulant Matrices
We introduce the following notation: The -th root of unity is defined as

. The -th root of unity satisfies the following properties:

(h) , (x) ,k k∈Z k k∈Z
(y) ,k k∈Z

y =k h x , k ∈
j∈Z

∑ k−j j Z.

y =k (x) ∗k (h) =k (h) ∗k (x).k

x = [x , ..., x] ∈0 m−1
T K , h =m [h , ..., h] ∈0 n−1

T K ,n

y ∈ Km+n−1

y =k h x , k =
j=0

∑
m−1

k−j j 0, ..., n+m− 1,

h :=j 0 j < 0 j ≥ n

y = h ∗ x

n n ∈ N (x) ∈j j∈Z l (Z)∞

x =j+n x ∀j ∈j Z.

n (x)j j∈Z
x , ...x0 n−1 x = [x , ..., x] ∈0 n−1

T Rn

n (p) , (x) ,k k∈Z k k∈Z n

(y) :=k (p) ∗k (x), y :=k k p x =
j=0

∑
n−1

k−j j x p , k ∈
j=0

∑
n−1

k−j j Z.

(p) ∗k n (x)k

C = [c] ∈ij i,j=1
n Kn,n

∃(p) n-periodic sequence: c =k k∈Z ij p , 1 ≤j−i i, j ≤ n

n ω :=n exp() =
n

−2πi cos() −
n
2π

i sin(), n ∈
n
2π N n

=ωn ωn
−1

Numerical Methods for CS 16

We consider a general circulant matrix , with , for an -periodic sequence
. We define the following vector:

Then it holds, that is an eigenvector of for eigenvalue . The set
 provides the so-called orthogonal trigonometric basis of .

Definition: The matrix effecting the change of basis from the trigonometric basis to the standard basis is
called the Fourier-matrix:

Lemma: The scaled Fourier-matrix is unitary: .

Lemma: For any circulant matrix -periodic sequence, holds true

Definition: The linear map , is called discrete Fourier
transform (DFT), i.e. for

Discrete Fourier transform in Eigen

The Eigen-functions for discrete Fourier transform and its inverse are given by

DFT: c = fft.fwd(y)

inverse DFT: y = fft.inv(c)

Before using fft , remember to #include <unsupported/Eigen/FFT> .

int main() {
 using Comp = complex<double>;
 const VectorXd::Index n = 5;
 VectorXcd y(n), c(n), x(n);
 y << Comp(1, 0), Comp(2, 1), Comp(3, 2), Comp(4, 3), Comp(5, 4);
 FFT<double> fft; // DFT transform object
 c = fft.fwd(y); // DFT of y
 x = fft.inv(c); // inverse DFT of c

 cout << "y = " << y.transpose() << endl

ω =n
n 1

ω =n
n/2 −1

ω =n
k ω , ∀k ∈n

k+n Z

C ∈ Cn,n c :=ij (C) =i,j ui−j n

(u) , u ∈k k∈Z k C

v ∈k C :n v :=k [w] , k ∈n
−jk

j=0

n−1
{0, ..., n− 1}.

vk C λ =k u ω∑l=0
n−1

l n
lk

{v , ..., v } ⊂0 n−1 Cn Cn

F =n =

⎣

⎡ωn
0

ωn
0

ωn
0

⋮

ωn
0

ωn
0

ωn
1

ωn
2

⋮

ωn
n−1

⋯
⋯
⋯

⋯

ωn
0

ωn
n−1

ωn
n−2

⋮

ωn
(n−1)2⎦

⎤

[ω] ∈n
lj

l,j=0

n−1
C .n,n

F
n
1

n F =n
−1 F =

n
1

n
H

n
1F n

C ∈ K , c =n,n
ij u , (u)i−j k k∈Z n

C =Fn diag(d , ..., d), [d , ..., d] =Fn 1 n 0 n−1
T F [u , ..., u] .n 0 n−1

T

DFT :n C →n C , DFT(y) :=n F y, y ∈n Cn

[c , ..., c] :=0 n−1 DFT (y)n

c =k y ω , k ∈
j=0

∑
n−1

i n
kj 0, ..., n− 1.

Numerical Methods for CS 17

 << "c = " << c.transpose() << endl
 << "x = " << x.transpose() << endl;
 return 0;
}

4.2.2 Discrete Convolution via Discrete Fourier Transform
Discrete periodic convolution: straightforward implementation

Eigen::VectorXd pconv(const Eigen::VectorXd &u, const Eigen::VectorXcd &x) {
 const int n = x.size();
 Eigen::VectorXd z = VectorXd::Zero(n);
 // native two loop implementation of discrete periodic convolution
 for(int k = 0; k < n; ++k) {
 for(int i = 0, l = k; j <= k; ++j, --l) {
 z[k] += u[l] * x[j];
 }

 for(int j = k+1, l = n; j < n; ++j, --l) {
 z[k] += u[l] * x[j];
 }
 }
 return z;
}

Convolution Theorem: The discrete periodic convolution between -dimensional vector and is
equal to the inverse DFT of the component-wise product between the DFTs of and , i.e.:

Discrete periodic convolution: DFT implementation

Eigen::VectorXcd pconvfft(const Eigen::VectorXcd &u, const Eigen::VectorXcd &x){
 Eigen::FFT<double> fft;
 return fft.inv(((fft.fwd(u)).cwiseProduct(fft.fwd(x))).eval());
}

4.2.5 Two-dimensional DFT
In this section we study the frequency decomposition of matrices. Due to the natural analogy

one-dimensional data ("audio signal") → vector ,

two-dimensional data ("image") → matrix ,

these techniques are of fundamental importance for image processing.

Definition: We can state the two-dimensional discrete Fourier transform of the matrix as
follows:

We abbreviate it by . We state the inversion formula as follows:

∗n n u x

u x

(u) ∗n (x) := [u mod nx] =
j=0

∑
n−1

(k−j) j
k=0

n−1
F [(F u) (F x)] .n
−1

n j n j j=1
n

y ∈ Cn

Y ∈ Cm,n

Y ∈ Cm,n

C = F (F Y) =m n
T T F Y F .m n

DFT :m,n C →m,n Cm,n

Y = F CF =m
−1

n
−1 C

mn

1
Fm Fn

Numerical Methods for CS 18

Two-dimensional discrete Fourier transform

template <typename Scalar>
void fft2(Eigen:.MatrixXcd &C, const Eigen::MatrixBase<Scalar> &Y) {
 using idx_t = Eigen::MatrixXcd::Index;
 const idx_t m = Y.rows(), n = Y.cols();
 C.resize(m, n);
 Eigen::MatrixXcd tmp(m, n);

 Eigen::FFt<double> fft; //Helper class for DFT
 // Transform rows of matrix Y
 for(idx_t k = 0; k < m; k++) {
 Eigen::VectorXcd tv(Y.row(k));
 tmp.row(k) = fft.fwd(tv).transpose();
 }

 // Transform columns of temporary matrix
 for(idx_t k = 0; k < n; k++) {
 Eigen::VectorXcd tv(tmp.col(k));
 C.col(k) = fft.fwd(tv);
 }
}

Theorem: For any , we have

where stands for the entrywise mutliplciation of matrices of equal size.

This suggests the following DFT-based algorithm for evaluating the periodic convolution of matrices:

1. Compute by inverse 2D DFT of

2. Compute by 2D DFT of

3. Component-wise multiplciation of and .

4. Compute through inverse 2D DFT of .

4.3 Fast Fourier Transform (FFT)
To understand how the discrete Fourier transform of -vectors can be implemented with an asymptotic
computational effort smaller than we start with an elementary manipulation for :

This means that for even we can compute from DFTs of half the length plus additions
and multiplications.

The asymptotic complexity of the FFT algorithm for is .

5. Data Interpolation and Data Filtering in 1D

X,Y ∈ Cm,n

X ∗m,n Y = DFT (DFT (X) ⊙m,n
−1

m,n DFT (Y)),m,n

⊙

Ŷ Y

Ŷ X

X̂ :Ŷ =Ẑ ∗X̂ Ŷ

Z Ẑ

n

O(n)2 n = 2m, m ∈ N

c =k y e =
j=0

∑
n−1

j
− jk

n
2πi

y e +
j=0

∑
m−1

2j
− 2jk

n
2πi

y e

j=0

∑
m−1

2j+1
− (2j+1)k

n
2πi

= y e +
j=0

∑
m−1

2i
− jk

m
2πi

e ⋅− k
n
2πi

y e , k ∈
j=0

∑
m−1

2k+1
− jk

m
2πi Z.

n DFT (y)n ∼ n

n = 2L O(L ⋅ 2) =L O(n log n)2

Numerical Methods for CS 19

5.1 Abstract Interpolation
Definition: One-dimensional data interpolation

Given: data points

Objective: Reconstruction of a function

1. satisfying the interpolation conditions (IC)

2. and belonging to a set of eligible functions

The function we find is called the interpolant of the given data set .

When we talk about interpolation schemes in 1D, we mean a mapping

In the context of numerical methods, "function" should be read as "subroutine", a piece of code that can,
for any , compute in finite time.

C++ data type representing a real-valued function

class Function{
 private;
 // various internal data describing f
 public;
 // Constructor: expects information for specifying the cuntion
 Function(/*...*/);
 // Evaluating operator
 double operator() (double t) const;
};

C++ class representing an interpolant in 1D

class Interpolant {
 private;
 // various internal data describing f
 // can be the coefficients of a basis representation
 public;
 // constructor: computation of coefficients c_j
 Interpolant(const vector<double> &t, const vector<double> &y);
 // exaluation operator for interpolant f
 double operator() (double t) const;
};

Definition: A basis of an -dimensional vector space of functions is
a cardinal basis with respect to the set of nodes,

We consider the setting for interpolation that the interpolant belongs to a finite-dimension space of
functions spanned by basis functions . Then the interpolation conditions imply that the basis
expansion coefficients satisfy a linear system of equations:

(t , y), i =i i 0, ..., n, n ∈ N, t ∈i I ⊂ R, y ∈i R
f : I → R

n+ 1 f(t) =i y , i =i 0, ..., n

V

f {(t , y)}i i i=0
n

I : R ×n+1 R →n+1 {f : I → R}, ([t] , [y]) →i i=0
n

i i=0
n interpolant

x ∈ I f(x)

{b , .., b }0 n n+ 1 f : I ⊂ R → R
{t , ..., t } ⊂0 n I

b (t) =j i δ :=ij 1, if i = j, 0 else.

Vm
b , ..., b0 m

Numerical Methods for CS 20

5.2 Global Polynomial Interpolation
Global polynomial interpolation, that is, interpolation into spaces of functions spanned by polynomials, is
the simplest interpolation scheme and of great importance as building block for complex algorithms.
Compared to the piecewise linear basis functions from the previous section, our functions isn’t 0 outside of
the given points.

5.2.1 Uni-Variante Polynomials
Polynomials in a single variable are familiar and simple objects:

Notation: Vector space of the uni-variate polynomials of degree :

Terminology: The functions , are called monomials and the formula
 is the monomial representation of a polynomial.

Dimension of space of polynomials

Efficient evaluation of a polynomial in monomial representation is achieved through the Horner scheme as
indicated by the following representation:

This allows us to evaluate a polynomial in .

Horner scheme (vectorized version)

Eigen::VectorXd horner(const Eigen::VectorXd &p, const Eigen::VectorXd &t) {
 const VectorXd::Index n = t.size();
 Eigen::VectorXd y{p[0] * VectorXd::Ones(n)};
 for(unsigned i = 1; i < p.size(); ++i) {
 y = t.cwiseProduct(y) + p[i] * VectorXd::Ones(n);
 }
 return y;
}

5.2.2 Polynomial Interpolation: Theory
In the previous section (5.2.1) we extended the local interpolantion (5.1) to a global interpolation. This
caused us to loose the cardinal basis property, making the computation of the coefficients a lot
harder. Now we introduce the Lagrange polynomial which brings back this cardinal basis property.

f(t) =i c b (t) =
j=0

∑
m

j j i y , i =i 0, ..., n

⟺

Ac := =
⎣

⎡b (t)0 0

⋮
b (t)0 n

⋯

⋯

b (t)m 0

⋮
b (t)m n

⎦

⎤

⎣

⎡ c0

⋮
cm⎦

⎤
=:

⎣

⎡y0

⋮
yn⎦

⎤
y

≤ k, k ∈ N

P :=k {t→ a t +k
k a t +k−1

k−1 ⋯+ a t+1 a , a ∈0 i R}.

t→ t , k ∈k N0 t→ a t +k
k

a t +k−1
k−1 ⋯+ a t+1 a0

dimP =k k + 1 and P ⊂k C (R).∞

p(t) = t(⋯ t(t(a t+n a) +n−1 a) +n−2 ⋯+ a) +1 a .0

O(n)

α (≡i c)j

Numerical Methods for CS 21

Lagrange Polynomial Interpolation problem (LIP)

Given the set of interpolation nodes , and the value compute
 such that it staisfies the interpolant conditions (IC)

For a given set of nodes consider the

It is obvious that and that . Further Lagrange polynomials are linearly independent.

The Lagrange polynomial interpolation for data points allows a straightforward representation
with respect to the basis of Lagrange polynomials for the node set :

The general LPI problem admits a unique solution for any set of data points and
.

The polynomial interpolation in the nodes defines a linear operator

5.2.3 Polynomial Interpolation: Algorithms
We are given the following setting:

Given: nodes , values

Notation: we write for the unique Lagrange polynomial interpolant.

When used in a numerical code, different demands can be made for a class that implements Lagrange
interpolants. These demands determine, which algorithm is most suitable for constructors and the
evaluation operators.

In the following part we will look at two algorithms.

5.2.3.1 Multiple evaluations

The definition of a possible interpolator data type could be as follows:

class PolyInterp {
 private: // various internal data describing p
 Eigen::VectorXd t;
 public: // constructors taking node vector (t_0,..., t_n) as argument
 PolyInterp(const Eigen::VectorXd &_t);

{t , ..., t } ⊆0 n R, n ∈ N y , ..., y ∈0 n R
p ∈ Pn

p(t) =j y for j =j 0, ..., n.

{t , t , ..., t } ⊂0 1 n R

Lagrange polynomials L (t) :=i , i =
j=0, j=i

∏
n

t − ti j

t− tj 0, ..., n.

L ∈i Pn L (t) =i j δij

p (t , y)i i i=0
n

{t }i i=0
n

p(t) = y L (t) ⟺
i=0

∑
n

i i p ∈ P and p(t) =n i y .i

p ∈ Pn {(t , y)}i i i=0
n

n ∈ N

T := {t }j j=0
n

I :T R →n+1 P , (y , ..., y) →n 0 n
T interpolating polynomial p.

T := {−∞ < t <0 t <1 ... < t <n ∞} y := {y , y , ..., y }0 1 n

p := I (y)T

Numerical Methods for CS 22

 template <typename SeqContainer> PolyInterp(const SeqContainer &v);
 // Evaluation operator for data (y_0,..., y_n);
 // computes p(x_k) for x_k's passed in x
 Eigen::VectorXd eval(const Eigen::VectorXd &y,
 const Eigen::VectorXd &x) const;
};

Barycentric interpolation formula

We want to precompute part of the Lagrange polynomial to reduce the asymptotic effort of eval . By some
simple manipulations we end up with this:

Where is independent of and . Therefore we can precompute

these values!

We end up with the following complexity:

5.2.3.2 Single evaluation

Instead of evaluating at multiple point, we might only be interested in the evaluation at a single point
.

Aitken-Neville Scheme

We are still given a list of points in a plane and want to fit a polynomial through these points. The
starting point is a recursion formula for partial Lagrange interpolants, we define:

We easily find that:

λ =i (t −t)⋯(t −t)(t −t)⋯(t −t)i 0 i i−1 i i+1 i n

1 t yi

x ∈
R

(t ,y)j j

Numerical Methods for CS 23

Now the values of the partial Lagrange interpolants can be computed sequentially (based on their
dependecies), expressed by the following so-called Aitken-Neville Scheme:

For the Aitken-Neville Scheme we get a runtime of .

5.2.3.3 Extrapolation to Zero

Extrapolation is interpolation with the evaluation point outside the interval . We assume and
that . Of course, Lagrangian polynomial interpolation can also be used for
extrapolation.

This is especially usefull, since often around 0 we encounter cancellation. To avoid this, we can compute,
for a given function , the values with acceptable accuracy. Then we approximate with a
polynomial and evaluate it at position 0. I.e. we fit a polynomial through the points and evaluate
this polynomial at the position 0. This is the exact problem we solve with Aitken-Neville.

5.2.3.4 Newton Basis and Divided Differences

This chapter we want to have an update friendly basis.

We define the Newtonbasis for as follows:

We find the coefficients for the interpolating polynomial by a method similar to the Aitken-Neville Scheme
(see the Lecture Document for more details). We end up with the following interpolating polynomial:

O(n)2

t [t , t]0 n t = 0
t >i 0, i = 0, ...,n

g g(h)i g(h)
(h , g(h))i i

Pn

Numerical Methods for CS 24

This polynomial representation already implies that we can use “backward evaluation” in the spirit of
Horner Scheme.

5.2.4 Polynomial Interpolation: Sensitivity
This section addresses a major shortcoming of polynomial interpolation, that small perturbations of
measurements gives huge errors in the function we construct.

For measuring the size of pertubations we need norms on data and result spaces. For the value vectors
 we can use any vector norm, for instance the maximum norm . However

the result space is a vector space of continuous functions and so we also need norms on the
vector space of continuous functions . The following norms are the most relevant:

Now let be a linear problem map between two normed spaces, the data space (with norm
) and the result space (with norm). Thanks to linearity, pertubations of the result

 for the input can be expressed as follows:

Hence, the sensitivity can be measured by the operator norm

Given a mesh with generalized Lagrange polynomials and fixed , the
norm of the interpolation operator satisfies

Definition: We define the Lebesgue constant of as follows:

5.3 Shape-Preserving Interpolation
When reconstructing a quantitative dependence of quantities from measurements, first principles from
physics often stipulate qualitative constraints, which translate into shape properties of the function , e.g.

y := [y , ..., y] ∈0 n
T Rn+1 ∣∣y∣∣∞

I ⊂ R → R
C (I), I ⊂0 R

supremum norm ∣∣f∣∣ :=L (I)∞ sup{∣f(t)∣ : t ∈ I}

L -norm ∣∣f∣∣ :=2
L (I)2
2 ∣f(t)∣ dt∫

I
2

L -norm ∣∣f∣∣ :=1
L (I)1 ∣f(t)∣ dt∫

I

L : X → Y X

∣∣ ⋅ ∣∣X Y ∣∣ ⋅ ∣∣Y y :=
L(x) x ∈ X

L(x+ δx) = L(x) + L(δx) = y+ L(δx).

∣∣L∣∣ :=X→Y sup .δx∈X∖{0} ∣∣δx∣∣X

∣∣L(δx)∣∣Y

T ⊂ R L , i =i 0, ..., n, I ⊂ R

∣∣I ∣∣ :=T ∞→∞ sup =y∈R ∖{0}n+1
∣∣y∣∣∞

∣∣I (y)∣∣T L (I)∞

∣L ∣ ,
∣
∣
∣
∣

i=0

∑
n

i ∣
∣
∣
∣
L (I)∞

∣∣I ∣∣ :=T 2→2 sup ≤y∈R ∖{0}n+1
∣∣y∣∣2

∣∣I (y)∣∣T L (I)2

(∣∣L ∣∣) .
i=0

∑
n

i L (I)2
2 2

1

T

λ :=T ∣L ∣ =
∣
∣
∣
∣

i=0

∑
n

i ∣
∣
∣
∣
L (I)∞

∣∣I ∣∣ .T ∞→∞

f

Numerical Methods for CS 25

when modelling the material law for a gas:

→ pressure values, densities positive and monotonic

Notation: given data is

5.3.1 Shape Properties of Functions and Data
Definition: The data are called monotonic when or for

Definition: The data are called convex (concave) if

5.3.2 Piecewise Linear Interpolation
There is a very simple method of achieving perfect shape preservation by means of a linear interpolation
operator into the space of continuous functions. Given the following data:

Then the piecewise linear interpolant is defined as

The piecewise linear interpolant is also called a polygonal curve. It is continuous and consists of line
segments.

Theorem: Let be the piecewise linear interpolant of for
every subinterval :

if are positive / negative is positive / negative

if are monotonic is monotonic

if are convex/concave is convex/concave

5.3.3 Cubic Hermite Interpolation
Aim: local shape-preserving (linear) interpolation operator that fixes short-coming of piecewise linear
interpolation by ensuring -smoothness of the interpolant.

5.3.3.1 Definition and Algorithms

Given: Mesh points .

Goal: build function satisfying the interpolant conditions .

Definition: Given data points with pairwise distinct ordered notes ,
and slopes , the piecwise cubic Hermite interpolants is defined by the
requirements

Locally, we can write a piecewise cubic Hermit interpolant as a linear combination of generalized cardinal
basis functions with coefficients based on and (representing the slope at point).

ti yi ⇒ f

(t , y) ∈i i R , i =2 0, ..., n, n ∈ N, t <0 t <1 ... < t .n

(t , y)i i y ≥i yi−1 y ≤i yi−1 i = 0, ..., n

{(t , y)}i i i=0
n

Δ ≤j (≥) Δ , j =j+1 1, ..., n− 1, Δ =j , j =
t − tj j−1

y − yj j−1 1, ..., n.

(t , y) ∈i i R , i =2

0, ..., n, n ∈ N, t <0 t <1 ... < t .n

s : [t , t] →0 n R

s(t) = for t ∈
t − ti+1 i

(t − t)y + (t− t)yi+1 i i i+1 [t , t].i i+1

n

s ∈ C([t , t])0 n (t , y) ∈i i R , i =2 0, ..., n,
I = [t , t] ⊂j k [t , t]0 n

(t , y)∣i i I ⇒ s∣I

(t , y)∣i i I ⇒ s∣I

(t , y)∣i i I ⇒ s∣I

C1

(t , y) ∈i i R , i =2 0, ..., n, t <0 t <1 ⋯< tn

f ∈ C ([t , t])1
0 n f(t) =i y , i =i 0, ..., n

(t , y) ∈i i R× R, j = 0, ..., n tj
c ∈j R s : [t , t] →0 n R

s ∈∣[t , t]i−1 i
P , i =3 1, ..., n, s(t) =i y , s (t) =i

′
i c , i =i 0, ..., n.

yi ci i

Numerical Methods for CS 26

The basis functions are defined as follows:

By some computation we find that the following holds for :

However, the data only specifies and not . Thus to compute a interpolant, we need to supply a way of
computing these . One way of doing so would be to use the following linear mapping:

5.3.3.2 Local Monotonicity-Preserving Hermite Interpolation

When choosing the slopes like above, th Hermite interpolation does not preserve monotonicity. Therefore
we introduce an alternative way of choosing the slopes, that preserves monotonicity.

H ,k =k 1, 2, 3, 4

Hk

yi ci
ci

Numerical Methods for CS 27

Theorem: If, for fixed node set an interpolation scheme is linear as
a mapping from data values to continuous functions on the interval covered by the nodes,
and monotonicity preserving, then for all and .

5.4 Splines
Definition: Given an interval and a knot sequence

 the vector space of the spline functions of degree (or order) is defined
by

The dimension of a splice space can be found by a counting argument: We count the number of
"degrees of freedom" possessed by a -piecewise polynomial of degree , and subtract the number
of linear constraints:

5.4.2 Cubic-Spline Interpolation
Task: Given a mesh "find" a cubic spline that compiles
with the interpolation conditions

When comparing the cubic spline interpolation to the cubic Hermit interpolation, we find that the cubic
Hermit interpolation allows for degrees of freedom, while the cubic spline interpolation only allows
degrees of freedom. This is due to the fact that the interpolant has to be in and not only in .

To saturate the remainign two degree of freedom the following three approaches are popular:

1. Complete cubic spline interpolation: prescribed

2. Natural cubic spline interpolation:

3. Periodic cubic spline interpolation:

https://www.youtube.com/watch?v=pLfifROQ-MM

5.4.3 Structural Properties of Cubic Spline Interpolation
For a function , the term

models the elastic bending energy of a rod, whose shape is described by the graph of . We will show the
cubic spline interpolants have minimal bending energy among all -smooth interpolating functions.

Given: mesh of with knots

{t } , n ≥j j=0
n 2, I : R →n+1 C (I)1

I(y) (t) =′
j 0 y ∈ Rn+1 j = 1, ..., n− 1

I := [a, b] ⊂ R M := {a = t <0 t <1 ... <
t =n b}, n ∈ N, Sd,M d d+ 1

S :=d,M {s ∈ C (I) :d−1 s :=j s∣[t , t] ∈j−1 j P ∀j =d 1, ..., n}.

M d

dimS =d,M n ⋅ dimP −d #{C continuity constraints} =d−1 n ⋅ (d+ 1) − (n− 1) ⋅ d = n+ d.

M := {t <0 t <1 ⋯< t }, n ∈n N, s ∈ S3,M

s(t) =j y , j =j 0, ..., n.

n+ 1 2
C2 C1

s (t) =′
0 c , s (t) =0

′
n cn

s (t) =′′
0 s (t) =′′

n 0

s (t) =′
0 s (t), s (t) =′

n
′′

0 s (t)′′
n

Great video explaining cubic splines and some of their properties, including how to fix the remaining two degrees of freedom.

f : [a, b] → R, f ∈ C ([a, b])2

E (f) :=bd ∣f (t)∣ dt,
2
1

∫
a

b
′′ 2

f

C2

M := {a = t <0 t <1 ... < t =n b} [a, b] tj

https://www.youtube.com/watch?v=pLfifROQ-MM

Numerical Methods for CS 28

Set := natural cubic spline interpolant of data points .

Theorem: The natural cubic spline interpolant minimizes the elastic curve energy among all interpolating
functions in that is

5.6 Trigonometric Interpolation
We consider time series data , obtained by sampling a time-dependent
scalar physical quantity . We know that is a T-periodic function with period , that is

 for all . In the spirit of shape preservation an interpolant of the time series
should also be -periodic: for all .

Assumption: We assume the period to be known and for all interpolation nodes
.

In the sequel, for the case of simplicity, we consider only .

Task: Given and data points find a T-periodic function
(the interpolant), that satisfies the interpolation conditions

5.6.1 Trigonometric Polynomials
The most fundamental periodic functions are derived from the trigonometric functions and and
dilations of them. A dilation of a function is a function of the form with some .

Definition: The vector space of -periodic trigonometric polynomials of degree is given by

We can rewrite given in the form

Further manipulations give us:

5.6.2 Reduction to Lagrange Interpolation

We can reuse the already known algorithms for Lagrange polynomial interpolation.

5.6.3 Equidistant Trigonometric Interpolation
Often timeseries data for a time-periodic quantity are measured with a constant rhythm over the entire
period of duration , that is, . In this case, the formulas for

s ∈ S3,M (t , y) ∈i i R , i =2 0, ..., n

s

C ([a, b]),2

E (S) ≤bd E (f)∀f ∈bd C ([a, b]), f(t) =2
i y , i =i 0, .., n.

(t , y), i =i i 0, ..., n, t ,y ∈i i R
t→ ϕ(t) ϕ T > 0

ϕ(t) = ϕ(t+ T) t ∈ R f

T f(t+ T) = f(t) t ∈ R
T > 0 t ∈i [0, T [

t , i =i 0, ..., n

T = 1

T > 0 (t , y), y ∈i i i K, t ∈i [0, T [, f : R → K
f(t+ T) = f(t)∀t ∈ R,

f(t) =i y , i =i 0, ..., n.

sin cos
t→ ϕ(t) t→ ϕ(ct) c > 0

1 2n, n ∈ N,

P :=2n
T Span{t→ cos(2πjt), t→ sin(2πjt)}j = 0 ⊂n C (R).∞

q ∈ P2n
T

q(t) = α +0 α cos(2πjt) +
j=1

∑ j β sin(2πjt), α ,β ∈j j j R.

q ∈ P ⇒2n
T q(t) = e ⋅−2πint p(e) with p(z) =2πt γ z ∈

j=0

∑
2n

j
j P ,2n

T > 0 t =j jΔt, Δt = , j =
n+1
T 0, ..., n

Numerical Methods for CS 29

computing coefficients of the interpolating trigonometric polynomial become special versions of
the discrete Fourier transfrom (DFT). Efficient implementation can thus harness the speed of FFT.

Now we consider trigonometric interpolation in the -periodic setting with uniformly
distributedinterpolation nodes , and associated data values . Existence and
uniqueness of an interpolating trigonometric polynomial was established earlier. We
rely on the following relation ship:

to arrive at the following linear system of equations for computing the unknown
coefficients :

5.7 Least Squares Data Fitting
When looking at interpolations, we find that having a interpolating polynomial of a high degree is often not
recommendable, since it causes large fluctuations. Therefore we might want a polynomial of degree ,
that approximates data points, where . This is equivalent to a overdetermined system of
equations.

The most general task of multidimensional, vector-valued least squares data fitting can be described as
follows:

Least square data fitting

Given: data points .

Objective: Find a continuous function in some set of admissible functions
satisfying

Such a function is called a best least squares fit for the data in .

Consider a special variant of the general least squares data fitting problem: The set of admissible
continuous functions is now chosen as a finite-dimensional vector space
.

Choose a basis of , continuous.

→ The best least squares fit can be represented by a finite linear combination of the basis
functions :

It can be furthermore be recast to the following problem:

General linear least squares fitting problem

1 2n+ 1
t =k , k =2n+1

k 0, ..., 2n yk
q ∈ P , q(t) =2n

T
k y ,k

q ∈ P ⇒2n
T q(t) = e ⋅−2πint p(e) with p(z) =2πt γ z ∈

j=0

∑
2n

j
j P ,2n

(2n+ 1) × (2n+ 1)
γj

c =F2n+1 b, c = [γ , ..., γ] ⇒0 2n
T c = F b.

2n+ 1
1

2n+1

n

m n < m

(t , y), i ∈i i {1, ..., m}, m ∈ N, t ∈i D ⊂ R , y ∈k
i R , d ∈d N

f : D → Rd S ⊂ C (D)0

f ∈ argmin ∣∣g(t) −g∈S
i=1

∑
m

i y ∣∣ .i 2
2

f S

S

V ⊂n C (D), dimV =0
n n ∈ N

Vn V =n Span{b , ..., b }, b :1 n j D → Rd

f ∈ Vn
bj

f(t) = x b (t), x ∈
j=1

∑
n

j j j R.

Numerical Methods for CS 30

Given: data points and basis functions

Sought: coefficients such that

Theorem: The solution of the linear least squares fitting problem is the least squares
solution of the overdetermined linear system of equations

with

Lemma: The scalar one-dimensional linear least squares fitting problem with the vector
space of admissible functions, has a unique solution, if and only if there are such that

which is independent of the choice of basis of .

8. Iterative Methods for Non-Linear Systems of
Equations

8.1 Introduction
Non-linear systems naturally arise in mathematical modelsof electrical circuits, once non-linear
circuitelements are introduced. A non-linear system of equations is a concept almost too abstract to be
useful, because it covers an extremely wide variety of problems.

For a function , there are no general results existence and uniqueness of
solutions of .

8.2 Iterative Methods

8.2.1 Fundamental Concepts
We try to find a solution to the system , by creating a sequence of smart guesses . A -
point iterative method means that the next value in our sequence depends on the last values. This
also means that we need initial guesses.

(t , y) ∈i i R ×k R , i =d 1, ..., m b :j D ⊂ R →k R, j =
1, ..., n, n < m.

x ∈j R, j = 1, ..., n,

x := [x , ..., x] :=1 n
T argmin z b (t) −z ∈Rj

d

i=1

∑
m

∣
∣
∣
∣

j=1

∑
n

j j i y .i ∣
∣
∣
∣
2

2

[x , ..., x] ∈1 n
T Rn

x =
⎣

⎡A1

⋮
Ad
⎦

⎤
,

⎣

⎡b1

⋮
bd⎦

⎤

A :=r ∈
⎣

⎡ (b (t))1 1 r

⋮
(b (t))q m r

⋯

⋯

(b (t))n n r

⋮
(b (t))n m r

⎦

⎤
R , b :=m,n

r ∈
⎣

⎡ (y)1 r

⋮
(y)m r

⎦

⎤
R , r =m 1, ..., d.

dimV =n n, Vn
t , .., ti1 in

∈
⎣

⎡b (t)1 i1

⋮
b (t)1 in

⋯

⋯

b (t)n i1

⋮
b (t)n in

⎦

⎤
R is invertible,n,n

Vn

F : D ⊂ R →m R, n ∈ N
F(x) = 0

F(x) = 0 xi m

m

m

Numerical Methods for CS 31

Such a sequence has the following properties,

and

An iterative method converges (for fixed initial guess(es)) iff and .

8.2.2 Speed of Convergence
We define the convergence as the speed that the sequence converges to . We measure this “speed” by
the following definition:

A convergent sequence with limit converges with order , , if

if and , we call it linear convergence. We can approximate the order by the following
equation, where is the norm of the iteration error:

8.2.3 Termination Citeria / Stopping Rule
The termination criteria is used to determine when to stop calculating new elements of our sequence .
There are three general methods for termination:

1. A priori (number of steps)

2. Residual based (we stop when is small)

3. Correction based (we stop when the difference between and is small)

Often the 3rd criteria is used, since it stops as soon as we don’t make any progess anymore.

For we have one more criteria:

8.3 Fixed-Point Iteration
In this part we look at 1-point stationary iterations, also called fixed point iterations. We can observe
that generally a small derivative of is good for the convergence. A first lemma gives us a condition for
local convergence, that is at least linear.

x =(k+1) ϕ (x ,…,x)F
(k) (k−m+1)

ϕ (x ,…,x) =F
∗ 3 x ⇔∗ F(x) =∗ 0

x →(k) (k→∞) x∗ F(x) =∗ 0

x∗

x(k) x∗ p p ≥ 1

∃C > 0 : ∣∣x −(k+1) x ∣∣ ≤∗ C ⋅ ∣∣x −(k) x ∣∣ ∀k ∈∗ p N ,0

C < 1 p = 1 p

ϵ :=k ∣∣x −(k) x ∣∣∗

≈
log ϵ − ϵk k−1

log ϵ − log ϵk+1 k
p

xi

F(x) = 0 ⇒ ∣F(x)∣i

xi xi+1

p = 1 ∣∣x −(k+1) x ∣∣ ≤∗ ⋅1−L
L ∣∣x −(k) x ∣∣, 0 <k L < 1

ϕ(x)

Numerical Methods for CS 32

A second Lemma gives us a lower bound for the order of convergence.

8.4 Finding Zeros of Scalar Functions

8.4.1 Bisection
This method is based on the idea of finding by shrinking the interval in each iteration in half.

We start of with two points that have different signs. From there we can use the intermediate
value theorem, to conclude that in between and there has to be a zero value. By testing the sign at the
midpoint and shrinking the interval acordingly, we can find a that is close to . This method is
foolproof and works without any derivatives, but the drawback is, that it is only of “linear-type”.

8.4.2 Model Funtion Methods
This is a class of methods for finding zeroes of , based on the following idea:

x∗

a, b ∈ R
a b

x(k) x∗

F

Numerical Methods for CS 33

💡 Given recent iterates , replace with a -dependent model
function . Now zero of .

8.4.2.1 Newton Method in Scalar Case

The Newton Method is one of the most important Methods in Numerical Methods. Its formula is:

We define our model function as . This is equal to the tangent at
 in . is now equal to the zero of the tangent and we get the Newton iteration:

When investigating the convergence, we find that Newton’s method locally
converges quadratically to a zero of , if .

8.4.2.3 Multi-Point Methods

The secant method is the simplest representative of model function multi-point methods. We just
approximate the function linearly by drawing a line through the last two points we have in our
approximation sequence . Then we use a similar formula to the Newton method.

x ,…,x , m ∈(k) (k−m+1) N F k

Fk
~

x :=(k+1) Fk
~

x :=k+1 x −k
F (x)′ k

F(x)k

(x) :=Fk
~

F(x) +(k) F (x)(x−′ (k) x)(k)

F x(k) x(k+1)

x :=(k+1) x −(k)

F (x)′ (k)

F(x)(k)

x∗ F F (x) =′ ∗  0

xi

Numerical Methods for CS 34

Analysing the convergence, we find that the order of convergence is fractional, with .

Another class of multi-point methods are inverse interpolation. The approach here is, to interpolate the
inverse function. We see that we can construct an interpolant of the inverse function by interpolating the
points (inverted tuple!).

Where is a polynomial of degree . Then we can evaluate the interpolate for the inverse function at
the point 0, . Which then is an approximation of the solution we are looking for.

As an example we have seen the case for :

Here the interpolation and evaluation is done in one explicit formula. For such quadratic inverse
interpolation, we find the fractional order of convergence to be .

8.4.3 Asymptotic Efficiency of Iterative Methods for Zero Finding

x :=(k+1) x −(k)

F(x) − F(x)(k) (k−1)

F(x)(x − x)(k) (k) (k−1)

p ≈ 1.62

(y , t)i i

p(F(x) =(k−j) x , j =(k−j) 0,…,m− 1

p m− 1
x :=(k+1) p(0) x∗

F(x) =∗ 0 ⇔ F (0) =−1 x∗

m = 3

p ≈ 1.8

Numerical Methods for CS 35

We can compare different methods in terms of efficiency. We define efficiency as the number of digits
gained , divided by the effort to achieve the result.

Let be the number of steps to achieve a relative reduction of the error by a factor of (gain). Then
we have

Now we adopt an asymptotic perspective and require a large reduction of the error, that is .

When using this to compare the secant method with Newton’s method, we find that the secant methos is
more efficient, despite having a lower order of convergence.

8.5 Newton’s Method in R^n

8.5.1 The Newton Iteration
The Newton iteration seen in 8.4.2.1 can be generalized for by using the Jaccobian of the function (We
assume that is continuously differentiable). This gives us the formula

Since we want to avoid calculating the inverse, we solve the LSE

and then compute . The generalized Newton iteration has the same quadratic order of
convergence as the 1-D Newton iteration.

log(ρ) W

k(ρ) ρ

Efficiency := =
total work required
#digits gained

k(ρ) ⋅W
∣ log ρ∣

ρ << 1

Rn

F

DF(x) ⋅(k) s = F(x)(k)

x =(k+1) x −(k) s

Numerical Methods for CS 36

We also looked at a special variant of the Newton iteration, where we replace the derivative of the -th
iteration, by the derivative of the -th iteration. This is conveniant, since we don’t have to calculate the
derivative for every step.

When using the same Jaccobian for all steps, we can reuse the LU-decomposition. As a drawback we end
up with only linear convergence.

Remark: This image serves as a remainder, that reading the lecture document is a worthwhile endeavour.
Especially, since it contains funny images like this.

8.5.3 Termination of Newton Iteration
In 8.5.2 we saw that Newton’s method enjoys (asymptotic) quadratic convergence, which means rapid
decrease of the relative error of the iterates, once we are close to the solution, which is exactly the point,
when we want to stop. We use the correction based termination criterion (8.2.3), to determine when to
stop.

This is uneconomical, as we have one needless update, because would already be accurate enough.
Since during the final steps, we can use the more economical termination
criterion

k

0

x =(k+1) x −(k) DF(x) ⋅(0) −1 F(x)(k)

x(k)

DF(x) ≈(k−1) DF(x)(k)

Numerical Methods for CS 37

8.5.4 Damped Newton Method
One big drawback of the Newton method is that it only converges locally! This can make it useless if the
guess is not already close to the exact solution. In this section we explore a method to enlargen the region
of convergence, at the expense of the quadratic convergence.

We observe a kind of “overshooting” of the Newton correction. To try and fix this, we introduce a
dampening factor .

To find this dampening factor, we use the following formula:

8.6 Quasi-Newton Method
Computing the Jaccobian is expensive, therefore we look at a method to replace the derivative by some
approximation of it. In the 1-D case, we can simply choose some similar method, like the secant method.
In the general case we want to do something similar.

λ ∈(k)]0, 1]

x =(k+1) x −(k) λ ⋅(k) DF(x) ⋅(k) −1 F(x)(k)

Numerical Methods for CS 38

Instead of calculating for every step, we want to reuse . In the end we get the Broyden quasi-
Newton method.

To initialize we can for example use the exact Jacobi matrix .

To improve the range of local convergence, we can use the same ideas as we used for the dampened
Newton iteration.

Instead of calculating the inverse in every step, we can use a faster but less stable approach. This is
further explained in the lecture document, but since it is mostly complicated formulas, I left it out of this
summary.

8.7 Non-Linear Least Squares
We want to increase our scope to include overdetermined non-linear systems of equations. For this we
reuse many concepts from linear least squares.

Given , we call a non-linear least
squares solution of , if

We often write

It has to be noted that the factor is simply a convention.

8.7.1 (Damped) Newton Method

Jk Jk−1

J0 DF(x)(0)

Jk
−1

F : D ⊂ R ↦n R , n,m ∈m N, n < m x∗

F(x) = 0

x =∗ argmin ∣∣F(x)∣∣x∈D 2
2

2
1

Numerical Methods for CS 39

We assume that is twice continuously differentiable. Then the non-linear least squares solution has
to be a zero of the derivative of .

We use the Newton interation to solve the x sytem of equations . We get the following
iteration:

The compution of the gradiant and the Hessian matrix of the gradiant can be seen in the video or lecture
document.

8.7.2 Gauss-Newton Method
The Gauss-Newton method is an alternative, that is not dependent on the second derivative. It is based on
the idea of linearization.

We end up with the following iterative method:

This can be solved with the techniques for linear least squares problems from chapter 3.

10. Additional Content
Ending this summary with one of the greatest copy pastas.

The Hiptmair knows where he is at all times. He knows this, because he knows
where he isn't.
By iterating where he isn't from where he is, or where he is from where he isn't --
whichever is the supremum -- he obtains a difference or deviation. The guidence

F x∗

x↦ Φ(x)

n n grad Φ(x) = 0

Numerical Methods for CS 40

subsystem uses discrete deviations to generate Piecewise Polynomial corrective
commands to drive the Hiptmair from a node set where he is to a mesh interval
where he isn't and arriving at a position where he wasn't, currently he is.
Consequently, the Chebychev Nodes that he has are now the nodes that he hadn't
and it follows that the Cardinal Basis that he computed is now the basis that he
didn't. In the event that the Fixed-Point Approximation that he derived is not
consistent with the n-th root of unity, the system has acquired a variation. The
variation being the Least Squares between where the Hiptmair is and where his
Orthogonal Complement wasn't. If the Eigenvalue of the variation is considered to
be a significant roundoff error, it too may be corrected by the Basic Linear Algebra
Subprograms(BLAS); however, the Hiptmair must also know where he was.
The Hiptmair guidence computer scenario works as follows; because a periodic
quadrature formula has modified some of the information the Hiptmair has
obtained, he is not sure just where he is; however, he is sure where he isn't (within
reason) and he knows where he was, in case the QR-Decomposition of the Cosine
Transform is regular. He now subtracts where he should be from where he wasn't,
or vice versa, and by differentiating the inverse of the Newton Correction from the
algebraic sum of where he shouldn't be and where he was, he is able to obtain the
exponential convergence and it's hermetic variation, which is called Matrix
Multiplication.

