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Chapter 1

Analysing Response of Retinal Neurons in
Fish

1.1 Task

To understand the mechanism how retinal Neurons encode visual stimuli, researchers have
tried to record individual Neurons reacting to predefined visual information in controlled
experiments. In most experiments the visual stimuli were of synthetic data, mostly moving
bars or dots to make the data easier to interpret. In contrast, the data for this analysis stems
from real-world stimuli.

In an experiment researchers recorded the response of twenty retinal neurons to a movie
showing a natural environment fifty independent experiments. The movie consists of 2141
frames of 100 x 100 pixels each, where each pixel is binary either white or black. Figure
1.1 shows an example frame from the movie.

For each repetition of the experiment, the neural response data is a binary 2141 x 20
matrix where the columns correspond to neurons and the rows to time points. As an exam-
ple, the response pattern of Neuron 14 averaged over all 50 experiments is shown in Figure
1.2.

The task now is to learn the function of individual neurons by comparing the movie data
with the response patterns. In order to incorporate the detection of response to movement,
the actual comparison will not be performed between the expected spikes and single movie
frames, but rather the expected spike and the movie frames from the last, say, 40 frames, the
current frame and, for completeness, the 9 next frames. To make the data manageable by
standard machine learning algorithms the 50 frames of 100 x 100 pixel images are reshaped
in 50 - 100 - 100 = 500.000 dimensional vectors Zo, . . . 2091 (we forget about the first 40
and the last 9 frames since for those not sufficient past/future information is available). As
label data we used regression labels y1, . .., y2001 € [—1, 1] resulting from averaging the
binary response patterns (which were supplied in a form of £1).

1.2 Ridge Regression
Given the high dimensionality of the training data linear regression both has a large enough

parameter space and is, at the same time, computationally feasible. Linear regression means

that we are looking for weights w € R?°%%°? and an offset parameter b such that

(w, ;) + b=~ y;, 1€ [2091].
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F1GURE 1.1: Frame 100 from the shown video
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F1Gure 1.2: Neuron response probability for Neuron 14 as a function of the frame number
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"To make sure we are not over-fitting the data we introduce a penalty A > 0 for large weights.
Concretely the Ridge Regression algorithm returns

2001 2001
Wridge = AIg Min_ [Z (yi — (@i, w) —b)* + X Z w3:|
i=1 i=1
112 )
= arg min_ “y—Xw—bH +/\||w||2}
2

where X is the 2091 x 500.000 sample matrix and b = (b, ..., b). In general it is difficult
to determine a good value for A. An often used method is k-fold cross validation. This
means that the given data set is split in k parts, trained on any selection of k — 1 of those
parts and scored against the remaining part. The average of those k scores then is the cross-
validation-score for which we optimize. In the concrete case the cross-optimization was run



1.3. Lasso Regression

over a 5-fold split of the 50 experiment runs rather than splitting the 2091 time points
in 5 parts which would have the problem of insufficient independence between training
and testing data. After choosing the optimal penalty A we can then refit the whole data
set for this particular value of A and obtain a weight vector wrigee Which we reshape into a
50 x 100 x 100 array. High values in this weight matrix indicate a high correlation between
a stimulus at the given space-time-coordinate and a Neuron spike.

The optimization objective is convex and differentiable. Thus it admits a global mini-
mum if and only if

w=M\+X"X)""X(y - b).

1.3 Lasso Regression

An alternative to Ridge Regression is the so called Lasso Regression which is identical up to
the norm of the penalty term. Explicitly,

~112
Wiasso = arg minw |:Hy - Xw— b” +A ||’LUH1:| :
2

The practical difference is that Lasso favours sparse weights and therefore the results can be
quite different.

1.4 Canonical Correlation Analysis

A learning algorithm that allows to learn the response from all Neurons simultanuously is
the so called Canonical Correlation Analysis. The idea is that given, for simplicity centered
data, (z1,91), ..., (Zn,yn) € X X Y we want to find projections w, w, which maximize
the correlation between ((wz, k) ) ke[n] and ((Wy, Yx))ke[n)- Thatis, we want to maximize

E[(ws,z) (wy, )] w? EfzyT|w, wl Cuyw,

VElwe, )| Elw,,9)?)  \/wT EleeTw,w] ElyyTw, V@7 Cratzw] Crty

where E denotes the empirical expection over (z,y) € { (zx,yx) | kK € [n] } and

o (cm czy) _ (E@a"] Elxy”]

Cye Cyy Elyz"] Elyy"]
is the empirical covariance matrix of (x,y). It turns out that this optimization sometimes
yields maximal correlation, suggesting that the learning is trivial. To force nontrivial learn-

ing we may introduce penalties for large weight vectors, as in the regression case. Expicitly
we want to solve the optimization problem

wl Crywy
sup = =
W, Wy \/(wz [Cow + a}wx)(wy [Cyy + Blwy)

which turns out to being equivalent to the generalized eigenvalue problem

0 Czy Wy _ 2 sz +« 0
Cye 0 J\wy,) =P 0 Cyy + 8

where p is the vector of canonical correlations. As for the regression algorithm a k-fold
cross validation should be performed to optimze parameters ¢, 3 via a grid search.

Applied to the task, the = data again is the vectorized time windows of pixel data of
length 500.000 and the y data is the response data from all 20 neurons.
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F1Gure 1.3: Cross validation score as a function of X for ridge regression

1.5 Results

Restriction  The cross validation for ridge regression is shown in Figure 1.5. The optimal
A turns out to be around 0.03. The decline in score is rather flat in the direction of smaller
A but drops drastically for A > 0.1.

After performing this cross validation individually for all Neurons we learn optimal
weights w1, ..., w2 € ROOX100X100 ywith those parameters. For an overall activity plot we

now perform a £?-norm in time direction, i.e.,

50

2
Zwt,j,k

t=1

and plot the resulting matrices for all neurons, see Figure 1.5.

It turns out that the activity of Neuron 14 is espacially strong. Figure 1.5 shows a time
series plot of the weights of this Neuron. It can be seen that the strong spatial correlation
only shows up in the frames around the fitted frame and not, say, 15 frames in the past.

Canonical Correlation Analysis  The crossvalidation has to be performed also for the CCA
algorithm, but this time as a grid search since we have to optimize for two parameters.
Figure 1.5 shows the crossvalidation score as a function of @ and .

Figure 1.5 shows a plot of the projections in the space of neurons for the top five eigendi-
rections. Thatis, the front distribution displays the weights on the individual Neurons which
is most correlated with the space time weights as displayed in Figure 1.5.
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F1GurE 1.5: Spatial Neuron Activity of Neuron 14 for the last 20 and the next 10 Frames
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FiGure 1.6: Cross validation for CCA
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Chapter 2

Active Task Selection — Generalization

Bounds

For a probability measure P on X, denote the obvious product probability measure on '™
by P™. Let G be a class of functions mapping X — [0, M| (endowed with the obvious
metric). The goal is to get a probabilistic bound on the maximal difference between the

actual expectation Ep g = [ g dP and the empirical expectation evaluated on a tuple S =
(x1,...,2m) € X", Esg = ﬁ > .es9(z) = L3 g(2i), where in a slight abuse

of notation the tuple S was interpreted as a multiset. For any fixed g it should be clear that

Es g is very close to Ep g when S ~ P™ for large m. Formally, this follows, for example,
from the famous Hoeffding’s inequality:

Theorem 2.1 (Hoeftding’s Inequality). Lez X1, ..., Xon be independent random variables on
a probability space (U, P) such that a; < X; < b; almost surely for all i. Then

2¢?
2 2w (- )
i=1\Y% i

We can apply this to our case with P = P™, 0 < X;(S) == g(z;) < M (where z; is
the i-the component of S) and Ep X; = Ep g. Then we find

'Epg—ﬁsg‘ 26} < 2exp (—QmGQ)A

m

> (Xi—-EX))

1=1

P

P { Seaxm

M2

Through a trivial union bound over a finite collection G this can be made uniformin g € G,
ie.,

P*{scxm||Epg—Esg| > cforsomege G} <2(Glexp (—ﬂ”}i) W

or equivalently with a probability of at least 1 — 4 it holds that

log |G| 4 1og 2/

forallg € G.
2m

‘Ep g—Es g’ <M
In the following section two slightly different approaches for generalizing eq. (1) to cer-
tain infinite families G shall be reviewed and then applied to multi-task learning in the
subsequent sections.
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2.1 Generalization Bounds by Covering Numbers

This section on covering numbers follows [1] closely.

Covering Numbers  Given a set A, a metric d on A and € > 0, we say that B C A is an
e-cover for A with respect to d if for any a € A, there exists some b € B with d(a, b) < e.
The minimum of cardinality of such sets B we then call the d-covering number and denote
itby N(e, A, d).

We can then also define covering numbers for classes of functions. For the family of
functions G C V¥ (where (), dy) is a metric space) and a tuple S € X™, we denote
the range of G on S = (21,...,2m) by Glg = { (9(x1),...,9(xm)) | g€ G} C Y™
Now we define the metric dm, 1 Y™ X Y™ — Ry by

1 m
A (y,9') = — > dy (yi, 1)
i=1

and the covering number

Ni(e,G,m) = sup N (e, Glg,dm).

Sexm

For function collections G with finite covering number, we can generalize eq. (1) to
infinite classes:

Theorem 2.2. IfP is a probability measure on X, G is a set of functions mapping X — [0, M),
m € Nande > 0, then

2
—me

P'”{s cxm ] ‘Esg—EPg‘ > ¢ forsome g € G } <dexp (32M2

)Nl(e/s, G, 2m).

The proof is split into several Lemmata.

Lemma2.3. Foranye > 0andm > 2M? log 4/62, we have
Pm{SeXm ‘ )Epg—ﬁsg‘ zefor:omegeG}

§2P2m{(S,T)€Xm><Xm ‘ ’EsngTg‘ ZgﬁyrsomegGG}.
Proof. For any fixed g € G,e > 0andm > % Hoeflding’s inequality states that
= € em 1
m m - € - _ema s 2
P {SEX HEpg Esg’<2}>1 2exp( 2M2)*2

If some some (S, T) € X™ x X™ there exists g € G such that ’Epg —Er g‘ > eand

Epg—Es g‘ < €/2 then this (S,T) occurs on the rhs of the claimed inequality. By

Epg — Er g| > ¢, this event occurs with

independence, given the existence of g with

probability of at least % due to Hoeffding’s inequality from above. Thus the claim follows.
O

Next, we further bound the probability on the right hand side of the above Lemma
in terms of permutations of labels. For m € N, denote the set of those permutations
o of [2m] which satisfy that for all i € [m)] either 0(¢) = 4,0(m + i) = m + i or
o(t) =m+i,0(m + i) =14, by I'n. Denote the uniform probability distribution on I,
by Pr,,.
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Lemma 2.4. For any measurable subset R C X 2m it holds that

P*™"(R) = Eg_p2m Pr,, {0 |0S€R}< sup Pr,{oc|cSER}.
Sexzm

Proof. Since o is measure preserving with respect to P?™ we have

m 1
P2 (R) |F | Z ESNsz 1R(O'S) ES~P2m |:|F Z 1R(O'S):|

o€l oelm

:ESNP2nzPI‘m{O'|O'S€R}. O

Lemma2.5. Let (S,T) € X™ x X™, € > 0and F' C G. Suppose that F| g 1) isan €/8
cover afG|(S’T) with respect fo dy. Then, if
some € F with Esf—ETf‘ >e/4.

Esg—ETg‘ > €/2 for some g € G, there is

Proof Fix (S,T) € X™ x X™ and g € G with ‘Esg - ETg’ > €/2. We can then find
f € Fwithdi(f,9) = Es.ylg — f] < ¢/8. Then

Esf—Er /| ‘ESQ—ETQ-FES(f—g)—ET(f—g)‘>*—‘ESf g) Er(f—g)

5—E5|f g/ +Er|f —g) = *—ZE(ST)U gl > O

[ \/

Now we are ready to give the proof of the Theorem.
Proof of Theorem 2.2. For m < 2M?log4/€> the statement is trivial since probabilities are
at most 1. Else, using Lemmata 2.3 and 2.4 we find that the probability from the Theorem

is at most

2 sup FPr, { o ‘ ‘E(gs>l:m g— E(gs)mﬂﬂm gl > g for some g € G }

Sex2m
whereforT = (x1,...,T2m) € X*™ weuse the shorthand notations T ., = (21, . . ., Tm)
and Trmt1:2m = (Tmt1,.-.,T2m). Now fix some S = (21,...,Z2m) € X2 and let

F C G be minimal such that F|4 is an /8 cover of G/|g. Then, using Lemma 2.5 we can
further bound the above probability by

= = €
Fr,, {U ‘ ’E(Gs)lzm f- E(Us)m+1:2m f‘ 2 1 for some f € F}

= = €
< |F|%¥PFWL { o ‘ ‘E(Us)lzm f- E(Us)m+1:2m f‘ 2 Z }

1
= |F| max P, { o~ Z (o)) = f(@o(m+i))

= IFllfnnge{l,l}m{ ZA |f(@o) = f(@a(m+d)]

where in the last line A is drawn uniformly. Since the absolute value in the sum is at most
2M, we can apply Hoeflding’s inequality to bound the probability by 2 exp ( AT ) This

concludes the proof.
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2.2 Generalization Bounds by Rademacher Complexity and
VC-dimension

This section follows [2] closely. While in the preceding section importantly relied on Ho-

effding’s inequality, we now need a more general result called the bounded differences

inequality, or sometimes (mainly for the case of constant cj) the McDiarmid inequality.

Firstly, some notation. For a vector x € X™, an element Z € X and an index k € [m)]
define the shorthand notation xx,s to denote the vector obtained by replacing z in « by &

and 2(® to denote the vector of length m — 1 with dropped component x.

Theorem 2.6 (Bounded Differences Inequality). Suppose f: X™ — Randcy: X m-1_,
R for k € [m] are functions such that

sup [ f(@her) — flanen)| < cr(@®)

z/ z'eXx

SJorallz € X™ andk € [m]. Ifv = SUp,ym D peim (™) < oo it then holds for
€ > 0 and a random vector X = (X [ Xm) with independent entries that

Pelf(0) 2 Ex J00) +d o (<20

While the version with constant bounds ¢y, is usually proved with martingale techniques,
the general case can be proved using the following entropy method. Recall that the entropy
of a non-negative random variable is defined to be

Ent(Y) = E[®(Y)] — ®(EY)

where ®(z) = zlogx for z > 0 and ®(0) = 0. For a random vector X = (X1,...,Xm)
and a random variable Y introduce the shorthand notation

E® Yy = E[Y|x™)

to denote the conditional expectation of Y given the random vector X ®). Similarly we
denote the entropy of Y condition on X *) by

Ent™ () = EP[®(Y)] — ¢(E® V).

It is a standard fact about relative entropies that for Z = f(Xi,..., X,») we have the
following subadditivity of entropies
Ent(2) <E > Ent™(2). )
ke[m]

Proof of Theorem 2.6. Write Z = f(X) and let A > 0. Then by eq. (2) we find

Ent(e*) <E Z Ent™™ (%),

ke[m]
The key observation now is that Z given X *) is a random variable with a range of length
at most ¢, (X ¥)). At this point we need a Lemma

Lemma 2.7. IfY is a random variable taking values in [a,b] and X € R, then

b—a)’\?

Ent(e™) < ( 3 EetY
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Proof. First note that we can assume wlog. EY" = 0 since the general case then follows
from the statement for Y — EY. For ¢)(\) = log E e*¥ we find 9'()\) = EEiii,Y and

; EYZetY EYeM\? EYeM\? Y

W) = Ee Y _(Ee/\Y> =E (Y_ Ee)\Y> EerY
b+a\® Y

(Y_ 2 > EeMY

since ‘Y — ‘%’b} < “771’ almost surely. Now it follows that

=E

B EYeAY_a—i-b 2<(a—b)2
EeMY 2 - 4

Ent(e*) EverY AY , A A (b — a)?
= — = — = < - 7
Eo\v A Eov logEe AT (A) — (N /0 t” (1) dt < 3 ,
just as claimed. O

Using the Lemma we then find

2.2 x (k) ) 2
Ent(eAZ) < Ekg] % E® A2 < % Eer.

and consequently

oo ENZ-E2) _ \logEMPED AE(Z -EZ)e!?TED logEeMTEY)
g - A 7 tEct(Z-EZ) 2
A t(Z—E Z) A ‘1z N )
Ent(e ) Ent(e'?) v A
=X Epawrn $=2 ] Epaz 45 [ gd=" 0O

Now the claim follows from Markov’s inequality by noticing

. EMZ-E2)

. < 6A2U/87)\e
e €

Pr[Z—-EZ >¢ =Pr [eMZ*EZ) > eke]

and choosing the optimal A = de O

€
.

At the price of a worse constant in the bound we can relax the assumption of bounded
differences considerably:

Theorem 2.8. Suppose f: X™ — R is a function such that

2
vi= sup Z (f(x)f }Iéf:vf(xkz’)> < oo.
BEX™ pem] ’

Then for € > 0 and a random vector X = (X1, ..., Xm) with independent entries we have

Pr[f(X) > Ex f(X) +¢ < exp (—%) .

Proof: Write Z = f(X) and Zy = infyrcx f(Xk o) andlet A > 0. For any non-negative
random variable Y and any number u > 0 it follows from logz < x — 1 that

Ent(Y) = EY log % +E[Y(logY — logu)] < E[Y (log Y — logu) — (Y — u)],

11
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which in fact becomes an equality when taking the infimum over u. Then again by the sub-
additivity of the entropy and using this entropy inequality for the conditional expectations
we find

Ent(*”) <E 3 Ent®(*?) <E 3 EW [eAZ(/\Z CZ) — (M - e*Zk)]
ke[m] ke[m]

=E Y EW [ (e 1 x(Z - 20) - 1))
kelm]

2 2 2

) | 2z A (Z = Zy) Av \Z
< _ | < —
_EI;E[:]E {e : <% E[e ]

where it was used that A(Z — Z;) > 0. Now proceeding as in eq. (3) this implies
EeMZ7E2) < A™/2 p4 thereby by Markov’s inequality

PriZ—-EZ>¢ < /e
Minimizing this expression at A = = completes the proof. O

We now apply Theorem 2.6 to derive a generalization bound in the fashion of Theorem
2.2. Define ¢: X™ — Rby

7(5) = sup [Eg—Esg] = sup = 3 [Eg— gla)].

m
9€G 9€CG T kelm]

Then |f(Sk,2) — f(Sk,2)| = |g(@”) — g(z")| /m < M /m and thereby

2 2
R s e (‘W) = (-5 )
ke[m

To bound E f we firstly symmetrize the expression by noticing that

~ 1 _
Eg=E;E;9=E; > glEr)

for S = (#1,...,%m) being distributed according to P™. Therefore by convexity of the
supremum function and Jensen’s inequality we find

1 ~
Ef<Eggsup— > (g(Fx) — g(xr)).
9€G T kelm]

By exchanging ) with &5 we only change the order of summation and thereby not the
expectation. On the other hand this exchange switches the sign of the k-th summand and
therefore the result is invariant under sign flips of any summands. Independent random
variables 01, ..., 0m taking the values 1 independently with equal probabilities are of-
ten called Rademacher variables. By the above argument we can insert them into the sum
without changing the result and thereby

1 N 1 ~
Ef<EgsE,sup— > orl(g(@x) — g(zx)) <2EsEosup — > owg(ax) = 2Es Rs(G)
9€G ™ el 9€G ™\ i)

which is often called the Rademacher complexity. An important tool to bound Rademacher
complexities is the following well known Lemma

12
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Lemma 2.9 (Massart’s Lemma). Foranyset A C R™ the empirical Rademacher complexity
can be bounded by

J/2log[4
E, Lup 3 opay < V28I
m

sup |lal, -
m aeA aeljl 2

ke€[m]

For any fixed S applying this Lemma to the above complexity term gives

Rs(G) = Ey sup 1 Z org(zk) < M M

m m
9€E T kelm)

where G|g = { (9(21),...,9(xm)) | g € G }. When we define the growzh function of G
evaluated in m to be the number of distinct ways G can map any m points from X, i.e.

Ig(m) = Sstg) ’G\S},
cam

this yields
E/<2M 2log Il (m) .
m
'The above argument proves the following Theorem:

Theorem 2.10. IfP is a probability measure on X, G is a set of functions mapping X — [0, M),
m € Nande > 0, then

Pm{SeXm’EpgZﬁngr?Esﬁs(G)JreformmegEG}

ng{SeXm

~ 2logIT 2me>
Epg > Esg+2M 0g1nc(m)—|—efarsomeg€G}§eXp(— EZ)

VCdimension The growth function is rather difficult to handle in general but for concrete
classes of functions it can be simplified considerably. From now on we shall assume that G
maps X into {—1,1}. We say that a S = {z1,..., 2z} is shattered by G if G is of full
range on S, i.e., if | G|S‘ = 2™. The VC-dimension (Vapnik-Chervonenkis dimension) d
of G is defined to be the size of the largest tuple shattered by G, i.e.,

d:=max{m € N|IL,(G) =2"}.
The following well known Lemma relates the growth function for all m to the VC-dimension:

Lemma 2.11 (Sauver’s Lemma). If G maps X — {—1,1} and is of VC-dimension d, then

(@)<Y <T> < ()"

=0

2.3 Active Task Selection

Let X be an input space and (Y, dy) a corresponding (metric) label space. We shall assume
that we want to learn a set of T tasks, where each task is formally represented by a distribu-
tion D1, ..., Dt over X and a deterministic labelling function f1,..., fr: X — ). We

13
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further assume a bounded loss function : ) x J — [0, M] satisfying the triangle inequal-
ity l(yo, y2) < U(yo,y1) + U(y1,y2) forall yo,y1, y2 € V. We define the expected risk of
some hypothesis h: X — Y for task (D, fi) as

erg(h) = Eznp, [(R(2), fi(x))

and the empirical risk evaluated on some sample St = (21,...,%m) € X" independently
drawn according to Dy as

s, (h) = g D Uh(a). fi(@))

rESy

(where in a slight abuse of notation the tuple S; was identified as a multiset). The goal is to
find predictors A1, ..., hr from a given hypothesis set H C Y™ minimizing the averaged
expected risk

T
1
ex(h,....hr) = > erp, (he).
t=1

In the specific setting we shall assume that labelling information can only be requested
for a subset of the tasks and will only be provided for a random subset of the samples
representing the task. Formally, the learner is given independently drawn samples S1 ~
DY, ..., St ~ D7 of size n for all tasks, may then ask for labels for tasks {é1,...,4} C
[T] and will be provided with labels f;, (x) for 2 € S;; and j € [k] for randomly drawn

sub-samples S;; C S;; of sizes ’Sij ’ =m.

2.4 Single Task Transfer

The most straight forward learning strategy would be assigning some labelled task to each of
the unlabelled tasks. Such an assignment shall be encoded by a vector ¢ = (cy,...,cr) €
[T]" having at most k different values. The unlabelled tasks are then solved by using the
hypothesis trained on the corresponding labelled task, i.e., hy = hc,. We shall now derive
a bound on the averaged expected risk of this strategy in terms of individual risks and the
similarity of the assigned tasks.

Definition 2.12 (Discrepancy). 7Zhe discrepancy between two distributions D1, Dy over X
with respect to some hypothesis set H is defined as

disc(D1, D) :== sup ’erD1 (h,h") —erp, (h, h/)’ .

h,h'€H
Lemma 2.13. For two tasks (D1, f1), (D2, f2) and any hypothesis h € H it holds that

era(h) < eri(h) 4 disc(D1, D2) + hian(erl (h") + era(h™)).
Y€

Proof. For any h, h* € H it holds by the triangle inequality that

era(h) = era(h, f2) < era(h™, fo) +era(h*, h)

=era(h*) +eri(h", h) + (er2(h*,h) —er1 (A", h))
h*) +eri(h”, f1) + eri(h, f1) + disc(D1, D2)

h) + disc(D1, D2) + (er1(h™) + era(h™))

A

€ro

< e
(

erp

from which the claim follows after taking the infimum over all A* € H. O



2.4. Single Task Transfer

Using the shorthand notation
Moo= inf (en(h”) + eny (1))

we can use the above Lemma to bound the average expected risk by

T
1
er(hi,..., T Z erp,, (he,) + = Z disc(D¢, De,) + = Z Ate,- ()
t=1

The next step is bounding these expectation expression by their empirical counterparts,
and thereby making the bound independent of the (in general unknown) distributions D;.
Now we want to apply our general Theorems 2.2 and 2.10 to the empirical error estimate.

Given H, H' € Y%, define
Ly = {zl(h(z),h ()| he H W € H' } C [0, M]*
Firstly, a Lemma for estimating covering numbers of Lipschitz-loss functions:

Lemma 2.14. Assume that the bounded loss function 1 V: - [0, M] is L-Lipschitz, i.e.,
[(yo,y1) — U(yo, y2)| < Ld(y1,yz2). Then for any €1 + €2 = € > 0 and'm € N it holds that

Nl(e,LHﬂHr,m) §N1(61/L,H7m)-N1(€2/L,H,,m).
In particular, if |H'| = 1, then N1(€, Lgr, 7, m) < N1(e/L, H,m).

Proof Fix S € X™ andlet F C H, F' C H' generate ¢1/L and 62/L coverings of H\S
and H'| 5> respectively. Then, for any h € H,h' € H we find f, f’ from the coverings

suchthatEs|h f|<61/LandEs|h' f| < €2/L. Then
di(1(h(-), 1 ()), 1(f (), £(-)) = Es |I(h(: /(')) =10, f'('))|
< Es [1(h(), h())—l(h( N|+Es [1RC), f/()) = UFC), )]
<EsLd(W (), 1'()) + Es Ld<h<~>, () <e

This shows that L g+ is a e-covering of Ly g+. The second claim follows since a family
consisting of one element has covering number 1 for all e. O

Secondly, a Lemma for Rademacher complexities in the case of binary classification
Y ={-1,1}:
Lemma 2.15. Assume H C {—1,1}*, a binary loss function | given by l(y,y') = 1,z =
(1 —y-y')/2 and a given target function f: X — {—1,1}. Then
~ 1~ .
'Rs(LH’{f}) = §R5(H) and 'Rs(LH,H) < 'Rs(H)

Proof. Since the o}, have zero mean we find

~ 1-— h( )
Rs(Lu,sy) =Eo sup — E o ———L 7 = Ea sup — E orh(zr) = = Rs(H)
ry hEII?I m] heI;I m ke[m] 2

and therefore also

Rs(Lum) =Fo sip — 57 oul(hlen), b (20)) < 2Es sup — S onl(h(en), F(zx)) = R (H).

m
h,h'€H ke€[m] her M ke[m]
O

15
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This enables us to prove the following Theorem

Theorem2.16. LetPy, . .., Py, be measures implementing the distributions D1, . . ., Dy, With
the definitions from the beginning of the chapter the following assertions bolds true.

(a) If H is finite, then

P{”{Sex”

2
sup fers(h) — érs(h)] < e } >1—|H|exp (—2;’;2 )
heH

and

Yo n H _2 ’
P {S, X |dlsc(Dt,St)<e}>1—2\H|26xp( Mn; )

(b) If the loss function | is L-Lipschitz, then

2

m m ~ —me €
P; { Sex sgg[ert(h) ers(h)] < e } > 1—2exp (W) M (8—L7H, Qm)

and
2

T n . —ne € 2
Py {S: € X" | disc(Dy, St) < e} >1—4exp 907 M (g,H,2n)

(c) In the case of binary classification, 0-1-loss and H of VC-dimension d we have

[2dlog <
P < S e X™| suplers(h) — ers(h)] < - 2 +ep>1—exp (—2m62)
heH m
and
[2dlog <
Py { Sy € X™ | disc(Dy, St) < 2 % +e } >1—2exp (—2ne2) .

Moreover, the deviation bounds in the first claim of each statement can be made two-sided at the

expense of doubling the error probability.

Proof: 'The first claims of all three cases follow directly from Theorems 2.1, 2.2 and 2.10
and the Lemmata relating the covering numbers and complexities of Ly, g to those of H.
For the second claim note that if

Pr|: sup [EPtgfﬁstg]>E

<¢ and Pr|: sup [Estngptg]>e <

9€ELy H 9€ELy H
then also
Pr| sup ‘Ept g— Est g‘ > ¢| = Pr[disc(Dx, St) > €] < 20.
9€ELHy H
The second claims then follow just as the first ones. O



2.5. Multi-task Learning

The bound in terms of covering numbers is difficult to handle in general. For the other
situation we can, given some d > 0 solve the bounds for € so that every single bound from
the Theorem holds with a probability of at least 1 — §/2T". By the triangle inequality for
discrepancies

disc(Dy, Ds) — disc(St, Ss) < disc(Dy, St) + disc(Ds, Ss)

the bounds on distribution-sample-discrepancies disc( Dy, St ) suffice to bound the expected
discrepancies by their empirical counterparts. According to this, we find that with a prob-

ability of at least 1 — ¢ over S1 ~ DT,..., St ~ D7 and random m-subsets of those it
holds that
T 1 T | I
er(hi,...,h Z er Srt hey) T ;disc(st, Se,) + T ;)\tct
+M\/log\H| +Ic;zg;nT+log2/5 +M\/4log|H| +21c;LgT+210g4/(5_

Similarly from the result for binary classification we find

T
€ Z disc(St, Se,) % tzzl Atey

1

er(hy,...,hr) < T

IIM%

+\/logT+log2/5+\/2dlog%+2\/10gT+10g4/5+4\/2d10g%'

2m m 2n n

'This bound is not optimal and we shall see in the subsequent section that a joint bound on
the mean error by using Theorem 2.8 instead of 2.6 gets rid of the log T in the first part of
the bound.

2.5 Multi-task Learning

We now turn to a more general learning strategy. Denote the weight simplex by

A:—{OzERi Zai—l}

ie[T)

and for a set of selected tasks I C [T'] the weight simplex with sparsity pattern I by A’ ==
{a € A|suppa C I}. Then we can define the a-weighted (empirical error) by

ero(h) =Y aieri(h),  &a(h)= aiérg(h)
iel i€l
Through Lemma 2.13 we can relate a single task error in terms of the weighted error. Ex-
plicitly,
ers(h) — era( Z a;i(ers(h) —eri(a)) < Z a; (disc(D;, D) + Ait) -
iel iel

If now every task (Dy, fi) has its own weight vector a’ € A’ we can apply this to the

averaged error to find for any selected hypotheses h1, ..., hr
1
er(hi,...,hr) < T Z ergt (he) Jr— Z Za disc(D;, Dy) +— Z Za it
te[T) te (1] il te[T] iel

)

17



2. Active Task SELECTION — GENERALIZATION BoUNDSs

Our goal is the find a bound on the probability

Pr

te[T] i€l

% Z Zaﬁ (eri(hi) —érg; (he)) < e foralll € <[£]>,a e AHT he HT]

=Pr [ sup  sup  sup — Z Z Z o [61% (he) = U(he(x}), ft(xk))} < 6]

re(Ty ac(anT henT M te[T] i€l ke[m

IG([T]) heHT icIT mT T) ke[m]

=Pr [ sup sup sup — Z Z [erh ht) — ht(x;:%ft(m?))} < 5]

where the probability is taken over

S=(S,...,5r) =

1 T

with 2t ~ D™ independent from each other. Define

90,5, 8) = 3737 [er (he) = (i), £

tE [T] ke[m]
f(S)= sup sup sup g(h,i,S)= sup g(h,i"(S),5)

Ie([};]) i€eIT heHT heHT

where i*(S) € (I")F,1(S) € ([IT<]) is the location of the maximum of i — sup, g(h, i, S)
and fix s € [T],j € [m]. Then
<

sup [f(S) - f(S(j,s),z)] sup [g(h7 ia S) - g(h7 i7 S(j,s),z)]

TEX x,I,i,h
S Sug [g(h,z*(S),S) - g(hﬂi*(s):S(j,s),z)}

M|{te[T]]i"(S): =5}
mT

—sp o S [hele), ) 1), fi@)] <

m
@h te[T],i* ()¢ =s

for all S and consequently we can apply Theorem 2.8 with v = %2 and find that with a
probability of at least 1 — §/2 over S,

£(8) <Ef+ 0y 21820

Next, we consider how to get a bound on E f. For the case of binary classification following
the standard Rademacher technique we find

Ef <Eso, sup sup o, he( a:k
heHT ic[T]T mT Z

on which we apply Massart’s Lemma on

Al = { (@i errnem [ hE BT i€ (117}

18
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Using Sauer’s Lemma

Alg] < (e < (<)

d
we find that with a probability of at least 1 — §/2

2dlog £ 210g2
il < - d S5
§ erfht E ety (he) + 4/ - +1/ -

te[T

simultaneously for all A and c. Similarly, in the case of an arbitrary but finite hypotheses
set we find

/ 2log 2
— E er, t ht <7 E CI‘ t ht +2M 210g‘H \/Tgé’
m

tE[T]

again simultaneously with a probability of at least 1—0 /2. The discrepancies can be bounded
as is in single-task learning case and we have completed the proof of the following Theorem:

Theorem 2.17. Let§ > 0 be given. Then with a probability of at least 1 — 6 over samples S1 ~
Ty, St ~ D7 and random sub-samples S1,...,87 of size m the following assertions
hold true uniformly in hy, ... hr € H, I € ([i]) andot,. .., aT € AL

(a) If H is finite, then

er(hi,...,hr <—Zerfht ZZaldlscSl,St —&——ZZ&)\”

te[T) 1 i€l te[T] i€l

|2log 2 / /
oM 210g|H\+M og 5 L AM 210g|H|+2M logT+log4/5.
m m n 2n

(6) If H is a binary classifier of VC-dimension d, then

er(hi,..., hr <—Zerfht)+—zz:aldlsc5“5t —&——ZZ&)W

te[T) 1 i€l te[T] i€l

/2dlog em /210g6 \/leog 2 \/10gT+10g4/5
2n '

2.6 Weight dependent convergence rate

If one fixes some weight a € R% such that 2icy @ = land h € H Hoeftding’s
inequality gives the bound

Pr [lera (h) — &a (h)] > d < 2exp (%) , (©)
i€ 7

or equivalently that with a probability of at least 1 — 4,

log 2
2m

lera(h) — eta(h)] < [lall, @)

19
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Indeed,

fera () = &a(m)] = | D 37 2 [en(h) - l(h(wﬁ-),fi(x?))]‘

i€[k] j€[m]

where the (4, j)-th term in the sum has zero mean and lies in a range of at most %£. Thus
it follows from Hoeftding’s inequality that the claimed probability is bounded by

—9¢2
2exp (eﬁ) ,
Dielk) 2jelm) m2
just as claimed. This bound is intuitively pleasing in the sense that it gets better as & becomes
more uniform. For example, for a uniform « the bound becomes 2 exp(2kme?) which
would be the same as in the unweighted case with km samples.

We now want to investigate whether a bound as in eq. (7) can be achieved uniformly in

a and h. To that end define

f(S) == sup sup —— [era(h) — €ta(h)] = sup sup Z Qi ler;(h) — érgs, (h)]
aeanen ol a€AREH [ llall,
(a7} i 7
=sup sup Y > —— |eri(h) — I(h(x}), fi(x}))
EAREH [ i m] m|all, [ ]

—oup 303 OB e )~ 1(h(e)), i)

m ||a*(S
b 2 2 (ST,
where " (S) is a maximizer, the existence of which is guaranteed by compactness. Now,

a*(9):
= o (9]

5) = i, 150500

and thereby

3

. ? o* (S)? 1
S)— inf f(Sgae)) <5 2L L
> (9= o) < T S

(4,5)€[k] % [m] i€[k]

It now follows from Theorem 2.8 that with a probability of at least 1 — /2

era(h) = &a(h) < Jlall; (Ef+ W) |

uniformly for all a, h. It remains to bound E f. Firstly since ||a|, > %,

Es f(S) < VEEs sup max (er;(h) — és, (h))

heH tE€[k]
and in terms of Rademacher variables o this can be symmetrically bounded by

1 ; 2kdlog <
- SUp — Tty < 42228 d
VkEsE, sup — E oih(z;) < -

hot T jeim)



2.6. Weight dependent convergence rate

where Massart’s and Sauer’s Lemmata were used. The exact same analysis can be applied to
achieve the identical uniform bound on €t (h) — erq (h) and therefore after a union bound
we find that with a probability of at least 1 — §

log &2 5
lera () — &a(R)] < [lal, <\/2kd;g : +\/21 gg/a) o

m

uniformly for all &, k. This bound is unsatisfactory since the v/k factor just about cancels
the rate improving weight factor, even in the optimal case of uniform weights.

So can we improve on that v/k factor? To make things simpler, we consider the case
of a single hypothesis k. After defining the vector er = (|er; (h) — éts, (h)|)%_; the target
probability simplifies to

1

T W|era(h)—<§}a(h)| >e€ forsomeaeA] :Pr{sup
2

acA

2

On the one hand side by Cauchy—Schwarz

(ﬁ, er)’ < ||er||, this probability is at most
Pr{||er||, > €]. In fact, this would be an equality if we didn’t have the constraint of a; >
0 for all ¢ € [k]. But it turns out that this constraint only changes the supremum by a
constant factor. Explicitly, if [|er]|, > 1/2¢, then either either 3 ie k] eri > 2

2
o€ = € or
2 2
> ie[K]er; <0 €Ti = € In, say, the former case we could then define

o =

- {eri/zje[k]yerj>0 er; if er; > 0,
0

else
satisfying ov € A. But then

(%

oy

= Z erf/ Z er? > ¢

i€[k],er; >0 i€ [k],er; >0

and thus

<7

Tl

Pr [|ler||, > €] > Pr [sup
acA

> e:| > Pr [Her“2 > \/ie] .
'This can be written out as

P lero (h) — €to(h)| > € forsome a € A] > Pr Z (eri(h) — &, (h))* > 2¢°

1
\a||2 iclk]

which means that by independence of the terms in the sum, any successful generalization
bound € has to grow with k as k. Therefore the vk factor from eq. (8) can’t be improved

on, in general.
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