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Chapter 1

Analysing Response of Retinal Neurons in
Fish

1.1 Task

To understand the mechanism how retinal Neurons encode visual stimuli, researchers have
tried to record individual Neurons reacting to predefined visual information in controlled
experiments. In most experiments the visual stimuli were of synthetic data, mostly moving
bars or dots to make the data easier to interpret. In contrast, the data for this analysis stems
from real-world stimuli.

In an experiment researchers recorded the response of twenty retinal neurons to a movie
showing a natural environment fifty independent experiments. The movie consists of 2141
frames of 100 × 100 pixels each, where each pixel is binary either white or black. Figure
1.1 shows an example frame from the movie.

For each repetition of the experiment, the neural response data is a binary 2141 × 20
matrix where the columns correspond to neurons and the rows to time points. As an exam-
ple, the response pattern of Neuron 14 averaged over all 50 experiments is shown in Figure
1.2.

The task now is to learn the function of individual neurons by comparing the movie data
with the response patterns. In order to incorporate the detection of response to movement,
the actual comparison will not be performed between the expected spikes and single movie
frames, but rather the expected spike and the movie frames from the last, say, 40 frames, the
current frame and, for completeness, the 9 next frames. To make the data manageable by
standard machine learning algorithms the 50 frames of 100×100 pixel images are reshaped
in 50 · 100 · 100 = 500.000 dimensional vectors x0, . . . x2091 (we forget about the first 40
and the last 9 frames since for those not sufficient past/future information is available). As
label data we used regression labels y1, . . . , y2091 ∈ [−1, 1] resulting from averaging the
binary response patterns (which were supplied in a form of ±1).

1.2 Ridge Regression

Given the high dimensionality of the training data linear regression both has a large enough
parameter space and is, at the same time, computationally feasible. Linear regression means
that we are looking for weights w ∈ R500.000 and an offset parameter b such that

⟨w, xi⟩+ b ≈ yi, i ∈ [2091].
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1. Analysing Response of Retinal Neurons in Fish

Figure 1.1: Frame 100 from the shown video

Figure 1.2: Neuron response probability for Neuron 14 as a function of the frame number

To make sure we are not over-fitting the data we introduce a penalty λ > 0 for large weights.
Concretely the Ridge Regression algorithm returns

wridge = arg minw

[
2091∑
i=1

(yi − ⟨xi, w⟩ − b)2 + λ

2091∑
i=1

w2
i

]

= arg minw

[∥∥∥y −Xw − b̃
∥∥∥2
2
+ λ ∥w∥22

]
whereX is the 2091× 500.000 sample matrix and b̃ = (b, . . . , b). In general it is difficult
to determine a good value for λ. An often used method is k-fold cross validation. This
means that the given data set is split in k parts, trained on any selection of k − 1 of those
parts and scored against the remaining part. The average of those k scores then is the cross-
validation-score for which we optimize. In the concrete case the cross-optimization was run
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1.3. Lasso Regression

over a 5-fold split of the 50 experiment runs rather than splitting the 2091 time points
in 5 parts which would have the problem of insufficient independence between training
and testing data. After choosing the optimal penalty λ we can then refit the whole data
set for this particular value of λ and obtain a weight vector wridge which we reshape into a
50×100×100 array. High values in this weight matrix indicate a high correlation between
a stimulus at the given space-time-coordinate and a Neuron spike.

The optimization objective is convex and differentiable. Thus it admits a global mini-
mum if and only if

w = (λ+XTX)−1X(y − b̃).

1.3 Lasso Regression
An alternative to Ridge Regression is the so called Lasso Regression which is identical up to
the norm of the penalty term. Explicitly,

wlasso = arg minw

[∥∥∥y −Xw − b̃
∥∥∥2
2
+ λ ∥w∥1

]
.

The practical difference is that Lasso favours sparse weights and therefore the results can be
quite different.

1.4 Canonical Correlation Analysis
A learning algorithm that allows to learn the response from all Neurons simultanuously is
the so called Canonical Correlation Analysis. The idea is that given, for simplicity centered
data, (x1, y1), . . . , (xn, yn) ∈ X ×Y we want to find projectionswx, wy which maximize
the correlation between (⟨wx, xk⟩)k∈[n] and (⟨wy, yk⟩)k∈[n]. That is, we want to maximize

Ê[⟨wx, x⟩ ⟨wy, y⟩]√
Ê[⟨wx, x⟩2] Ê[⟨wy, y⟩2]

=
wT

x Ê[xyT ]wy√
wT

x Ê[xxT ]wxwT
y Ê[yyT ]wy

=
wT

xCxywy√
wT

xCxxwxwT
y Cyywy

where Ê denotes the empirical expection over (x, y) ∈ { (xk, yk) | k ∈ [n] } and

C =

(
Cxx Cxy

Cyx Cyy

)
=

(
Ê[xxT ] Ê[xyT ]
Ê[yxT ] Ê[yyT ]

)
is the empirical covariance matrix of (x, y). It turns out that this optimization sometimes
yields maximal correlation, suggesting that the learning is trivial. To force nontrivial learn-
ing we may introduce penalties for large weight vectors, as in the regression case. Expicitly
we want to solve the optimization problem

sup
wx,wy

wT
xCxywy√

(wT
x [Cxx + α]wx)(wT

y [Cyy + β]wy)

which turns out to being equivalent to the generalized eigenvalue problem(
0 Cxy

Cyx 0

)(
wx

wy

)
= ρ2

(
Cxx + α 0

0 Cyy + β

)
where ρ is the vector of canonical correlations. As for the regression algorithm a k-fold
cross validation should be performed to optimze parameters α, β via a grid search.

Applied to the task, the x data again is the vectorized time windows of pixel data of
length 500.000 and the y data is the response data from all 20 neurons.
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1. Analysing Response of Retinal Neurons in Fish

Figure 1.3: Cross validation score as a function of λ for ridge regression

1.5 Results
Restriction The cross validation for ridge regression is shown in Figure 1.5. The optimal
λ turns out to be around 0.03. The decline in score is rather flat in the direction of smaller
λ but drops drastically for λ > 0.1.

After performing this cross validation individually for all Neurons we learn optimal
weightsw1, . . . , w20 ∈ R50×100×100 with those parameters. For an overall activity plot we
now perform a ℓ2-norm in time direction, i.e.,

w̃j,k =

√√√√ 50∑
t=1

w2
t,j,k

and plot the resulting matrices for all neurons, see Figure 1.5.
It turns out that the activity of Neuron 14 is espacially strong. Figure 1.5 shows a time

series plot of the weights of this Neuron. It can be seen that the strong spatial correlation
only shows up in the frames around the fitted frame and not, say, 15 frames in the past.

CanonicalCorrelationAnalysis The crossvalidation has to be performed also for the CCA
algorithm, but this time as a grid search since we have to optimize for two parameters.
Figure 1.5 shows the crossvalidation score as a function of α and β.

Figure 1.5 shows a plot of the projections in the space of neurons for the top five eigendi-
rections. That is, the front distribution displays the weights on the individual Neurons which
is most correlated with the space time weights as displayed in Figure 1.5.
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1.5. Results

Figure 1.4: Spatial Neuron Activity Averaged over Time

Figure 1.5: Spatial Neuron Activity of Neuron 14 for the last 20 and the next 10 Frames
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1. Analysing Response of Retinal Neurons in Fish

Figure 1.6: Cross validation for CCA

Figure 1.7: Top five neuron weights

Figure 1.8: Most correlated space-time image weight
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Chapter 2

Active Task Selection – Generalization
Bounds

For a probability measure P on X , denote the obvious product probability measure on Xm

by Pm. Let G be a class of functions mapping X → [0,M ] (endowed with the obvious
metric). The goal is to get a probabilistic bound on the maximal difference between the
actual expectation EP g =

∫
g dP and the empirical expectation evaluated on a tuple S =

(x1, . . . , xm) ∈ Xm, ÊS g ..= 1
|S|
∑

z∈S g(z)
..= 1

m

∑m
i=1 g(zi), where in a slight abuse

of notation the tuple S was interpreted as a multiset. For any fixed g it should be clear that
ÊS g is very close to EP g when S ∼ Pm for large m. Formally, this follows, for example,
from the famous Hoeffding’s inequality:

Theorem 2.1 (Hoeffding’s Inequality). LetX1, . . . , Xm be independent random variables on
a probability space (Ω, P ) such that ai ≤ Xi ≤ bi almost surely for all i. Then

P

[∣∣∣∣∣
m∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ϵ

]
≤ 2 exp

(
− 2ϵ2∑m

i=1(bi − ai)2

)
.

We can apply this to our case with P = Pm, 0 ≤ Xi(S) ..= g(xi) ≤ M (where xi is
the i-the component of S) and EP Xi = EP g. Then we find

Pm
{
S ∈ Xm

∣∣∣ ∣∣∣EP g − ÊS g
∣∣∣ ≥ ϵ

}
≤ 2 exp

(
−2mϵ2

M2

)
.

Through a trivial union bound over a finite collectionG this can be made uniform in g ∈ G,
i.e.,

Pm
{
S ∈ Xm

∣∣∣ ∣∣∣EP g − ÊS g
∣∣∣ ≥ ϵ for some g ∈ G

}
≤ 2 |G| exp

(
−2mϵ2

M2

)
(1)

or equivalently with a probability of at least 1− δ it holds that

∣∣∣EP g − ÊS g
∣∣∣ ≤M

√
log |G|+ log 2/δ

2m
for all g ∈ G.

In the following section two slightly different approaches for generalizing eq. (1) to cer-
tain infinite families G shall be reviewed and then applied to multi-task learning in the
subsequent sections.
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2. Active Task Selection – Generalization Bounds

2.1 Generalization Bounds by Covering Numbers
This section on covering numbers follows [1] closely.

Covering Numbers Given a set A, a metric d on A and ϵ > 0, we say that B ⊂ A is an
ϵ-cover for A with respect to d if for any a ∈ A, there exists some b ∈ B with d(a, b) < ϵ.
The minimum of cardinality of such setsB we then call the d-covering number and denote
it by N (ϵ, A, d).

We can then also define covering numbers for classes of functions. For the family of
functions G ⊂ YX (where (Y, dY) is a metric space) and a tuple S ∈ Xm, we denote
the range of G on S = (x1, . . . , xm) by G|S ..= { (g(x1), . . . , g(xm)) | g ∈ G } ⊂ Ym.
Now we define the metric dm : Ym × Ym → R+ by

dm(y, y′) ..=
1

m

m∑
i=1

dY(yi, y
′
i)

and the covering number

N1(ϵ,G,m) ..= sup
S∈Xm

N (ϵ, G|S , dm).

For function collections G with finite covering number, we can generalize eq. (1) to
infinite classes:
Theorem 2.2. If P is a probability measure on X ,G is a set of functions mapping X → [0,M ],
m ∈ N and ϵ > 0, then

Pm
{
S ∈ Xm

∣∣∣ ∣∣∣ÊS g − EP g
∣∣∣ ≥ ϵ for some g ∈ G

}
≤ 4 exp

(
−mϵ2

32M2

)
N1(ϵ/8, G, 2m).

The proof is split into several Lemmata.

Lemma 2.3. For any ϵ > 0 andm ≥ 2M2 log 4/ϵ2, we have

Pm
{
S ∈ Xm

∣∣∣ ∣∣∣EP g − ÊS g
∣∣∣ ≥ ϵ for some g ∈ G

}
≤ 2P2m

{
(S, T ) ∈ Xm ×Xm

∣∣∣ ∣∣∣ÊS g − ÊT g
∣∣∣ ≥ ϵ

2
for some g ∈ G

}
.

Proof. For any fixed g ∈ G, ϵ > 0 and m ≥ 2M2 log 4
ϵ2

Hoeffding’s inequality states that

Pm
{
S ∈ Xm

∣∣∣ ∣∣∣EP g − ÊS g
∣∣∣ < ϵ

2

}
> 1− 2 exp

(
− ϵ2m

2M2

)
≥ 1

2
.

If some some (S, T ) ∈ Xm × Xm there exists g ∈ G such that
∣∣∣EP g − ÊT g

∣∣∣ ≥ ϵ and∣∣∣EP g − ÊS g
∣∣∣ < ϵ/2 then this (S, T ) occurs on the rhs of the claimed inequality. By

independence, given the existence of g with
∣∣∣EP g − ÊT g

∣∣∣ ≥ ϵ, this event occurs with
probability of at least 1

2
due to Hoeffding’s inequality from above. Thus the claim follows.

Next, we further bound the probability on the right hand side of the above Lemma
in terms of permutations of labels. For m ∈ N, denote the set of those permutations
σ of [2m] which satisfy that for all i ∈ [m] either σ(i) = i, σ(m + i) = m + i or
σ(i) = m+ i, σ(m+ i) = i, by Γm. Denote the uniform probability distribution on Γm

by PΓm .
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2.1. Generalization Bounds by Covering Numbers

Lemma 2.4. For any measurable subsetR ⊂ X 2m, it holds that

P2m(R) = ES∼P2m PΓm { σ | σS ∈ R } ≤ sup
S∈X2m

PΓm { σ | σS ∈ R } .

Proof. Since σ is measure preserving with respect to P2m, we have

P2m(R) =
1

|Γm|
∑

σ∈Γm

ES∼P2m 1R(σS) = ES∼P2m

[
1

|Γm|
∑

σ∈Γm

1R(σS)

]
= ES∼P2m PΓm { σ | σS ∈ R } .

Lemma 2.5. Let (S, T ) ∈ Xm × Xm, ϵ > 0 and F ⊂ G. Suppose that F |(S,T ) is an ϵ/8
cover of G|(S,T ) with respect to d1. Then, if

∣∣∣ÊS g − ÊT g
∣∣∣ ≥ ϵ/2 for some g ∈ G, there is

some f ∈ F with
∣∣∣ÊS f − ÊT f

∣∣∣ ≥ ϵ/4.

Proof. Fix (S, T ) ∈ Xm × Xm and g ∈ G with
∣∣∣ÊS g − ÊT g

∣∣∣ ≥ ϵ/2. We can then find
f ∈ F with d1(f, g) = Ê(S,T ) |g − f | < ϵ/8. Then∣∣∣ÊS f − ÊT f

∣∣∣ = ∣∣∣ÊS g − ÊT g + ÊS(f − g)− ÊT (f − g)
∣∣∣ ≥ ϵ

2
−
∣∣∣ÊS(f − g)− ÊT (f − g)

∣∣∣
≥ ϵ

2
− (ÊS |f − g|+ ÊT |f − g|) = ϵ

2
− 2 Ê(S,T ) |f − g| ≥ ϵ

4
.

Now we are ready to give the proof of the Theorem.

Proof of Theorem 2.2. For m ≤ 2M2 log 4/ϵ2 the statement is trivial since probabilities are
at most 1. Else, using Lemmata 2.3 and 2.4 we find that the probability from the Theorem
is at most

2 sup
S∈X2m

PΓm

{
σ
∣∣∣ ∣∣∣Ê(σS)1:m g − Ê(σS)m+1:2m

g
∣∣∣ ≥ ϵ

2
for some g ∈ G

}
where forT = (x1, . . . , x2m) ∈ X 2m we use the shorthand notationsT1:m = (x1, . . . , xm)
and Tm+1:2m = (xm+1, . . . , x2m). Now fix some S = (x1, . . . , x2m) ∈ X 2m and let
F ⊂ G be minimal such that F |S is an ϵ/8 cover of G|S . Then, using Lemma 2.5 we can
further bound the above probability by

PΓm

{
σ
∣∣∣ ∣∣∣Ê(σS)1:m f − Ê(σS)m+1:2m

f
∣∣∣ ≥ ϵ

4
for some f ∈ F

}
≤ |F |max

f∈F
PΓm

{
σ
∣∣∣ ∣∣∣Ê(σS)1:m f − Ê(σS)m+1:2m

f
∣∣∣ ≥ ϵ

4

}
= |F |max

f∈F
PΓm

{
σ

∣∣∣∣∣
∣∣∣∣∣ 1m

m∑
i=1

(
f(xσ(i))− f(xσ(m+i))

)∣∣∣∣∣ ≥ ϵ

4

}

= |F |max
f∈F

Pλ∈{−1,1}m

{ ∣∣∣∣∣ 1m
m∑
i=1

λi

∣∣f(xσ(i))− f(xσ(m+i))
∣∣∣∣∣∣∣ ≥ ϵ

4

}

where in the last line λ is drawn uniformly. Since the absolute value in the sum is at most
2M , we can apply Hoeffding’s inequality to bound the probability by 2 exp

(
−mϵ2

32M2

)
. This

concludes the proof.
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2. Active Task Selection – Generalization Bounds

2.2 Generalization Bounds by Rademacher Complexity and
VC-dimension

This section follows [2] closely. While in the preceding section importantly relied on Ho-
effding’s inequality, we now need a more general result called the bounded differences
inequality, or sometimes (mainly for the case of constant ck) the McDiarmid inequality.
Firstly, some notation. For a vector x ∈ Xm, an element x̃ ∈ X and an index k ∈ [m]
define the shorthand notation xk,x̃ to denote the vector obtained by replacing xk in x by x̃
and x(k) to denote the vector of length m− 1 with dropped component xk.

Theorem 2.6 (Bounded Differences Inequality). Suppose f : Xm → R and ck : Xm−1 →
R for k ∈ [m] are functions such that

sup
x′,x′′∈X

|f(xk,x′)− f(xk,x′′)| ≤ ck(x
(k))

for all x ∈ Xm and k ∈ [m]. If v ..= supx∈Xm

∑
k∈[m] c

2
k(x

(k)) < ∞ it then holds for
ϵ > 0 and a random vectorX = (X1, . . . , Xm) with independent entries that

Pr [f(X) ≥ EX f(X) + ϵ] ≤ exp
(
−2ϵ2

v

)
.

While the version with constant bounds ck is usually proved with martingale techniques,
the general case can be proved using the following entropy method. Recall that the entropy
of a non-negative random variable is defined to be

Ent(Y ) = E[Φ(Y )]− Φ(EY )

where Φ(x) = x logx for x > 0 and Φ(0) = 0. For a random vector X = (X1, . . . , Xm)
and a random variable Y introduce the shorthand notation

E(k) Y ..= E[Y |X(k)]

to denote the conditional expectation of Y given the random vector X(k). Similarly we
denote the entropy of Y condition on X(k) by

Ent(k)(Y ) = E(k)[Φ(Y )]− Φ(E(k) Y ).

It is a standard fact about relative entropies that for Z = f(X1, . . . , Xm) we have the
following subadditivity of entropies

Ent(Z) ≤ E
∑

k∈[m]

Ent(k)(Z). (2)

Proof of Theorem 2.6. Write Z = f(X) and let λ > 0. Then by eq. (2) we find

Ent(eλZ) ≤ E
∑

k∈[m]

Ent(k)(eλZ).

The key observation now is that Z given X(k) is a random variable with a range of length
at most ck(X(k)). At this point we need a Lemma
Lemma 2.7. If Y is a random variable taking values in [a, b] and λ ∈ R, then

Ent(eλY ) ≤ (b− a)2λ2

8
E eλY

10



2.2. Generalization Bounds by Rademacher Complexity and VC-dimension

Proof. First note that we can assume wlog. EY = 0 since the general case then follows
from the statement for Y − EY . For ψ(λ) = log E eλY we find ψ′(λ) = E Y eλY

E eλY and

ψ′′(λ) =
EY 2eλY

E eλY −
(

EY eλY
E eλY

)2

= E
[(

Y − EY eλY
E eλY

)2
eλY

E eλY

]

= E
[(

Y − b+ a

2

)2
eλY

E eλY

]
−
(

EY eλY
E eλY − a+ b

2

)2

≤ (a− b)2

4

since
∣∣Y − a+b

2

∣∣ ≤ a−b
2

almost surely. Now it follows that

Ent(eλY )

E eλY = λ
EY eλY
E eλY − log E eλY = λψ′(λ)−ψ(λ) =

∫ λ

0

tψ′′(t) dt ≤ λ2(b− a)2

8
,

just as claimed.

Using the Lemma we then find

Ent(eλZ) ≤ E
∑

k∈[m]

λ2c2k(X
(k))

8
E(k) eλZ ≤ λ2v

8
E eλZ .

and consequently

log Eeλ(Z−E Z) = λ
log E eλ(Z−E Z)

λ
= λ

∫ λ

0

E(Z − EZ)et(Z−E Z)

tE et(Z−E Z)
− log E eλ(Z−E Z)

t2
dt

= λ

∫ λ

0

Ent(et(Z−E Z))

t2 E et(Z−E Z)
dt = λ

∫ λ

0

Ent(etZ)
t2 E etZ dt ≤ λ

∫ λ

0

v

8
dt = λ2v

8
. (3)

Now the claim follows from Markov’s inequality by noticing

Pr [Z − EZ ≥ ϵ] = Pr
[
eλ(Z−E Z) ≥ eλϵ

]
≤ E eλ(Z−E Z)

eλϵ
≤ eλ

2v/8−λϵ

and choosing the optimal λ = 4ϵ
v

.

At the price of a worse constant in the bound we can relax the assumption of bounded
differences considerably:
Theorem 2.8. Suppose f : Xm → R is a function such that

v ..= sup
x∈Xm

∑
k∈[m]

(
f(x)− inf

x′∈X
f(xk,x′)

)2

<∞.

Then for ϵ > 0 and a random vectorX = (X1, . . . , Xm) with independent entries we have

Pr [f(X) ≥ EX f(X) + ϵ] ≤ exp
(
− ϵ2

2v

)
.

Proof. Write Z = f(X) and Zk = infx′∈X f(Xk,x′) and let λ > 0. For any non-negative
random variable Y and any number u > 0 it follows from logx ≤ x− 1 that

Ent(Y ) = EY log u

EY + E[Y (logY − logu)] ≤ E[Y (logY − logu)− (Y − u)],

11



2. Active Task Selection – Generalization Bounds

which in fact becomes an equality when taking the infimum over u. Then again by the sub-
additivity of the entropy and using this entropy inequality for the conditional expectations
we find

Ent(eλZ) ≤ E
∑

k∈[m]

Ent(k)(eλZ) ≤ E
∑

k∈[m]

E(k)
[
eλZ(λZ − λZk)− (eλZ − eλZk)

]
= E

∑
k∈[m]

E(k)
[
eλZ

(
e−λ(Z−Zk) + λ(Z − Zk)− 1

)]
≤ E

∑
k∈[m]

E(k)

[
eλZ

λ2(Z − Zk)
2

2

]
≤ λ2v

2
E
[
eλZ

]
where it was used that λ(Z − Zk) ≥ 0. Now proceeding as in eq. (3) this implies
E eλ(Z−E Z) ≤ eλ

2v/2 and thereby by Markov’s inequality

Pr [Z − EZ ≥ ϵ] ≤ eλ
2v/2−λϵ.

Minimizing this expression at λ = ϵ
v

completes the proof.

We now apply Theorem 2.6 to derive a generalization bound in the fashion of Theorem
2.2. Define ϕ : Xm → R by

f(S) ..= sup
g∈G

[
E g − ÊS g

]
= sup

g∈G

1

m

∑
k∈[m]

[E g − g(xk)] .

Then |f(Sk,x′)− f(Sk,x′′)| = |g(x′′)− g(x′)| /m ≤M/m and thereby

Pr[f(S) ≥ E f + ϵ] ≤ exp
(
− 2ϵ2∑

k∈[m]M
2/m2

)
= exp

(
−2mϵ2

M2

)
.

To bound E f we firstly symmetrize the expression by noticing that

E g = ES̃ ÊS̃ g = ES̃

1

m

∑
k∈[m]

g(x̃k)

for S̃ = (x̃1, . . . , x̃m) being distributed according to Pm. Therefore by convexity of the
supremum function and Jensen’s inequality we find

E f ≤ ES,S̃ sup
g∈G

1

m

∑
k∈[m]

(g(x̃k)− g(xk)).

By exchanging xk with x̃k we only change the order of summation and thereby not the
expectation. On the other hand this exchange switches the sign of the k-th summand and
therefore the result is invariant under sign flips of any summands. Independent random
variables σ1, . . . , σm taking the values ±1 independently with equal probabilities are of-
ten called Rademacher variables. By the above argument we can insert them into the sum
without changing the result and thereby

E f ≤ ES,S̃ Eσ sup
g∈G

1

m

∑
k∈[m]

σk(g(x̃k)− g(xk)) ≤ 2ES Eσ sup
g∈G

1

m

∑
k∈[m]

σkg(xk) =.. 2ES R̂S(G)

which is often called the Rademacher complexity. An important tool to bound Rademacher
complexities is the following well known Lemma

12



2.3. Active Task Selection

Lemma 2.9 (Massart’s Lemma). For any setA ⊂ Rm the empirical Rademacher complexity
can be bounded by

Eσ
1

m
sup
a∈A

∑
k∈[m]

σkak ≤
√

2 log |A|
m

sup
a∈A

∥a∥2 .

For any fixed S applying this Lemma to the above complexity term gives

R̂S(G) = Eσ sup
g∈G

1

m

∑
k∈[m]

σkg(xk) ≤M

√
2 log

∣∣G|S
∣∣

m

where G|S ..= { (g(x1), . . . , g(xm)) | g ∈ G }. When we define the growth function ofG
evaluated in m to be the number of distinct ways G can map any m points from X , i.e.

ΠG(m) ..= sup
S∈Xm

∣∣G|S
∣∣ ,

this yields

E f ≤ 2M

√
2 logΠG(m)

m
.

The above argument proves the following Theorem:

Theorem 2.10. If P is a probability measure onX ,G is a set of functions mappingX → [0,M ],
m ∈ N and ϵ > 0, then

Pm
{
S ∈ Xm

∣∣∣ EP g ≥ ÊS g + 2ES R̂S(G) + ϵ for some g ∈ G
}

≤ Pm

{
S ∈ Xm

∣∣∣∣∣ EP g ≥ ÊS g + 2M

√
2 logΠG(m)

m
+ ϵ for some g ∈ G

}
≤ exp

(
−2mϵ2

M2

)
.

VCdimension The growth function is rather difficult to handle in general but for concrete
classes of functions it can be simplified considerably. From now on we shall assume that G
maps X into {−1, 1}. We say that a S = {x1, . . . , xm} is shattered by G if G is of full
range on S, i.e., if

∣∣G|S
∣∣ = 2m. The VC-dimension (Vapnik-Chervonenkis dimension) d

of G is defined to be the size of the largest tuple shattered by G, i.e.,

d ..= max {m ∈ N | Πm(G) = 2m } .

The following well known Lemma relates the growth function for allm to the VC-dimension:

Lemma 2.11 (Sauer’s Lemma). IfG maps X → {−1, 1} and is of VC-dimension d, then

Πm(G) ≤
d∑

i=0

(
m

i

)
≤
(em
d

)d
.

2.3 Active Task Selection
Let X be an input space and (Y, dY) a corresponding (metric) label space. We shall assume
that we want to learn a set of T tasks, where each task is formally represented by a distribu-
tion D1, . . . , DT over X and a deterministic labelling function f1, . . . , fT : X → Y . We

13



2. Active Task Selection – Generalization Bounds

further assume a bounded loss function l : Y ×Y → [0,M ] satisfying the triangle inequal-
ity l(y0, y2) ≤ l(y0, y1) + l(y1, y2) for all y0, y1, y2 ∈ Y . We define the expected risk of
some hypothesis h : X → Y for task (Dt, ft) as

ert(h) ..= Ex∼Dt l(h(x), ft(x))

and the empirical risk evaluated on some sample St = (x1, . . . , xm) ∈ Xm independently
drawn according to Dt as

êrSt(h)
..=

1

|St|
∑
x∈St

l(h(x), ft(x))

(where in a slight abuse of notation the tuple St was identified as a multiset). The goal is to
find predictors h1, . . . , hT from a given hypothesis set H ⊂ YX minimizing the averaged
expected risk

er(h1, . . . , hT ) ..=
1

T

T∑
t=1

erDt(ht).

In the specific setting we shall assume that labelling information can only be requested
for a subset of the tasks and will only be provided for a random subset of the samples
representing the task. Formally, the learner is given independently drawn samples S1 ∼
Dn

1 , . . . , ST ∼ Dn
T of size n for all tasks, may then ask for labels for tasks {i1, . . . , ik} ⊂

[T ] and will be provided with labels fij (x) for x ∈ Sij and j ∈ [k] for randomly drawn
sub-samples Sij ⊂ Sij of sizes

∣∣Sij

∣∣ = m.

2.4 Single Task Transfer
The most straight forward learning strategy would be assigning some labelled task to each of
the unlabelled tasks. Such an assignment shall be encoded by a vector c = (c1, . . . , cT ) ∈
[T ]T having at most k different values. The unlabelled tasks are then solved by using the
hypothesis trained on the corresponding labelled task, i.e., ht = hct . We shall now derive
a bound on the averaged expected risk of this strategy in terms of individual risks and the
similarity of the assigned tasks.

Definition 2.12 (Discrepancy). The discrepancy between two distributions D1, D2 over X
with respect to some hypothesis setH is defined as

disc(D1, D2) ..= sup
h,h′∈H

∣∣erD1(h, h
′)− erD2(h, h

′)
∣∣ .

Lemma 2.13. For two tasks (D1, f1), (D2, f2) and any hypothesis h ∈ H it holds that

er2(h) ≤ er1(h) + disc(D1, D2) + inf
h∗∈H

(er1(h∗) + er2(h∗)).

Proof. For any h, h∗ ∈ H it holds by the triangle inequality that

er2(h) = er2(h, f2) ≤ er2(h∗, f2) + er2(h∗, h)

= er2(h∗) + er1(h∗, h) + (er2(h∗, h)− er1(h∗, h))

≤ er2(h∗) + er1(h∗, f1) + er1(h, f1) + disc(D1, D2)

= er1(h) + disc(D1, D2) + (er1(h∗) + er2(h∗))

from which the claim follows after taking the infimum over all h∗ ∈ H .

14



2.4. Single Task Transfer

Using the shorthand notation

λij
..= inf

h∗∈H
(eri(h∗) + erj(h∗))

we can use the above Lemma to bound the average expected risk by

er(h1, . . . , hT ) ≤
1

T

T∑
t=1

erDct
(hct) +

1

T

T∑
t=1

disc(Dt, Dct) +
1

T

T∑
t=1

λtct . (4)

The next step is bounding these expectation expression by their empirical counterparts,
and thereby making the bound independent of the (in general unknown) distributions Dt.

Now we want to apply our general Theorems 2.2 and 2.10 to the empirical error estimate.
Given H,H ′ ∈ YX , define

LH,H′ ..=
{
x 7→ l(h(x), h′(x))

∣∣ h ∈ H,h′ ∈ H ′ } ⊂ [0,M ]X .

Firstly, a Lemma for estimating covering numbers of Lipschitz-loss functions:

Lemma 2.14. Assume that the bounded loss function l : Y2 → [0,M ] is L-Lipschitz, i.e.,
|l(y0, y1)− l(y0, y2)| ≤ Ld(y1, y2). Then for any ϵ1 + ϵ2 = ϵ > 0 andm ∈ N it holds that

N1(ϵ, LH,H′ ,m) ≤ N1(ϵ1/L,H,m) · N1(ϵ2/L,H
′,m).

In particular, if |H ′| = 1, then N1(ϵ, LH,H′ ,m) ≤ N1(ϵ/L,H,m).

Proof. Fix S ∈ Xm and let F ⊂ H,F ′ ⊂ H ′ generate ϵ1/L and ϵ2/L coverings of H|S
and H ′|S , respectively. Then, for any h ∈ H,h′ ∈ H ′ we find f, f ′ from the coverings
such that ÊS |h− f | < ϵ1/L and ÊS |h′ − f ′| < ϵ2/L. Then

d1(l(h(·), h′(·)), l(f(·), f ′(·))) = ES

∣∣l(h(·), h′(·))− l(f(·), f ′(·))
∣∣

≤ ES

∣∣l(h(·), h′(·))− l(h(·), f ′(·))
∣∣+ ES

∣∣l(h(·), f ′(·))− l(f(·), f ′(·))
∣∣

≤ ÊS Ld(h
′(·), f ′(·)) + ÊS Ld(h(·), f(·)) < ϵ.

This shows that LF,F ′ is a ϵ-covering of LH,H′ . The second claim follows since a family
consisting of one element has covering number 1 for all ϵ.

Secondly, a Lemma for Rademacher complexities in the case of binary classification
Y = {−1, 1}:

Lemma 2.15. Assume H ⊂ {−1, 1}X , a binary loss function l given by l(y, y′) = 1y ̸=y′ =
(1− y · y′)/2 and a given target function f : X → {−1, 1}. Then

R̂S(LH,{f}) =
1

2
R̂S(H) and R̂S(LH,H) ≤ R̂S(H).

Proof. Since the σk have zero mean we find

R̂S(LH,{f}) = Eσ sup
h∈H

1

m

∑
k∈[m]

σk
1− f(xk)h(xk)

2
=

1

2
Eσ sup

h∈H

1

m

∑
k∈[m]

σkh(xk) =
1

2
R̂S(H)

and therefore also

R̂S(LH,H) = Eσ sup
h,h′∈H

1

m

∑
k∈[m]

σkl(h(xk), h
′(xk)) ≤ 2Eσ sup

h∈H

1

m

∑
k∈[m]

σkl(h(xk), f(xk)) = R̂S(H).
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2. Active Task Selection – Generalization Bounds

This enables us to prove the following Theorem

Theorem2.16. Let P1, . . . ,Pm be measures implementing the distributionsD1, . . . , Dm. With
the definitions from the beginning of the chapter the following assertions holds true.

(a) IfH is finite, then

Pm
t

{
S ∈ Xm

∣∣∣∣ sup
h∈H

[ert(h)− êrS(h)] < ϵ

}
> 1− |H| exp

(
−2mϵ2

M2

)
and

Pn
t { St ∈ Xn | disc(Dt, St) < ϵ } > 1− 2 |H|2 exp

(
−2nϵ2

M2

)
.

(b) If the loss function l is L-Lipschitz, then

Pm
t

{
S ∈ Xm

∣∣∣∣ sup
h∈H

[ert(h)− êrS(h)] < ϵ

}
> 1−2 exp

(
−mϵ2

32M2

)
N1

( ϵ

8L
,H, 2m

)
and

Pn
t { St ∈ Xn | disc(Dt, St) < ϵ } > 1− 4 exp

(
−nϵ2

32M2

)
N1

( ϵ

8L
,H, 2n

)2
.

(c) In the case of binary classification, 0-1-loss andH of VC-dimension d we have

Pm
t

{
S ∈ Xm

∣∣∣∣∣ sup
h∈H

[ert(h)− êrS(h)] <
√

2d log em
d

m
+ ϵ

}
> 1− exp

(
−2mϵ2

)
and

Pn
t

{
St ∈ Xn

∣∣∣∣∣ disc(Dt, St) < 2

√
2d log en

d

n
+ ϵ

}
> 1− 2 exp

(
−2nϵ2

)
.

Moreover, the deviation bounds in the first claim of each statement can be made two-sided at the
expense of doubling the error probability.

Proof. The first claims of all three cases follow directly from Theorems 2.1, 2.2 and 2.10
and the Lemmata relating the covering numbers and complexities of LH,H′ to those of H .
For the second claim note that if

Pr
[

sup
g∈LH,H

[EPt g − ÊSt g] > ϵ

]
≤ δ and Pr

[
sup

g∈LH,H

[ÊSt g − EPt g] > ϵ

]
≤ δ

then also

Pr
[

sup
g∈LH,H

∣∣∣EPt g − ÊSt g
∣∣∣ > ϵ

]
= Pr[disc(Dt, St) > ϵ] ≤ 2δ.

The second claims then follow just as the first ones.
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2.5. Multi-task Learning

The bound in terms of covering numbers is difficult to handle in general. For the other
situation we can, given some δ > 0 solve the bounds for ϵ so that every single bound from
the Theorem holds with a probability of at least 1 − δ/2T . By the triangle inequality for
discrepancies

disc(Dt, Ds)− disc(St, Ss) ≤ disc(Dt, St) + disc(Ds, Ss)

the bounds on distribution-sample-discrepancies disc(Dt, St) suffice to bound the expected
discrepancies by their empirical counterparts. According to this, we find that with a prob-
ability of at least 1 − δ over S1 ∼ Dn

1 , . . . , S
n
T ∼ Dn

T and random m-subsets of those it
holds that

er(h1, . . . , hT ) ≤
1

T

T∑
t=1

êrSct
(hct) +

1

T

T∑
t=1

disc(St, Sct) +
1

T

T∑
t=1

λtct

+M

√
log |H|+ logT + log 2/δ

2m
+M

√
4 log |H|+ 2 logT + 2 log 4/δ

n
.

Similarly from the result for binary classification we find

er(h1, . . . , hT ) ≤
1

T

T∑
t=1

êrSct
(hct) +

1

T

T∑
t=1

disc(St, Sct) +
1

T

T∑
t=1

λtct

+

√
logT + log 2/δ

2m
+

√
2d log em

d

m
+ 2

√
logT + log 4/δ

2n
+ 4

√
2d log en

d

n
.

This bound is not optimal and we shall see in the subsequent section that a joint bound on
the mean error by using Theorem 2.8 instead of 2.6 gets rid of the logT in the first part of
the bound.

2.5 Multi-task Learning
We now turn to a more general learning strategy. Denote the weight simplex by

Λ ..=

 α ∈ RT
+

∣∣∣∣∣∣
∑
i∈[T ]

αi = 1


and for a set of selected tasks I ⊂ [T ] the weight simplex with sparsity pattern I by ΛI ..=
{ α ∈ Λ | suppα ⊂ I }. Then we can define the α-weighted (empirical error) by

erα(h) ..=
∑
i∈I

αi eri(h), êrα(h) ..=
∑
i∈I

αi êrSi
(h).

Through Lemma 2.13 we can relate a single task error in terms of the weighted error. Ex-
plicitly,

ert(h)− erα(h) =
∑
i∈I

αi(ert(h)− eri(α)) ≤
∑
i∈I

αi (disc(Di, Dt) + λit) .

If now every task (Dt, ft) has its own weight vector αt ∈ ΛI we can apply this to the
averaged error to find for any selected hypotheses h1, . . . , hT

er(h1, . . . , hT ) ≤
1

T

∑
t∈[T ]

erαt(ht) +
1

T

∑
t∈[T ]

∑
i∈I

αt
i disc(Di, Dt) +

1

T

∑
t∈[T ]

∑
i∈I

αt
iλit

(5)
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2. Active Task Selection – Generalization Bounds

Our goal is the find a bound on the probability

Pr

 1

T

∑
t∈[T ]

∑
i∈I

αt
i (eri(ht)− êrSi(ht)) ≤ ϵ for all I ∈

(
[T ]

K

)
, α ∈ (ΛI)T , h ∈ HT


= Pr

 sup
I∈([T ]

k )

sup
α∈(ΛI )T

sup
h∈HT

1

mT

∑
t∈[T ]

∑
i∈I

∑
k∈[m]

αt
i

[
eri(ht)− l(ht(x

i
k), ft(x

i
k))
]
≤ ϵ


= Pr

 sup
I∈([T ]

k )

sup
h∈HT

sup
i∈IT

1

mT

∑
t∈[T ]

∑
k∈[m]

[
erit(ht)− l(ht(x

it
k ), ft(x

it
k ))
]
≤ ϵ


where the probability is taken over

S = (S1, . . . , ST ) =

x11 · · · xT1
...

...
x1m · · · xTm


with xt ∼ Dm

t independent from each other. Define

g(h, i, S) ..=
1

mT

∑
t∈[T ]

∑
k∈[m]

[
erit(ht)− l(ht(x

it
k ), ft(x

it
k ))
]
,

f(S) = sup
I∈([T ]

K )

sup
i∈IT

sup
h∈HT

g(h, i, S) = sup
h∈HT

g(h, i∗(S), S)

where i∗(S) ∈ (I∗)T , I∗(S) ∈
(
[T ]
K

)
is the location of the maximum of i 7→ suph g(h, i, S)

and fix s ∈ [T ], j ∈ [m]. Then

sup
x∈X

[f(S)− f(S(j,s),x)] ≤ sup
x,I,i,h

[
g(h, i, S)− g(h, i, S(j,s),x)

]
≤ sup

x,h

[
g(h, i∗(S), S)− g(h, i∗(S), S(j,s),x)

]
= sup

x,h

1

mT

∑
t∈[T ],i∗(S)t=s

[
l(ht(x), ft(x))− l(ht(x

s
j), ft(x

s
j))
]
≤ M |{ t ∈ [T ] | i∗(S)t = s }|

mT

for all S and consequently we can apply Theorem 2.8 with v = M2

m
and find that with a

probability of at least 1− δ/2 over S,

f(S) ≤ E f +M

√
2 log 2/δ

m
.

Next, we consider how to get a bound on E f . For the case of binary classification following
the standard Rademacher technique we find

E f ≤ ES,σ sup
h∈HT

sup
i∈[T ]T

1

mT

∑
t,k

σt,kht(x
it
k )

on which we apply Massart’s Lemma on

A|S =
{
(ht(x

it
k ))t∈[T ],k∈[m]

∣∣∣ h ∈ HT , i ∈ [T ]T
}
.
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2.6. Weight dependent convergence rate

Using Sauer’s Lemma ∣∣A|S∣∣ ≤ Πm(H)T ≤
(em
d

)dT
.

we find that with a probability of at least 1− δ/2

1

T

∑
t∈[T ]

erαt(ht) ≤
1

T

∑
t∈[T ]

êrαt(ht) +

√
2d log em

d

m
+

√
2 log 2

δ

m

simultaneously for all h and α. Similarly, in the case of an arbitrary but finite hypotheses
set we find

1

T

∑
t∈[T ]

erαt(ht) ≤
1

T

∑
t∈[T ]

êrαt(ht) + 2M

√
2 log |H|

m
+M

√
2 log 2

δ

m
,

again simultaneously with a probability of at least 1−δ/2. The discrepancies can be bounded
as is in single-task learning case and we have completed the proof of the following Theorem:

Theorem 2.17. Let δ > 0 be given. Then with a probability of at least 1− δ over samples S1 ∼
Dn

1 , . . . , ST ∼ Dn
T and random sub-samples S1, . . . , ST of size m the following assertions

hold true uniformly in h1, . . . , hT ∈ H , I ∈
(
[T ]
k

)
and α1, . . . , αT ∈ ΛI .

(a) IfH is finite, then

er(h1, . . . , hT ) ≤
1

T

∑
t∈[T ]

êrαt(ht) +
1

T

∑
t∈[T ]

∑
i∈I

αt
i disc(Si, St) +

1

T

∑
t∈[T ]

∑
i∈I

αt
iλit

2M

√
2 log |H|

m
+M

√
2 log 2

δ

m
+ 4M

√
2 log |H|

n
+ 2M

√
logT + log 4/δ

2n
.

(b) IfH is a binary classifier of VC-dimension d, then

er(h1, . . . , hT ) ≤
1

T

∑
t∈[T ]

êrαt(ht) +
1

T

∑
t∈[T ]

∑
i∈I

αt
i disc(Si, St) +

1

T

∑
t∈[T ]

∑
i∈I

αt
iλit

√
2d log em

d

m
+

√
2 log 2

δ

m
+ 4

√
2d log en

d

n
+ 2

√
logT + log 4/δ

2n
.

2.6 Weight dependent convergence rate

If one fixes some weight α ∈ Rk
+ such that

∑
i∈[k] αi = 1 and h ∈ H Hoeffding’s

inequality gives the bound

Pr [|erα(h)− êrα(h)| ≥ ϵ] ≤ 2 exp
(

−2mϵ2∑
i∈[k] α

2
i

)
, (6)

or equivalently that with a probability of at least 1− δ,

|erα(h)− êrα(h)| ≤ ∥α∥2

√
log 2

δ

2m
. (7)
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2. Active Task Selection – Generalization Bounds

Indeed,

|erα(h)− êrα(h)| =

∣∣∣∣∣∣
∑
i∈[k]

∑
j∈[m]

αi

m

[
eri(h)− l(h(xij), fi(x

i
j))
]∣∣∣∣∣∣

where the (i, j)-th term in the sum has zero mean and lies in a range of at most αi
m

. Thus
it follows from Hoeffding’s inequality that the claimed probability is bounded by

2 exp

 −2ϵ2∑
i∈[k]

∑
j∈[m]

α2
i

m2

 ,

just as claimed. This bound is intuitively pleasing in the sense that it gets better asα becomes
more uniform. For example, for a uniform α the bound becomes 2 exp(2kmϵ2) which
would be the same as in the unweighted case with km samples.

We now want to investigate whether a bound as in eq. (7) can be achieved uniformly in
α and h. To that end define

f(S) ..= sup
α∈∆

sup
h∈H

1

∥α∥2
[erα(h)− êrα(h)] = sup

α∈∆

sup
h∈H

∑
i∈[k]

αi

∥α∥2
[eri(h)− êrSi(h)]

= sup
α∈∆

sup
h∈H

∑
i∈[k]

∑
j∈[m]

αi

m ∥α∥2

[
eri(h)− l(h(xij), fi(x

i
j))
]

= sup
h∈H

∑
i∈[k]

∑
j∈[m]

α∗(S)i
m ∥α∗(S)∥2

[
eri(h)− l(h(xij), fi(x

i
j))
]

where α∗(S) is a maximizer, the existence of which is guaranteed by compactness. Now,∣∣∣∣f(S)− inf
x∈X

f(S(j,i),x)

∣∣∣∣ ≤ α∗(S)i
m ∥α∗(S)∥

and thereby

∑
(i,j)∈[k]×[m]

(
f(S)− inf

x∈X
f(S(j,i),x)

)2

≤
∑
i∈[k]

α∗(S)2i

m ∥α∗(S)∥22
=

1

m
.

It now follows from Theorem 2.8 that with a probability of at least 1− δ/2

erα(h)− êrα(h) ≤ ∥α∥2

(
E f +

√
2 log 2/δ

m

)
,

uniformly for all α, h. It remains to bound E f . Firstly since ∥α∥2 ≥ 1√
k
,

ES f(S) ≤
√
kES sup

h∈H

max
i∈[k]

(eri(h)− êrSi(h))

and in terms of Rademacher variables σ this can be symmetrically bounded by

√
kES Eσ sup

h,i

1

m

∑
j∈[m]

σjh(x
i
j) ≤

√
2kd log em

d

m
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2.6. Weight dependent convergence rate

where Massart’s and Sauer’s Lemmata were used. The exact same analysis can be applied to
achieve the identical uniform bound on êrα(h)− erα(h) and therefore after a union bound
we find that with a probability of at least 1− δ

|erα(h)− êrα(h)| ≤ ∥α∥2

(√
2kd log em

d

m
+

√
2 log 2/δ

m

)
(8)

uniformly for all α, h. This bound is unsatisfactory since the
√
k factor just about cancels

the rate improving weight factor, even in the optimal case of uniform weights.
So can we improve on that

√
k factor? To make things simpler, we consider the case

of a single hypothesis h. After defining the vector er = (|eri(h)− êrSi(h)|)ki=1 the target
probability simplifies to

Pr
[

1

∥α∥2
|erα(h)− êrα(h)| ≥ ϵ for some α ∈ ∆

]
= Pr

[
sup
α∈∆

∣∣∣∣⟨ α

∥α∥2
, er⟩
∣∣∣∣ ≥ ϵ

]
.

On the one hand side by Cauchy–Schwarz
∣∣∣⟨ α

∥α∥2
, er⟩
∣∣∣ ≤ ∥er∥2 this probability is at most

Pr[∥er∥2 ≥ ϵ]. In fact, this would be an equality if we didn’t have the constraint of αi ≥
0 for all i ∈ [k]. But it turns out that this constraint only changes the supremum by a
constant factor. Explicitly, if ∥er∥2 ≥

√
2ϵ, then either either

∑
i∈[k],eri>0 er2i ≥ ϵ2 or∑

i∈[k],eri<0 er2i ≥ ϵ2. In, say, the former case we could then define

αi
..=

{
eri /

∑
j∈[k],erj>0 erj if eri > 0,

0 else

satisfying α ∈ ∆. But then∣∣∣∣⟨ α

∥α∥2
, er⟩
∣∣∣∣ = ∑

i∈[k],eri>0

er2i

/√ ∑
i∈[k],eri>0

er2i ≥ ϵ

and thus

Pr
[
∥er∥2 ≥ ϵ

]
≥ Pr

[
sup
α∈∆

∣∣∣∣⟨ α

∥α∥2
, er⟩
∣∣∣∣ ≥ ϵ

]
≥ Pr

[
∥er∥2 ≥

√
2ϵ
]
.

This can be written out as

Pr
[

1

∥α∥2
|erα(h)− êrα(h)| ≥ ϵ for some α ∈ ∆

]
≥ Pr

∑
i∈[k]

(eri(h)− êrSi(h))
2 ≥ 2ϵ2


which means that by independence of the terms in the sum, any successful generalization
bound ϵ has to grow with k as

√
k. Therefore the

√
k factor from eq. (8) can’t be improved

on, in general.
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