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Chapter 1

Introduction

1.1 Basic model

We adapt the basic model from [Friedlander et al., 2015]. In its most general form, we
model the gene regulation according to the following assumptions:

• We assumeN target genes, each regulated by a single binding site (BS). Each gene is
activated whenever a transcription factor (TF) is bound to its binding site. We assume
that the length of all binding sites is equal to, say, L base pairs (bp).

• We assume a total of T distinct transcription factors responsible for activating the
genes.

• We assume a fixed set of environments E , where each environment E ∈ E is a subset
E ⊂ [N ] ..= {1, . . . , N} of all genes that should be activated in this environment.
Moreover, we assume some fixed probability distribution P on E assigning probabil-
ities to the different environments.

• To achieve the regulation we assume that depending on the environmentE, the tran-
scription factors are present in concentrations

C1(E), C2(E), . . . , CT (E).

• We assume that the energy of a single binding site i ∈ [M ] bound to some TF
j ∈ [T ] is equal to ϵdi,j where ϵ > 0 is the per-nucleotide binding energy and di,j is
the number of mismatches between the binding site and the TF. e unbound state
of a BS is assumed to have energy Ea > 0.

• We call a binding with zero mismatches a cognate binding. Non-perfect matches are
called noncognate bindings.

• We employ a thermodynamicmodel to calculate the equilibrium binding probabilities
of cognate and noncognate bindings in a fixed environment. at is, the probability
of finding gene i in an erroneous state is assumed to be

xi(E) ..=


e−Ea

e−Ea+
∑

j Cj(E)e
−ϵdi,j

if i ∈ E∑
j Cj(E)e

−ϵdi,j

e−Ea+
∑

j Cj(E)e
−ϵdi,j

if i ̸∈ E

and the joined probabilities of multiple genes are assumed to be independent of each
other. We emphasize that this definition of error differs from the model considered
in [Friedlander et al., 2015] in the sense that the correct activation of a gene by a
noncognate TF was considered as erroneous therein.
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. Introduction

• e goal of this model is to estimate the so called crosstalk. We define the crosstalk
X = X(E) as the expected proportion of genes in an erroneous state according
to the thermodynamic binding probabilities. Since the binding states of individual
genes are independent from each other, the expected number of genes in an erroneous
state is just the sum of the probabilites that some gene is in an erroneous state, i.e.,

X(E) =
1

N

∑
i∈[N ]

xi(E).

We will be mainly interested in the crosstalk averaged over the environments, that is

EX =
∑
E∈E

P (E)X(E).

emodel considered in [Friedlander et al., 2015] is a specialization of this, besides the
consideration of rightful activation by noncognate TFs as an error. Specifically in their
“base” model they assumed

• a one-to-one correspondence between binding sites and cognate transcription factors,
in particular T = N .

• environments of the form E =
(
[N ]
Q

)
, i.e., all Q-element subsets of [N ], equipped

with a uniform probability distribution P (E) =
(
N
Q

)−1.

• equal concentration Ci(E) = C > 0 for all i ∈ E and Ci = 0 otherwise.

As a first step, let us try to understand how precise the approximated analytical solu-
tion from [Friedlander et al., 2015] is to numerical reality. We therefore still assume a
one-to-one correspondence between binding sites and transcription factors. We shall also
assume that the concentration of the transcription factors is stoichiometric in the sense that
Ci(E) = C/|E| for i ∈ E, i.e. all TFs corresponding to genes that should be active,
and Ci(E) = 0 for all other TFs. us the summation over the thermodynamic weights
simplifies to ∑

j

Cj(E)e−ϵdi,j =
C

|E|
∑
j∈E

e−ϵdi,j

It is now assumed that the binding site mismatches di,j are distributed symmetrically in the
sense that the above expression is roughly independent from i. erefore we can approxi-
mate it by

C

|E|
∑
j∈E

e−ϵdi,j ≈

{
C
|E| |E|

∑
d P (d)e−ϵd =.. CS if i ̸∈ E

C
|E| +

C
|E| (|E|−1)

∑
d P (d)e−ϵd =.. C

|E| +
C
|E| (|E|−1)S if i ∈ E

where P (d) is the distribution of binding site mismatches and S is a new parameter, which
we call the average binding site similarity. e simplified expression for the probability of
finding gene i in an erroneous state then reads

x′
i(E) ..=

{
e−Ea

e−Ea+CS+C(1−S)/|E| if i ∈ E
CS

e−Ea+CS
if i ̸∈ E

.

It should be emphasized that these two expressions are not the averages of xi(E) over
all possible choices of enviroments of some fixed size. Indeed, as Figure 1.1 shows, xi(E)
averaged over all i ̸∈ E and 1000 random E ⊂ [N ] with |E|= Q is pretty far away from
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Figure .: Numerical Computation ofX(E), x1(E) ..= 1
|E|
∑

i∈E xi(E) and x2(E) ..=
1

N−|E|
∑

i̸∈E xi(E) for 1000 random choices of E ⊂ [N ] with L = 10, N = 5000,
|E|= 500, Ea = 10, ϵ = 3 and uniformly sampled binding codes, where Scomp is the
theoretical binding site similarity Scomp =

(
1
4
+ 3

4
e−ϵ
)L and Ssim is the actual value

obtained from the sampled binding codes.

the value obtained through the approximation above. To understand why this happens let
us write out xi(E) averaged over all i ̸∈ E, averaged over all E with |E|= Q fixed:

EE
1

N − |E|
∑
i̸∈E

xi(E) = 1−

(
N

Q

)−1 ∑
E⊂[N ],|E|=Q

1

N −Q

∑
i̸∈E

1

1 + eEa C
Q

∑
j∈E e−ϵdi,j

On the other hand, if we just closed our eyes and exchanged the averaging and the
division we would find

1− 1

1 + eEa C
Q

(
N
Q

)−1∑
E⊂[N ],|E|=Q

1
N−Q

∑
i̸∈E

∑
j∈E e−ϵdi,j

= 1− 1

1 + eEa C
(N−Q)Q

(
N
Q

)−1∑
i̸=j

∑
E⊂[N ],i ̸∈E∋j e

−ϵdi,j
= 1− 1

1 + eEa C
N(N−1)

∑
i ̸=j e

−ϵdi,j
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which is nothing but CS
e−Ea+CS

, i.e., precisely the approximation from above. e problem
here is, that the error made by exchanging summation and division is not negligible since
1
Q

∑
j∈E e−ϵdi,j is not sharply concentrated around its mean and the unlikely big values

have an unproportional big effect on the result. On the other hand the, for the error of the
first kind we have approximately e−Ea

e−Ea+CS+C(1−S)/Q
where CS is very small compared

to C(1 − S)/Q and therefore the the resulting probabilites are indeed rather sharply con-
centrated. is effect is illustrated in Figure 3. e plots from Figure 1.2 show histograms
of∑
j∈E

e−ϵdi,j ,
1

1 + eEa C
Q

(
1 +

∑
j∈E e−ϵdi,j

) and 1− 1

1 + eEa C
Q

∑
j∈E e−ϵdi,j

for randomly chosen E ⊂ [N ] and i ̸∈ E, together with correctly applied mean and the
mean just applied in the denuminator.

To work out a more precise result we have to compute the expectation of

1− 1

1 + eEa C
Q

∑
j∈E e−ϵdi,j

.

is is not feasible analytically but the paticular distribution of
∑

j∈E e−ϵdi,j allows a good
approximation. e basic idea is to compute the conditional expectation conditioned on the
number of occurences of 0’s and 1’s beneath the di,j ’s. e next highest order terms would
be e−2ϵ which should be small compared to 1 and can reasonably well be approximated by
its conditional mean. Applied to our concrete example this would mean that we average the
five spikes and then compute the above expectation according to this simpler distribution.

1.2 Ising model inspired environment distribution

We shall go in a slightly different direction now and assume a Ising model inspired distri-
bution on the environments. Concretely, we assume a distribution of the form

P (E) ..=
exp
(∑N

i=1 hi1E(i)
)

∑
δ∈{0,1}N exp

(∑N
i=1 hiδi

)
for some parameters h1, . . . , hN . ese parameters have a natural interpretation in terms
of the proportion of environments in which a certain gene is active. Concretely,

P (Gene i is active) =EE 1E(i) =

∑
E⊂[N ] 1E(i) exp

(∑N
i=1 hi1E(i)

)
∑

δ∈{0,1}N exp
(∑N

i=1 hiδi
)

=

∑
ϵ∈{0,1}N ,ϵi=1 exp

(∑N
i=1 hiϵi

)
∑

δ∈{0,1}N exp
(∑N

i=1 hiδi
) =

1

1 + exp(−hi)
=.. µi.

is means, that to realize a gene in this model which should be active in µi ∈ (0, 1) of the
environments, this can be realized by choosing hi = log

(
µi

1−µi

)
.

An analytic derivation of EX ′ is obviously only possible in the case h1 = · · · = hN =
h since in this case the number of active genes is binomially distributed with parameter
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1.2. Ising model inspired environment distribution
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µ = 1
1+exp(−h)

. e expression for EX ′ then reads

EX ′ =
1

N

N∑
n=0

µn(1− µ)N−n

(
N

n

)(
n2e−Ea

ne−Ea + nCS + C(1− S)
+

(N − n)CS

e−Ea + CS

)

=
e−Ea(1− µ)N 2F1

(
−N, C(1−S)

CS+e−Ea
; C+e−Ea

CS+e−Ea
; µ
µ−1

)
NC(1− S)

+ 1− µ− 1− µ

1 + CSe−Ea
.
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