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FLUCTUATIONS OF FUNCTIONS OF WIGNER MATRICES

LÁSZLÓ ERDŐS AND DOMINIK SCHRÖDER

IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria

1. Introduction

The density of states of an N × N Wigner random matrix H = H(N) converges to the Wigner

semicircular law [19]. More precisely, for any continuous function f : R → C

lim
N→∞

1

N
Tr f(H) = lim

N→∞

1

N

N∑

k=1

f(λk) =

∫
f(x)µsc(dx)(1.1)

where λ1, . . . , λN are the (real) eigenvalues ofH and µsc(dx) ..= 1
2π

√
(4− x2)+ dx.

It is well known that for regular functions f , the normalized linear eigenvalue statistics 1
N

Tr f(H)
have an asymptotically Gaussian fluctuation on scale of order 1/N , see, for example, [17, 8, 1, 15, 14, 6,

2] for different results in this direction, also for other random matrix ensembles. To our knowledge,

this result under the weakest regularity condition on f was proved in [17]; for general Wigner matrices

f ∈ H1+ǫ was required, while for Wigner matrices with substantial GUE component f ∈ H1/2+ǫ

was sufficient. Notice that the order of the fluctuation 1/N is much smaller than 1/
√
N which would

be predicted by the standard central limit theorem (CLT) if the eigenvalues were weakly dependent.

The failure of CLT on scale 1/
√
N is a signature of the strong correlations among the eigenvalues.

In this paperwe investigate the individualmatrix elements of f(H). Wewill show that the semicircle

law (1.1) holds also for any diagonal matrix element f(H)ii and not only for their average,
1
N

Tr f(H);

however, the corresponding fluctuation is much larger, it is on scale 1/
√
N . Moreover, the limiting

distribution of the rescaled fluctuation is not necessarily Gaussian; it also depends on the distribution

of the matrix elementhii . Similar fluctuation results hold for the off diagonal matrix elements f(H)ij ,
i 6= j. For regularity condition, we merely assume that f is of bounded variation, f ∈ BV . We also

prove an effective error bound of orderN−2/3 thatwe can improve toN−1 if f ′ ∈ L∞, i.e. we provide

a two-term expansion for each matrix element of f(H).
Similar results (with less precise error bounds) were obtained previously in [9] for Gaussian random

matrices and in [10, 11, 12] for general Wigner matrices under the much stronger regularity assumptions

that ∫

R

(1 + |ξ|)3
∣∣∣f̂(ξ)

∣∣∣dξ < ∞ or

∫

R

(1 + |ξ|)2s
∣∣∣f̂(ξ)

∣∣∣
2

dξ < ∞ for some s > 3,(1.2)

where f̂(ξ) ..=
∫
R
e−iξxf(x) dx. The main novelty of the current work is thus to relax these regu-

larity conditions to f ∈ BV . In addition, [10, 11, 12] assumed that in the case of complex Hermitian

matrices, the real and imaginary part of the entries have equal variance. Our approach does not require

this technical assumption. We also refer to [7] where similar questions have been studied for more gen-

eral statistics of the form Tr[f(H)A] for non-random matrices A under the fairly strong regularity

condition
∫
(1 + |ξ|)4|f̂(ξ)|dξ < ∞.
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2 FLUCTUATIONS OF FUNCTIONS OF WIGNER MATRICES

A special case of these questions is when the test function f(x) is given by ϕz(x) = (x− z)−1 for

some complex parameter z in the upper half plane, η ..= ℑz > 0. In fact, for f which are analytic in a

complex neighborhood of [−2, 2], a simple contour integration shows that for the linear statistics it is

sufficient to understand the resolvent ofH , i.e., ϕz(H) = (H − z)−1 for any fixed z in the upper half
plane. If f is less regular, one may still express f(H) as an integral of the resolvents over z, weighted
by the ∂z̄-derivative of an almost analytic extension of f to the upper half plane (Helffer-Sjöstrand

formula). In this case, the integration effectively involves the regime of z close to the real axis, so the

resolvent (H − z)−1 and its matrix elements need to be controlled even as η → 0 simultaneously

withN → ∞. These results are commonly called local semicircle laws. They hold down to the optimal

scale η ≫ 1/N with an optimal error bound of order 1/
√
Nη for the individual matrix elements and a

bound of order 1/Nη for the normalized trace of the resolvent (see, e.g. [5]). With the help of theHelffer-

Sjöstrand formula, more accurate local laws can be transformed to weaker regularity assumptions on

the test function in the linear eigenvalue statistics, see [17]. In this paperwe replace the Helffer-Sjöstrand

formula by Pleijel’s formula [13] that provides amore effective functional calculus for functions with low

regularity.

A similar relation between regularity and local laws holds for individual matrix elements, f(H)ii.
Using the Schur complement formula one can relate f(H)ii to the difference of a linear statistics forH

and for its minor Ĥ obtained by removing the i-th row and column fromH . In a recent paper [4] we

investigated the fluctuations of this difference without directly connecting it to f(H)ii. Applied to a

special family of test function f(x) = |x− a|, the difference of linear statistics is closely related to the
fluctuation of Kerov’s interlacing sequences of the eigenvalues ofH and its minor.

Motivated by this application, Sasha Sodin pointed out that this fluctuation can be related to the

fluctuation of a singlematrix element of the resolvent by theMarkov correspondence,see [16] for details.

It is therefore natural to ask if one could use the fluctuation result from [4] on the interlacing sequences

to strengthen the existing results on the fluctuations of the matrix elements of the resolvent and hence

of f(H). In fact, not the result itself, but the core of the analysis in [4] can be applied; this is the content
of the current paper. We thank Sasha for asking this question and calling our attention to the problem of

fluctuation of the matrix elements of f(H) and to the previous literature [9, 10, 11, 12]. Furthermore, he

pointed out to us that the contour integral formula from Pleijel’s paper [13] could potentially replace the

Helffer-Sjöstrand formula in our argument to the end of further reducing the regularity assumptions

on f . We are very grateful to him for this insightful idea that we believe will have further applications.

2. Main results

We consider complexHermitian and real symmetric randomN×N matricesH = (hij)
N
i,j=1 with

the entries being independent (up to the symmetry constraint hij = hji) random variables satisfying

(2.1) Ehij = 0, E |hij |2 =
sij
N

and E |hij |p ≤ µp

Np/2

for all i, j, p and some absolute constants µp . We assume that the matrix of variances is approximately

stochastic, i.e.
∑

j

sij = N +O (1)(2.2)

to guarantee that the limiting density of states is the Wigner semicircular law.

To formulate the error bound concisely we introduce the following commonly used (see, e.g., [3])

notion of high probability bound.

Definition 2.1 (Stochastic Domination). If

X =
(
X(N)(u) |N ∈ N, u ∈ U (N)

)
and Y =

(
Y (N)(u) |N ∈ N, u ∈ U (N)

)

are families of random variables indexed by N , and possibly some parameter u, then we say that X is
stochastically dominated by Y , if for all ǫ,D > 0 we have

sup
u∈U(N)

P

[
X(N)(u) > NǫY (N)(u)

]
≤ N−D
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for large enoughN ≥ N0(ǫ,D). In this case we use the notationX ≺ Y . Moreover, if we have |X| ≺ Y ,
we also writeX = O≺ (Y ).

It can be checked (see [3, Lemma 4.4]) that≺ satisfies the usual arithmetic properties, e.g. ifX1 ≺ Y1

and X2 ≺ Y2, then alsoX1 + X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2. We will say that a (sequence of)

events A = A(N) holds with overwhelming probability if P(A(N)) ≥ 1 − N−D for any D > 0 and

N ≥ N0(D). In particular, under the conditions (2.1), we have hij ≺ N−1/2 andmaxk |λk| ≤ 3with
overwhelming probability.

We further introduce a notion quantifying the rate of weak convergence of distributions. We say

that a sequence of random variablesXN converges in distribution at a rate r(N) toX if for any t ∈ R

it holds that

E eitXN = E
itX +Ot (r(N)) ,

where we allow the coefficient of the rate to be t-dependent uniformly for |t| ≤ T for any fixed T . If
XN converges in distribution at a rate r(N), we write

XN
d= X +O (r(N)) .

In particular, this implies that

EΦ(XN ) = EΦ(X) +O (r(N))

for any analytic function Φ with compactly supported Fourier transform.

Our main result for the diagonal entries of f(H) is summarized in the following theorem. By per-

mutational symmetry there is no loss in generality in studying f(H)11 . By considering real and imag-

inary parts separately, from now on we always assume that f is real valued.

Theorem 2.2. Let the Wigner matrixH satisfy (2.1), sij = 1 for i 6= j and sii ≤ C for all i,E |h1j |4 =
σ4/N

2 for j = 2, . . . , N and Eh2
ij = σ2/N with some σ2, σ4 ∈ R. Moreover, let f ∈ BV ([−3, 3])

be some real-valued function of bounded variation and assume that h11
d= ξ11/

√
N where ξ11 is an N-

independent random variable. Then

f(H)11
d=

∫
f(x)µsc(dx) +

∆̂f + ξ11
∫
f(x)xµsc(dx)√
N

+

{
O
(
N−1

)
if f ′ ∈ L∞,

O
(
N−2/3

)
else,

(2.3)

where ∆̂f is a centered Gaussian random variable of variance

E

(
∆̂f

)2
= Vf,1 + V

(σ2)
f,1 − 2Vf,2 − (1 + σ2)Vf,3 + (σ4 − 2− σ2

2)Vf,4,(2.4)

and the Vf,i and V
(σ2)
f,1 are given by quadratic forms defined in (4.13).

More precisely, (2.3) means that, to leading order

f(H)11 =

∫
f(x)µsc(dx) +O≺

(
N−1/2

)
(2.5)

and, weakly

T
(N)
f

..=
√
N

[
f(H)11 −

∫
f(x)µsc(dx)

]
− ξ11

∫
f(x)xµsc(dx) ⇒ ∆̂f(2.6)

at a speed

E

(
T

(N)
f

)k
= E ∆̂k

f +




O
(

Ck(k/2)!√
N

)
if f ′ ∈ L∞,

O
(

Ck(k/2)!

N1/6

)
else

for all k. The speed of convergence in the Lévy metric dL is given by

dL(T
(N)
f , ∆̂f ) ≤ C(f)

log logN√
logN

(2.7)

with some constant depending on f .

The corresponding result for the off diagonal terms is as follows.
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Theorem 2.3. Under the assumptions of Theorem 2.2,

f(H)12
d=

1√
N

[
∆̃f + ξ12

∫
f(x)xµsc(dx)

]
+

{
O
(
N−1

)
if f ′ ∈ L∞,

O
(
N−2/3

)
else,

(2.8)

where ∆̃f is a centered complex Gaussian satisfying

E ∆̃2
f = V

(σ2)
f,1 − Vf,2 − σ2Vf,3, E

∣∣∣∆̃f

∣∣∣
2

= Vf,1 − Vf,2 − Vf,3.

and the Vf,i and V
(σ2)
f,1 are defined in (4.13).

More precisely, (2.8) means that

f(H)12 = O≺
(
N−1/2

)
(2.9)

and, introducing the notation

S
(N)
f

..=
√
Nf(H)12 − ξ12

∫
f(x)xµsc(dx),

we have that

E

(
S

(N)
f

)k (
S

(N)
f

)l
= E ∆̃k

f∆̃f

l

+




O
(

((k+l)/2)!√
N

)
if f ′ ∈ L∞,

O
(

((k+l)/2)!

N1/6

)
else

holds for all k, l ∈ N. The analogues of (2.6) and (2.7) also hold for T
(N)
f replaced with S

(N)
f .

The fluctuation results in Theorems 2.2 and 2.3 for test functions satisfying the stronger regularity

assumption (1.2) and without explicit error terms have been proven in [10, 11].

We also remark that (2.6) implies the joint asymptotic normality of the fluctuations of f(H(N))11

for several test functions. More precisely, for any f ∈ BV we define T
(N)
f via (2.6). Then for any given

functions f1, f2, . . . , fk ∈ BV , the random k-vector
(
T

(N)
f1

, T
(N)
f2

, . . . , T
(N)
fk

)

weakly converges to a Gaussian vector with covariance given via the variance (2.4) using the parallelo-

gram identity. Similar result holds for the joint distribution of the off diagonal elements fk(H)12. One
may specialize this result to the case when f is a characteristic function, i.e. we may define

T (N)
x

..= T
(N)
1[−3,x]

, x ∈ [−3, 3],

where1[a,b] is the characteristic function of the interval [a, b]. Clearly, the finite dimensionalmarginals

of the sequence of stochastic processes {T (N)
x , x ∈ [−3, 3]} are asymptoticallyGaussian. The tightness

remains an open question.

3. Pleijel’s inversion formula

Our main tool relating f(H)ij to the resolvent G = G(z) = (H − z)−1 is summarized in the

followingproposition. We formulate it for general probabilitymeasuresµ supported on some [−K,K]
and their Stieltjes transform

mµ(z) =

∫
1

λ− z
µ(dλ).

Later we will apply the proposition to µ = ρN and µ = ρ̃N with ρN , ρ̃N being the spectral measures

of typical diagonal and off-diagonal entries
∫

f dρN = f(H)11,

∫
f dρ̃N = f(H)12.
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Proposition 3.1. Let L > K > 0 and let µ denote a probability measure which is supported on [−K,K]
and let f ∈ BV ([−L,L]) be a function of bounded variation which is compactly supported in [−L,L].
Then

∫
f(λ)µ(dλ) =

1

2π

∫∫

IMη0

mµ(x+ iη) dη df(x) +
1

π

∫ L

−L

f(x)ℑmµ(x+Mi) dx

(3.1)

+O
(
η0 ‖mµ(·+ iη0)‖L1(|df |)

)

=
1

2π

∫∫

IMη0

mµ(x+ iη) dη df(x) +O
(
η0 ‖mµ(·+ iη0)‖L1(|df |) +

1

M
‖f‖1

)

holds for any η0,M > 0 where IMη0
..= [−L,L]× ([−M,M ] \ [−η0, η0]), ‖·‖1 = ‖·‖L1(dx) and df

is understood as the (signed) Lebesgue–Stieltjes measure.

Before going into the proof, we present a special case of Proposition 3.1. If f = 1[x,x′] , then (3.1) can

be written as the path integral

µ([x, x′]) =
1

2πi

∫

γ(x,x′)

mµ(z) dz +O
(
η0[|mµ(x+ iη0)|+

∣∣mµ(x
′ + iη0)

∣∣]
)
,(3.2)

where γ(x, x′) is the chain indicated in Figure (1c). We also want to remark that for our purposes (3.1)

is favorable over the Helffer-Sjöstrand representation, as used in [4], since it requires considerably less

regularity on f .

Proof of Proposition 3.1. From [13, Eq. (5)] we know that

µ([−K,x)) =
1

2πi

∫

L(x)

mµ(z) dz +
η0
π
ℜmµ(z0) +O (η0ℑmµ(z0)) ,(3.3)

whereL(x) is a directed path as indicated in Figure 1a and z0 = x+ iη0 , η0 > 0.

−K Kx−L L

−M

M

−η0

η0

(a) Path L(x)

−K Kx−L L

−M

M

−η0

η0

(b) PathR(x)

−K Kx−L L

−M

M

−η0

η0

x′

(c) Chain γ(x, x′)

Figure 1. Integration paths

By the definition of the Lebesgue–Stieltjes integral for functions of bounded variation we have that
∫

f(λ)µ(dλ) =

∫ L

−L

(∫
1(λ ≥ x)µ(dλ)

)
df(x) =

∫ L

−L

µ([x,K]) df(x).

By virtue of (3.3) we can write

∫
f(λ)µ(dλ) =

1

π

∫ L

−L

(
1

2i

∫

R(x)

mµ(z) dz

)
df(x) +O

(
η0 ‖mµ(·+ iη0)‖L1(|df |)

)
,

whereR(x) is the path indicated in Figure 1b and |df | indicates the total variation measure of df . We

then write out the inner integral as

1

2i

∫

R(x)

mµ(z) dz =

∫ M

η0

ℜmµ(x+ iη) dη +

∫ L

x

ℑmµ(y + iM) dy −
∫ M

0

ℜmµ(L+ iη) dη.
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Since the last term is x-independent, it will vanish after integrating against df since we assumed f to

be compactly supported. For the second term we find
∫

f(λ)µ(dλ) =
1

π

∫ L

−L

∫ M

η0

ℜmµ(x+ iη) dη df(x) +
1

π

∫ L

−L

f(x)ℑmµ(x+ iM) dx

+O
(
η0 ‖mµ(·+ iη0)‖L1(|df |)

)
.

Since |ℑmµ(x+ iM)| ≤ 1/M we thus have
∫

f(λ)µ(dλ)=
1

π

∫ L

−L

∫ M

η0

ℜmµ(x+ iη) dη df(x)+O
(
η0 ‖mµ(·+ iη0)‖L1(|df |) +

1

M
‖f‖1

)

for any η0,M > 0. For applications it turns out to be favorable to get rid of the real part which we can
by noting that 2ℜmµ(z) = mµ(z) +mµ(z) and therefore
∫

f(λ)µ(dλ) =
1

2π

∫∫

IMη0

mµ(x+ iη) dη df(x) +O
(
η0 ‖mµ(·+ iη0)‖L1(|df |) +

1

M
‖f‖1

)
,

where we recall IMη0 = [−L,L]× ([−M,M ] \ [−η0, η0]). �

We finally note that a variant of Proposition 3.1 could also be proven directly without appealing to

the contour integration from [13]. The key computation in that direction is summarized in the following

Lemma which we establish here for later convenience.

Lemma 3.2. Let f ∈ BV ([−L, L]) be compactly supported and let g be a function which is analytic away

from the real axis and satisfies g(z) = g(z). Then for any η0,M > 0 we have that

1

2π

∫∫

IMη0

g(x+ iη) dη df(x) =
1

π

∫ L

−L

f(x)ℑg(x+ iη0) dx+O
(
‖f‖1 max

x∈[−L,L]
|g(x+ iM)|

)
.

Applying Lemma 3.2 to g = mµ yields, modulo an error term,

1

2π

∫∫

IMη0

mµ(x+ iη) dη df(x) ≈
∫ ∫ L

−L

f(x)
1

π

η0
(λ− x) + η2

0

dxµ(dλ)

and taking the limit η0 → 0 makes the inner integral tend to f(λ) in L1-sense. In this way we can

establish a variant of Proposition 3.1, albeit with a weaker error estimate.

Proof of Lemma 3.2. This follows from the computation
∫∫

IMη0

g(x+ iη) dη df(x) = −i

∫

∂IMη0

f(x)g(z) dz = 2

∫ 3

−3

f(x)ℑ [g(x+ iη0)− g(x+ iM)] dx

= 2

∫ 3

−3

f(x)ℑg(x+ iη0) dx+O
(
‖f‖1 max

x∈[−3,3]
|g(x+ iM)|

)
,

where the first step follows from Stokes’ or Green’s Theorem. �

4. Diagonal entries

Wefirst prove Theorem2.2 about the diagonal entries of f(H). The spectralmeasure corresponding

to the (1, 1)-matrix element, ρN defined as
∫

f dρN = f(H)11

is concentrated in [−2.5, 2.5]with overwhelming probability. We canwithout loss of generality assume

that f is compactly supported in [−3, 3] since smoothly cutting off f outside the spectrum does not

change the result. Applying Proposition 3.1 to µ = ρN with K = 2.5, L = 3, we find that (using

z = x+ iη, z0 = x+ iη0)

f(H)11 =
1

2π

∫∫

IMη0

G(z)11 dη df(x) +O≺

(
η0

∫
|G(z0)11|df(x) + 1

M
‖f‖1

)
.(4.1)
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To analyseG(z)11 we recall the Schur complement formula

G(z)11 =
1

h11 − z −
〈
h, Ĝ(z)h

〉 , whereH =

(
h11 h∗

h Ĥ

)
, Ĝ(z) ..= (Ĥ − z)−1.

To study the asymptotic behavior of G(z)11 we rely on the local semicircle law in the averaged form

(see [5] or [3, Theorem 2.3]) applied to the resolvent of the minor

m̂N(z) =
1

N
Tr Ĝ(z) = m(z) +O≺

(
1

N |η|

)
,(4.2)

and its entry-wise form

G(z)ij − δijm(z) ≺ 1√
N |η|

(4.3)

which both hold true for all |η| = |ℑz| > η0 ≫ N−1 . Herem denotes the Stieltjes transform of the

semicircular distribution µsc,m(z) ..=
∫
(λ− z)−1 µsc(dλ).

Since by (4.3),
∫

|G(x+ iη0)11|df(x) =
∫

|m(x+ iη0)|df(x) +O≺

(∫ ∣∣∣∣
1√
Nη0

∣∣∣∣ df(x)
)

≺ ‖df‖

for η0 ≫ 1/N , where ‖df‖ is the total variation norm of the Lebesgue–Stieltjes measure df , we can
write (4.1) as

f(H)11 =
1

2π

∫∫

IMη0

G(x+ iη)11 dη df(x) +O≺
(
η0 ‖df‖+M−1 ‖f‖1

)
.

In order to separate the leading order contribution from the fluctuation, we set

ΦN (z) = G(z)11 =
1

h11 − z −
〈
h, Ĝ(z)h

〉 , Φ̂N (z) =
1

−z − m̂N (z)
,

where m̂N(z) = 1
N

Tr Ĝ(z) and observe that

Φ̂N (z) =
1

−z −m(z)
+

O≺ (m(z)− m̂N(z))

−z −m(z)
= m(z) +O≺

(
1

N |η|

)
(4.4)

and by expanding both terms around [−z −m(z)]−1 = m(z),

ΦN (z)− Φ̂N (z) = m(z)2
[〈

h, Ĝ(z)h
〉
− m̂N (z)− h11

]
+O≺

(
1

N |η|

)
.(4.5)

Thus Φ̂N describes the leading order behavior, which is very close to a deterministic quantity, and the

leading fluctuation is solely described by ΦN − Φ̂N . We then can write

f(H)11 = Λ
(N)
f +

∆
(N)
f√
N

+O≺

(
η0 ‖df‖+

1

M
‖f‖1

)
,

where

Λ
(N)
f

..=
1

2π

∫∫

IMη0

Φ̂N (z) dη df(x) and ∆
(N)
f

..=
1

2π

∫∫

IMη0

√
N [ΦN − Φ̂N (z)] dη df(x).

The reason for the normalization will become apparent later since in this way ∆
(N)
f is an object of

order 1.
For the leading order term we use (4.4) and Proposition 3.1 to compute

Λ
(N)
f =

1

2π

∫

IMη0

m(z) dη df(x) +O≺

(
‖df‖

∫ M

η0

1

Nη
dη

)

=

∫
f(x)µsc(dx) +O≺

([
|logM |+ |log η0|

N
+ η0

]
‖df‖+ 1

M
‖f‖1

)
.
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For the fluctuation we use (4.5) to compute

∆
(N)
f =

1

2π

∫

IMη0

m(z)2
√
N
[〈

h, Ĝ(z)h
〉
− m̂N(z)− h11

]
dη df(x)

+O≺

(
|logM |+ |log η|√

N
‖df‖

)

= ∆̂
(N)
f − ξ11

1

2π

∫

IMη0

m(z)2 dη df(x) +O≺

(
|logM |+ |log η|√

N
‖df‖

)
(4.6)

= ∆̂
(N)
f + ξ11

∫
f(x)xµsc(dx) +O≺

(
|logM |+ |log η|√

N
‖df‖+ η0 +

1

M2
‖f‖1

)
,

where the last step followed from Lemma 3.2 and

ξ11 =
√
Nh11, ∆̂

(N)
f

..=
1

2π

∫

IMη0

m(z)2X(z) dη df(x), X(z)=
√
N
[〈

h, Ĝ(z)h
〉
− m̂N (z)

]
.

Wenowconcentrate on the computationofE
(
∆̂

(N)
f

)2
. We state themain estimate ofEX(z)X(z′)

as a lemma.

Lemma 4.1. Under the assumptions of Theorem 2.2 it holds that

EX(z)X(z′) =
m(z)2m(z′)2

1−m(z)m(z′)
+

σ3
2m(z)2m(z′)2

1− σ2m(z)m(z′)
+ (σ4 − 1)m(z)m(z′) +O≺

(
Ψ√
NΦ

)
,

(4.7)

where

Ψ ..=
1√
|ηη′|

(
1√
|η|

+
1√
|η′|

+
1√

N |ηη′|

)

Φ ..= 1|x|,|x′|≤2

(
|η|+

∣∣η′∣∣+
∣∣x− x′∣∣2

)
+
[
(|x| − 2)+ + (

∣∣x′∣∣− 2)+
]

and z = x+ iη, z′ = x′ + iη′.

We remark that in the |x− x′|2 term in Φ could be replaced by |x− x′| but we will not need this
stronger bound here.

Proof of Lemma 4.1. From (35) in [4] we know that

E

[
X(z)X(z′)|Ĥ

]
=

1

N

∑

i6=j

(
ĜijĜ

′
ji + σ2

2ĜijĜ
′
ji

)
+

σ4 − 1

N

∑

i

ĜiiĜ
′
ii(4.8)

where, Ĝij
..= Ĝ(z)ij , Ĝ

′
ij

..= Ĝ(z′)ij . The last term we directly estimate as

σ4 − 1

N

∑

i

ĜiiĜ
′
ii = (σ4 − 1)m(z)m(z′) +O≺

(
1√
N |η|

+
1√
N |η′|

+
1

N
√

|ηη′|

)
.(4.9)

Furthermore, in Lemma 9 of [4] self-consistent equations for the first two terms on the rhs. of (4.8) were

derived. We recall that

[1−m(z)m(z′)]
1

N

∑

i6=j

ĜijĜ
′
ji = m(z)2m(z′)2 +O≺

(
Ψ√
N

)
,

[1− σ2m(z)m(z′)]
1

N

∑

i6=j

ĜijĜ
′
ij = σ2m(z)2m(z′)2 +O≺

(
Ψ√
N

)
,

Using the straightforward inequality |m(z)| ≤ 1 − c |η|, which holds for some small c > 0 and z in

the compact region [−10, 10] × [−i, i], we find
∣∣1−m(z)m(z′)

∣∣ ≥ c(|η|+
∣∣η′∣∣).
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Since |m| decays outside the spectrum [−2, 2] we have that |m(z)| ≤ 1− c′(|x| − 2)+ for |z| ≤ 10,
and therefore ∣∣1−m(z)m(z′)

∣∣ ≥ c′(|x| − 2)+ + c′(
∣∣x′∣∣− 2)+.

Moreover, in the remaining regime where both |η| , |η′| ≪ 1 and |x| , |x′| ≤ 2, it holds that
∣∣1−m(z)m(z′)

∣∣ ≥ 1−ℜ[m(z)m(z′)] = 1− (ℜm(z))(ℜm(z′)) + (ℑm(z))(ℑm(z′))

≥ c′′
(
1− xx′

4
±

√
4− x2

√
4− x′2

4

)
≥ c′′(x− x′)2,

where the ± depends on the signs of η, η′ and we allow for the constant c′′ to change in the last in-

equality. This estimate follows from the explicit formula form(z). Putting these inequalities together,
we therefore find a constantC > 0 such that in the compact region [−3, 3]× [−iM, iM ] it holds that
C |1−m(z)m(z′)| ≥ Φ , from which we obtain

1

N

∑

i6=j

ĜijĜ
′
ji =

m(z)2m(z′)2

1−m(z)m(z′)
+O≺

(
Ψ√
NΦ

)
,(4.10)

1

N

∑

i6=j

ĜijĜ
′
ij =

σ2m(z)2m(z′)2

1− σ2m(z)m(z′)
+O≺

(
Ψ√
NΦ

)
.

Now (4.7) follows from combining (4.8), (4.9) and (4.10). �

Using Lemma 4.1 we then compute

E

(
∆̂

(N)
f

)2
=

1

(2π)2

∫∫∫∫

IMη0

m(z)2m(z′)2 EX(z)X(z′) dη df(x)

=
1

(2π)2

∫∫∫∫

IMη0

[ m(z)4m(z′)4

1−m(z)m(z′)
+

σ3
2m(z)4m(z′)4

1− σ2m(z)m(z′)

+ (σ4 − 1)m(z)3m(z′)3
]
dη df(x) +O

(∫∫∫∫

IMη0

Ψ√
NΦ

dη df(x)

)
,

where dη = dη dη′ and df(x) = df(x) df(x′). To estimate the error term we have to compute

∫∫ 2

−2

∫∫ M

η0

1

η + η′ + |x− x′|2
1√
ηη′

(
1√
η
+

1√
η′ +

1√
Nηη′

)
dη df(x)

and readily check that

∫∫∫∫

IMη0

Ψ√
NΦ

dη df(x) ≺
{
(|logM |+ |log η0|)/

√
N if f ′ is bounded,

(|logM |+ |log η0|)/
√
Nη0 else.

By using Lemma 3.2 and organizing the contributions from the boundary terms at η0 and−η0 , we

find that the leading order ofE(∆̂
(N)
f )2 becomes

1

2π2
ℜ
∫∫ 3

−3

f(x)f(x′)

([
m(z0)

4m(z′0)
4

1−m(z0)m(z′0)
+

σ3
2m(z0)

4m(z′0)
4

1− σ2m(z0)m(z′0)
+ (σ4 − 1)m(z0)

3m(z′0)
3

]

−
[

m(z0)
4m(z′0)

4

1−m(z0)m(z′0)
+

σ3
2m(z0)

4m(z′0)
4

1− σ2m(z0)m(z′0)
+ (σ4 − 1)m(z0)

3m(z′0)
3

])
dx+O≺

(‖f‖1
M3

)
,

(4.11)

where z0 = x+ iη0 and z
′
0 = x′ + iη0 . Since

a4

1− a
=

a

1− a
− a− a2 − a3
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and for any fixed k ∈ N

1

2π2
ℜ
∫∫ 3

−3

f(x)f(x′)
[
m(z0)

km(z′0)
k −m(z0)

km(z′0)
k
]
dx

=

(
1

π
ℑ
∫ 2

−2

f(x)m(x)k dx

)2

+O≺ (η0)

we can conclude that (4.11) becomes

1

2π2
ℜ
∫∫ 3

−3

f(x)f(x′)

(
m(z0)m(z′0)

1−m(z0)m(z′0)
− m(z0)m(z′0)

1−m(z0)m(z′0)

)
dx

+
1

2π2
ℜ
∫∫ 3

−3

f(x)f(x′)

(
m(z0)m(z′0)

1− σ2m(z0)m(z′0)
− m(z0)m(z′0)

1− σ2m(z0)m(z′0)

)
dx

− 2

(
1

π
ℑ
∫

R

f(x)m(x) dx

)2

− (1 + σ2)

(
1

π
ℑ
∫

R

f(x)m(x)2 dx

)2

+ (σ4 − 2− σ2
2)

(
1

π
ℑ
∫

R

f(x)m(x)3 dx

)2

+O
(‖f‖L1

M3
+ η0

)
.(4.12)

The first term of (4.12) was already computed on page 17 of [4]. The computation of the second term is

very similar to the first one and the remaining terms are routine calculations. We arrive at

E

(
∆̂

(N)
f

)2
= Vf,1 + V

(σ2)
f,1 − 2Vf,2 − (1 + σ2)Vf,3 + (σ4 − 2− σ2

2)Vf,4

+O
(
η0 +

‖f‖1
M3

+
|logM |+ |log η0|√

Nη0
‖df‖

)

in the general case and

E

(
∆̂

(N)
f

)2
= Vf,1 + V

(σ2)
f,1 − 2Vf,2 − (1 + σ2)Vf,3 + (σ4 − 2− σ2

2)Vf,4

+O
(
η0 +

‖f‖1
M3

+
|logM |+ |log η0|√

N

∥∥f ′∥∥
L∞

)

in the case of f with bounded derivative f ′ ∈ L∞([−3, 3]), where

Vf,1
..=

∫
f(x)2 µsc(dx),

V
(σ2)
f,1

..=

∫∫
f(x)f(y)(1− σ2

2)

1− xyσ2 + (x2 + y2 − 2)σ2
2 − xyσ3

2 + σ4
2

µsc(dx)µsc(dy)

Vf,2
..=

(∫
f(x)µsc(dx)

)2

, Vf,3
..=

(∫
f(x)xµsc(dx)

)2

,

Vf,4
..=

(∫
f(x)(x2 − 1)µsc(dx)

)2

.(4.13)

We note that V
(σ2)
f,1 simplifies to V

(1)
f,1 = Vf,1 and V

(0)
f,1 = Vf,2 in the two important cases σ2 = 0, 1.

We now choose M = N and η0 depending on the regularity of f . In the general case of f ∈
BV ([−3, 3]) it turns out that η0 = N−2/3 minimizes the error of E

(
∆̂

(N)
f

)2
, whereas for f with
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bounded derivative, a choice of η0 = N−1+ǫ for any small ǫ > 0 is optimal. Thus

E

(
∆̂

(N)
f

)2
= E

(
∆̂f

)2
+





O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else.

(4.14)

where ∆̂f is a centered Gaussian of variance

E

(
∆̂f

)2
= Vf,1 + V

(σ2)
f,1 − 2Vf,2 − (1 + σ2)Vf,3 + (σ4 − 2− σ2

2)Vf,4.

For higher moments we recall the following Wick type factorization Lemma from [4].

Lemma 4.2. For k ≥ 2 and z1, . . . , zk ∈ C with zl = xl ± iηl and ηl > 0 we have that

E[X(z1) . . . X(zk)] =
∑

π∈P2([k])

∏

{a,b}∈π

E[X(za)X(zb)] +O≺



 1√
Nη

∑

a 6=b

1√
ηaΦa,b



 ,(4.15)

where [k] ..= {1, . . . , k}, η = η1 . . . ηk , P2(L) are the partitions of a set L into subsets of size 2 and

Φa,b
..= 1|xa|,|xb|≤2

(
|ηa|+ |ηb|+ |xa − xb|2

)
+ [(|xa| − 2)+ + (|xb| − 2)+] .

The error term in (4.15) is slightly stronger than that in [4] since theΦa,b includes a |xa − xb|2 . This
strengthening follows along the lines of the original proof by using the more precise analysis of the

self consistent equation outlined in Lemma 4.1. We check that integrating the error term from (4.15)

over (IMη0 )
k , with η0 being chosen as above according to the regularity of f , again gives asymptotically

N−1/2 in the case of bounded f ′ andN−1/6 in the general case. By integrating the Wick type product

and using (4.14) we therefore arrive at

E

(
∆̂

(N)
f

)k
= E

(
∆̂f

)k
+





O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else.

(4.16)

We note that the error terms are implicitly k-dependent. By counting the number of pair partitions

we find that, to the leading order in N , the implicit coefficients scale like Ck(k/2)! with a constant

depending on f .

Recalling (4.6) and the definition of T
(N)
f from (2.6), we conclude that the overall fluctuations have

moments

E

(
T

(N)
f

)k
= E

(
∆̂f

)k
+





O
(
Ck(k/2)!N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O
(
Ck(k/2)!N−1/6

)
else.

(4.17)

Let φN(t) denote the characteristic function of T
(N)
f and φ(t) the characteristic function of the

Gaussian variable ∆̂f . Then the moment bound (4.17) implies that

|φN(t)− φ(t)| ≤ CN−1/6teCt2

with some constantC depending on f . Using the well-known bound (see, e.g., [18, Theorem 1.4.13.] and

the references therein)

dL(F,G) ≤ 1

π

∫ T

0

|φF (t)− φG(t)|
dt

t
+

2e log T

T

for any two distributions F and G with characteristic functions φF and φG, we immediately obtain

(2.7) by choosing T = c
√
logN . This completes the proof of Theorem 2.2.
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5. Off-diagonal entries

For the decomposition

H =



h11 h12 h∗

1

h21 h22 h∗
2

h1 h2 Ĥ




we find from the Schur complement formula that

G(z)12 = − g12
g11g22 − g12g21

= −m(z)2g12 +O≺

(
1

N |η|

)
,

where gij ..= hij − δijz − 〈hi, G(z)hj〉.
We now setY (z) = Y (N)(z) ..=

√
N
〈
h1, Ĝ(z)h2

〉
and begin to compute (all summation indices

run from 3 toN )

E

[
Y (z)Y (z′)|Ĥ

]
= N

∑

a,b,c,d

E

[
h1aĜabhb2h1cĜ

′
cdhd2|Ĥ

]
(5.1)

=
σ2
2

N

∑

a,b

ĜabĜ
′
ab +O≺

(
Ψ

N

)
=

σ2
2m(z)m(z′)

1− σ2m(z)m(z′)
+O≺

(
Ψ√
NΦ

)

and

E

[
Y (z)Y (z′)|Ĥ

]
= N

∑

a,b,c,d

E

[
h1aĜabhb2h2cĜ

′
cdhd1|Ĥ

]
(5.2)

=
1

N

∑

a,b

ĜabĜ
′
ba +O≺

(
Ψ

N

)
=

m(z)m(z′)

1−m(z)m(z′)
+O≺

(
Ψ√
NΦ

)
.

For both estimates we made use of the fact the hab are centered and therefore have to appear at least

twice to have non-zero expectation. The main contribution comes from the pairing a = d, b = c.
Some exceptional pairings, such as the four-pairing a = b = c = d, were incorporated in the error

term by their reduced combinatorics. From Proposition 3.1 we then find that

f(H)12 =
1

π

∫∫

IMη0

m(z)2
[〈

h1, Ĝ(z)h2

〉
− h12

]
dη df(x) +O≺

(‖df‖
N

)
.

For the second term it follows, just as before, that

1

π

∫∫

IMη0

m(z)2h12 dη df(x) = h12

∫
f(x)xµsc(dx) +O≺ (η0) .

For the first term we set

∆̃
(N)
f

..=

∫∫

IMη0

m(z)2Y (z) dη df(x)

and by a computation analogous to (4.11) using (5.1) and an expansion of the form

a3

1− a
=

a

1− a
− a− a2

we arrive at

E

(
∆̃

(N)
f

)2
= V

(σ2)
f,1 − Vf,2 − σ2Vf,3 +




O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else.

Similarly, from (5.2) we find that

E

∣∣∣∆̃(N)
f

∣∣∣
2

= Vf,1 − Vf,2 − Vf,3 +




O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else.

.
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Finally, due to aWick type theorem for Y (z)which is proved along the lines of Lemma 4.2 we arrive at

E

(
S

(N)
f

)k (
S

(N)
f

)l
= E

(
∆̃f

)k (
∆̃f

)l
+





O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else,

(5.3)

where ∆̃f is a centered complex Gaussian such that

E ∆̃2
f = V

(σ2)
f,1 − Vf,2 − σ2Vf,3, E

∣∣∣∆̃f

∣∣∣
2

= Vf,1 − Vf,2 − Vf,3.

We have proven Theorem 2.3.

References

1G. W. Anderson and O. Zeitouni, A CLT for a band matrix model, Probab. Theory Related Fields 134,
283–338 (2006), MR2222385.
2Z. Bao, G. Pan, and W. Zhou, Central limit theorem for partial linear eigenvalue statistics of Wigner
matrices, J. Stat. Phys. 150, 88–129 (2013), MR3018879.
3L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, The local semicircle law for a general class of random matrices,
Electron. J. Probab. 18, no. 59, 58 (2013), MR3068390.

4L. Erdős and D. Schröder, Fluctuations of rectangular Young diagrams of interlacing Wigner eigenvalues,
Int. Math. Res. Not. IMRN, 3255–3298 (2018), MR3805203.
5L. Erdős, H.-T. Yau, and J. Yin, Rigidity of eigenvalues of generalized Wigner matrices, Adv. Math. 229,

1435–1515 (2012), MR2871147.
6I. Jana, K. Saha, and A. Soshnikov, Fluctuations of linear eigenvalue statistics of random band matrices,
Theory Probab. Appl. 60, 407–443 (2016), MR3568789.
7A. Lytova, On non-Gaussian limiting laws for certain statistics of Wigner matrices, Zh. Mat. Fiz. Anal.

Geom. 9, 536–581, 611, 615 (2013), MR3155024.
8A. Lytova and L. Pastur, Central limit theorem for linear eigenvalue statistics of random matrices with
independent entries, Ann. Probab. 37, 1778–1840 (2009), MR2561434.

9A. Lytova and L. Pastur, Fluctuations of matrix elements of regular functions of Gaussian randommatrices,
J. Stat. Phys. 134, 147–159 (2009), MR2489497.

10A. Lytova and L. Pastur, Non-gaussian limiting laws for the entries of regular functions of the Wigner
matrices, preprint (2011), arXiv:1103.2345.

11S. O’Rourke, D. Renfrew, and A. Soshnikov, On fluctuations of matrix entries of regular functions
of Wigner matrices with non-identically distributed entries, J. Theoret. Probab. 26, 750–780 (2013),

MR3090549.
12A. Pizzo, D. Renfrew, and A. Soshnikov, Fluctuations of matrix entries of regular functions of Wigner
matrices, J. Stat. Phys. 146, 550–591 (2012), MR2880032.
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