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CORRELATED RANDOM MATRICES: BAND RIGIDITY AND EDGE UNIVERSALITY

JOHANNES ALT∗†, LÁSZLÓ ERDŐS∗†, TORBEN KRÜGER‡§, AND DOMINIK SCHRÖDER∗†

Abstract. We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner
matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In
particular, we establish a strong form of band rigiditywhich excludesmismatches between location and label of eigenvalues
close to internal edges in these general models.

1. Introduction

Spectral statistics of large randommatrices exhibit a remarkably robust universality pattern; the local distribution
of eigenvalues is independent of details of the matrix ensemble up to symmetry type. In the bulk of the spectrum this
was first observed by Wigner and formalized by Dyson and Mehta [4141] who also computed the correlation functions
of the Gaussian ensembles in the 1960’s. At the spectral edges the correct statistics was identified by Tracy andWidom
both in the GUE and GOE ensembles [4949, 5050] in the mid 1990’s.

Beyond Gaussian ensembles, the first actual proofs of universality for Wigner matrices took different paths in the
bulk and at the edge. While in the bulk only limited progress was made until a decade ago, the first fairly general edge
universality proof by Soshnikov [4646] appeared shortly after [4949, 5050]. Themain reason is that edge statistics is accessible
via an ingenious but laborious extension of the classical moment method ofWigner. In contrast, the bulk universality
required fundamentally new tools based on resolvents and the analysis of the Dyson Brownian motion developed in
a series of work [1818, 1919, 2222, 2323, 2727, 2828]. This method, called the three-step strategy, is summarized in [2626]. In certain cases
parallel results [4747, 4848] were obtained via the four moment comparison theorem.

Despite its initial success [4646], the moment method for edge universality seems limited when it comes to general-
isations beyond Wigner matrices with i.i.d. entries; the resolvent approach is much more flexible. Its primary goal
is to establish local laws, i.e. proving that the local eigenvalue density on scales slightly above the eigenvalue spacing
becomes deterministic as the dimension of the matrix tends to infinity. Refined versions of the local law even identify
resolvent matrix elements with a spectral parameter very close to the real axis. In contrast to the bulk, at the spec-
tral edge this information can be boosted to detect individual eigenvalue statistics by comparison with the Gaussian
ensemble. These ideas have led to the proof of the Tracy-Widom edge universality for Wigner matrices with high
moment conditions [2828], see also [4848] with vanishing third moment. Finally, a necessary and sufficient condition on
the entry distributions was found in [4040] following an almost optimal necessary condition in [77]. Direct resolvent
comparison methods have been used to prove Tracy-Widom universality for deformed Wigner matrices, i.e. matrices
with a deterministic diagonal expectation, [3737], even in a certain sparse regime [3838]. The extension of this approach to
sample covariance matrices with a diagonal population covariance matrix at extreme edges [3939] has resolved a long
standing conjecture in the statistics literature. Tracy-Widom universality for general population covariance matrices,
including internal edges, was established in [3232].

The next level of generality is to depart from the i.i.d. case. While the resolvent method for proving local laws can
handle generalized Wigner ensemble, i.e. matrices H = (hab) with merely stochastic variance profile

∑
b Var hab = 1,

varying variances cannot be simultaneously matched with a GUE/GOE ensemble so the direct comparison does not
work. The problemwas resolved in [1313] with a general approach that also covered invariant β-ensembles. WhileDyson
Brownian motion did not play a direct role in [1313], the proof used the addition of a small Gaussian component and the
concept of local ergodicity of the Gibbs state; ideas developed originally in [2323, 2424] in the context of bulk universality.
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A fully dynamical approach to edge universality, following an earlier development in the bulk based on the three-
step strategy, has recently been given in [3434]. In general, the first step within any three-step strategy is the local law
providing a priori bounds. The second step is the fast relaxation to equilibrium of the Dyson Brownian motion that
proves universality for Gaussian divisible ensembles. The third step is a perturbative comparison argument to remove
the small Gaussian component. Recent advances in the bulk have crystallized that the only model dependent step in
this strategy is the first one. The other two steps have been formulated as very general “black-box” tools whose only
input is the local law see [2525, 3434–3636]. Using the three-step approach and [3434], edge universality for sparse matrices was
proved in [3030] and for correlated Gaussian matrices with a quite specific two-scale correlation structure in [11]. All
these edge universality results only cover the extremal edges of the spectrum, while the self-consistent (deterministic)
density of states ̺may be supported on several intervals.

Multiple interval support becomes ubiquitous forWigner-type matrices [44], i.e. matrices with independent entries
and general expectation and variance profile. A prerequisite for Tracy-Widomuniversality, the square root singularity
in the density, even at the internal edges, is a universal phenomenon for a very large class of random matrices since
it is inherent to the underlying Dyson equation. This was demonstrated for Wigner-type matrices in [22] and here we
extend it for correlated random matrices with a general correlation structure. We remark that a second singularity
type, the cubic root cusp, is also possible; the corresponding analysis of the Dyson equation is given in [55], while the
optimal local law and the universal spectral statistics are proven in [1616, 2121].

In the current paper we show that the eigenvalue statistics at the spectral edges of ̺ follow the Tracy-Widom
distribution, assuming only a mild decay of correlation between entries, but otherwise no special structure. We can
handle any internal edge as well. In the literature internal edge universality for matrices of Wigner-type has first been
established for deformed GUE ensembles [4545] which critically relied on contour integral methods, only available for
Gaussian models in the Hermitian symmetry class. A similar method handled extreme eigenvalues of deformed GUE
[1414, 3131]. A more general approach for internal edges has been given in [3232] that could handle any deformed Wigner
matrices with general expectation, as long as the variance profile is constant, by comparing it with the corresponding
Gaussian model. Our method requires neither constant variance nor independence of the matrix elements.

The proof of our general form of edge universality at all internal edges follows the three-step strategy and uses
the recent paper [3434] for the second step and well established canonical arguments for the third step that will be
summarized. The backbone of the work is thus the first step, an optimal local law at the spectral edges, the proof of
which has two well separated components; a probabilistic and a deterministic one. The probabilistic component is
insenstive to the location in the spectrum and follows directly from [1717]. Here we present a compact and practically
self-contained proof of the deterministic component of the local law that can be followedwithout consulting previous
works; we only rely on some general results from functional analysis proven in [33] and someminor technicality on the
Dyson equation from [55]. First, we develop a detailed shape analysis of the self-consistent density ̺ near the regular
edges, generalizing the previous bulk result from [33] and the singularity analysis in the independent case from [22].
Second, we prove a strong version of the local law that excludes eigenvalues in the internal gaps. Third, we establish
a topological rigidity phenomenon for the bands, the connected components that constitute the support of ̺.

Band rigidity is a new phenomenon for the Dyson equation and it asserts that the number of eigenvalues within
each band exactly matches the mass that ̺ predicts for that band. The topological nature of band rigidity guarantees
that this mass remains constant along the deformations of the model as long as the gaps between the bands remain
open. A similar rigidity (also called “exact separation of eigenvalues”) has first been established for sample covariance
matrices in [88] and it also played a key role in Tracy-Widom universality proof at internal edges in [3232]. Note that
band rigidity is a much stronger concept than the customary rigidity in randommatrix theory [2828] that allows for an
uncertainty in the location ofN ǫ eigenvalues. In other words, there is no mismatch whatsoever between location and
label of the eigenvalues near the internal edges along the matrix Dyson Brownian motion, the label of the eigenvalue
uniquely determines to which spectral band it belongs.

Our result highlights a key difference between Wigner-type matrix models and invariant β-ensembles. For self-
consistent densities with multiple support intervals (the so calledmulti-cut regime), the number of particles (eigenval-
ues) close to some support interval fluctuates for invariant ensembles with general potentials [1212]. As a consequence
internal edge universality results (see e.g. [99, 4343]) require a stochastic relabelling of eigenvalues.

Our setup is a general N ×N random matrixH = H∗ with a slowly decaying correlation structure and arbitrary
expectation, under the very same general conditions as the recent bulk universality result from [1717]. The starting point
is to find the deterministic approximation of the resolventG(z) = (H − z)−1 with a complex spectral parameter z in
the upper half plane. This approximation is given by the solution M = M(z) to the Matrix Dyson Equation (MDE),
see (2.12.1) below. The resolvent G(z) approximately satisfies the MDE with an additive perturbation term which was
already shown to be sufficiently small in [1717]. This fact, combined with a careful stability and shape analysis of the
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MDE in Section 44 imply thatG is indeed close toM . In order to prove edge universality we use a correlatedOrnstein-
Uhlenbeck processHt which adds a small Gaussian component of size t to the originalmatrixmodel, while preserving
expectation and covariance. We prove that the resolvent satisfies the optimal local law uniformly along the flow and
appeal to the recent result from [3434] to prove edge universality for Ht whenever t ≫ N−1/3. In the final step we
perform a resolvent comparison together with our band rigidity to show that the eigenvalue correlation functions of
Ht matches those ofH as long as t ≪ N−1/6 which yields the desired edge universality.

After presenting our main results in Section 22, we then prove the optimal local law in Section 33. Section 44 contains
the analysis of the MDE. Both types of rigidity are shown in Section 55. Section 66 is devoted to the proof of edge
universality.

Notations. If for some constants c, C > 0 it holds that f ≤ Cg or cg ≤ f ≤ Cg, then we write f . g and f ∼ g,
respectively. These constants c, C may depend on some basic parameters which we call model parameters later.
We denote vectors by bold-faced lower case Roman letters x,y ∈ C

N , and matrices by upper case Roman letters
A,B ∈ C

N×N . The standard scalar product and Euclidean norm on C
N will be written as 〈x,y〉 and ‖x‖, while

we also write 〈A,B〉 ..= N−1 TrA∗B for the scalar product of matrices, and 〈A〉 ..= N−1 TrA. The usual operator
norm induced by the vector norm ‖·‖will be denoted by ‖A‖, while the Hilbert-Schmidt (or Frobenius) norm will be
denoted by ‖A‖hs ..=

√
〈A,A〉. The operator norms induced on linear maps CN×N → CN×N by ‖ · ‖hs and ‖ · ‖ are

denoted by ‖ · ‖sp and ‖ · ‖, respectively. The identity matrix in CN×N is indicated by I and the identity mapping on
CN×N by Id. For random variables X,Y, . . . we denote the joint cumulant by κ(X,Y, . . . ). For integers n we define
[n] ..= {1, . . . , n}.

2. Main results

We consider correlated real symmetric and complex Hermitian randommatrices of the form

H = A+W, EW = 0

with deterministic A ∈ CN×N and sufficiently fast decaying correlations among the matrix elements of W . The
matrix entries wab = wα are often labelled by double indices α = (a, b) ∈ [N ]2. The randomnessW is scaled in such
a way that

√
Nwα are random variables of order one11. This requirement ensures that the size of the spectrum of H

is kept of order 1, as N tends to infinity. Our first aim is to prove that the resolvent G = G(z) = (H − z)−1 is well
approximated by the solutionM = M(z) to theMatrix Dyson equation (MDE)

I + (z −A+ S[M ])M = 0, ℑM ..=
M −M∗

2i
> 0, S[R] ..= EWRW, z ∈ H ..= { z ∈ C | ℑz > 0 } (2.1)

in a neighbourhood around the edges of the spectrum. We suppress the dependence of G and M , and similarly of
many other quantities, on the spectral parameter z in our notation. Estimates on z-dependent quantities are always
meant uniformly for z in some specified domain. From the solutionM we define ̺ : H → R and extend it to the real
line

̺(z) ..=
1

π
ℑ 〈M(z)〉 , z ∈ H, ̺(τ) ..= lim

ηց0
̺(τ + iη), τ ∈ R. (2.2)

By [33, Proposition 2.2] the limit in (2.22.2) exists and ̺ is a Hölder continuous function on H ∪ R under Assumptions
(A)(A) and (E)(E) below. The self-consistent density of states is the restriction of ̺ to R which approximates the density of
eigenvalues ofH increasingly well asN tends to infinity. Its support, supp ̺ ⊂ R, is called the self-consistent spectrum.
We remark that ̺ on H is the harmonic extension of ̺|R. We now list our main assumptions, which are identical to
those from [1717], apart from the additional Assumption (G)(G), which was automatically satisfied in [1717], i.e. in the bulk
regime (cf. Remark 2.32.3 below). All constants in Assumptions (A)(A)–(G)(G) and Definition 2.42.4 are called model parameters.

Assumption (A) (Bounded expectation). There exists some constant C such that ‖A‖ ≤ C for all N .

Assumption (B) (Finite moments). For all q ∈ N there exists a constant µq such that E|
√
Nwα|q ≤ µq for all α.

Assumption (CD) (Polynomially decaying metric correlation structure). For the k = 2 point correlation we assume

∣∣∣κ
(
f1(

√
NW ), f2(

√
NW )

)∣∣∣ ≤ C2

√
E
∣∣f1(

√
NW )

∣∣2
√
E
∣∣f2(

√
NW )

∣∣2

1 + d(supp f1, supp f2)s
, (2.3a)

1In some previous works, as in [1717], the conventionH = A+W/
√
N with order onewα was used.
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for some s > 12 and all square integrable functions f1, f2. For k ≥ 3 we assume a decay condition of the form
∣∣∣κ
(
f1(

√
NW ), . . . , fk(

√
NW )

)∣∣∣ ≤ Ck

∏

e∈E(Tmin)

|κ(e)| , (2.3b)

where Tmin is the minimal spanning tree in the complete graph on the vertices 1, . . . , k with respect to the edge length
dist({i, j}) = d(supp fi, supp fj), i.e. the tree for which the sum of the lengths dist(e) is minimal, and κ({i, j}) = κ(fi, fj).
Here d is the standard Euclidean metric on the index space [N ]2 and supp f ⊂ [N ]2 denotes the set indexing all entries in√
NW that f genuinely depends on, and Ck < ∞ are some absolute constants.

Remark 2.1. All results in this paper and their proofs hold verbatim if Assumption (CD)(CD) is replaced by the more general
assumptions (C),(D) from [1717]. In particular, the metric structure imposed on the index space [N ]2 is not essential. For details
the reader is referred to [1717, Section 2.1].

Assumption (E) (Flatness). There exist constants 0 < c < C such that c 〈T 〉 ≤ S[T ] ≤ C 〈T 〉 for any positive semi-
definite matrix T .

Assumption (F) (Fullness). There exists a constant λ > 0 such that N E |TrBW |2 ≥ λTrB2 for any deterministic
matrix B of the same symmetry class (either real symmetric or complex Hermitian) as H .

Assumption (G) (Bounded self-consistent Green function). There exist constants ω∗,M∗ > 0 such that

sup
z

‖M(z)‖ ≤ M∗,

where the supremum is taken over all z ∈ H with |ℜz − τ0| ≤ ω∗ and 0 < ℑz ≤ 1.

Remark 2.2. Assumption (E)(E) is an effective mean field condition that provides upper and lower bounds on the variances of
the entries ofW . In fact it is equivalent to E |〈x,Wy〉|2 ∼ 1/N for all normalised x,y ∈ CN . Assumption (F)(F) is equivalent
to S − λSG remaining positivity preserving, where SG is the self-energy operator of a full GUE/GOE matrix.

Remark 2.3. The boundedness of ‖M‖ is automatically satisfied in the spectral bulk. At the edges, however, the boundedness
cannot be guaranteed under Assumptions (A)(A)–(E)(E) but has to be verified for each concrete model (see [55, Section 9] for a large
class of models for which ‖M‖ is guaranteed to be bounded).

Our main technical result is an optimal local law at regular edges τ0 ∈ ∂ supp ̺ asserting that G(z) = (H − z)−1 is
well approximated byM(z) in theN → ∞ limit. Around such an edge we consider the domain of spectral parameters
z = τ + iη whose imaginary part ℑz = η is slightly larger than 1/N , i.e. in the spectral domain

D
δ
γ
..=
{
z ∈ D

δ
∣∣ ℑz ≥ N−1+γ

}
with D

δ ..= { τ + iη | |τ − τ0| ≤ δ , 0 < η ≤ 1 } (2.4)

for any γ, δ > 0.

Definition 2.4 (Regular edge). We call an edge τ0 ∈ ∂ supp ̺ regular if the limit

lim
supp ̺∋τ→τ0

̺(τ)√
|τ − τ0|

=
γ
3/2
edge

π
(2.5)

exists for some slope parameter γedge that satisfies 0 < c∗ ≤ γedge ≤ c∗ < ∞ for some constants c∗, c∗.

Remark 2.5. We remark that there are several equivalent characterisations of regular edges. We chose (2.52.5) here because
it highlights that the essential prerequisite for Tracy-Widom universality is a local square-root singularity. According to the
classification result from [55] it follows that (2.52.5) is equivalent22 to assuming that the gap in supp ̺ adjacent to τ0 is of size & 1.

Theorem 2.6 (Edge local law). Let Assumptions (A)(A)–(E)(E) and (G)(G) be satisfied for some regular edge τ0 ∈ ∂ supp ̺. Then for
any D, γ, ǫ > 0 and sufficiently small δ > 0, there exists some C < ∞ depending only on these and the model parameters
such that with G = G(z) and M = M(z) we have the isotropic local law,

P

(
|〈x, (G −M)y〉| ≤ N ǫ ‖x‖ ‖y‖

(√
̺

Nℑz +
1

Nℑz

)
in D

δ
γ

)
≥ 1− CN−D (2.6a)

for all deterministic vectors x,y ∈ CN and the averaged local law,

P

(
|〈B(G −M)〉| ≤ N ǫ ‖B‖

Nℑz in D
δ
γ

)
≥ 1− CN−D (2.6b)

2 In fact, in [55, Section 7.6] it is proven that if the self-consistent spectrum supp ̺ has a macroscopic gap next to some τ0 ∈ ∂ supp ̺, then
̺ has a square root behaviour at τ0. Together with Theorem 4.14.1 later, this shows that regular edges in the sense of (2.52.5) are precisely those
τ0 ∈ ∂ supp ̺ which are adjacent to macroscopic gaps.
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for all deterministic matrices B ∈ CN×N . Moreover, at a distance at least N−2/3+ǫ away from the self-consistent spectrum
we have the improved averaged local law for any ǫ > 0

P

(
|〈B(G −M)〉| ≤ N ǫ ‖B‖

N dist(z, supp ̺)
in

{
z ∈ D

δ

∣∣∣∣
dist(z, supp ̺)

N−2/3+ǫ
≥ 1

})
≥ 1− CN−D (2.6c)

with C also depending on ǫ.

Corollary 2.7 (No eigenvalues outside the support of the self-consistent density). Under the assumptions of Theorem 2.62.6
we have for any ǫ,D > 0 and sufficiently small δ > 0

P
(
∃λ ∈ SpecH

∣∣ |τ0 − λ| ≤ δ , dist(λ, supp ̺) ≥ N−2/3+ǫ
)
≤ǫ,D N−D,

where ≤ǫ,D means a bound up to some multiplicative constant C = C(ǫ,D).

Corollary 2.8 (Delocalisation). Under the assumptions of Theorem 2.62.6 it holds for an ℓ2-normalized eigenvector u corre-
sponding to an eigenvalue λ of H close to the edge τ0 that

sup
‖x‖=1

P

(
|〈x,u〉| ≥ N ǫ

√
N

∣∣Hu = λu, ‖u‖ = 1, |τ0 − λ| ≤ δ

)
≤ǫ,D N−D

for any ǫ,D > 0 and sufficiently small δ > 0.

Corollary 2.9 (Band rigidity and eigenvalue rigidity). Under the assumptions of Theorem 2.62.6 the following holds. For
any ǫ,D > 0 there exists some C < ∞ such that for any τ ∈ R\ supp ̺ with dist(τ, supp ̺) ≥ ǫ the number of eigenvalues
less than τ is with high probability deterministic, i.e. that

P

(
|SpecH ∩ (−∞, τ)| = N

∫ τ

−∞
̺(x) dx

)
≥ 1− CN−D. (2.7a)

We also have the following strong form of eigenvalue rigidity in a neighbourhood of a regular edge τ0. Let λ1 ≤ · · · ≤
λN be the ordered eigenvalues of H and denote the index of the N-quantile close to energy τ ∈ int(supp ̺) by k(τ) ..=

⌈N
∫ τ

−∞ ̺(x) dx⌉. It then holds that

P

(
sup
τ

∣∣λk(τ) − τ
∣∣ ≥ min

{
N ǫ

N |τ − τ0|1/2
,
N ǫ

N2/3

})
≤ǫ,D N−D (2.7b)

for any ǫ,D > 0 and sufficiently small δ > 0, where the supremum is taken over all τ ∈ supp ̺ such that |τ − τ0| ≤ δ.

Remark 2.10 (Integer mass). Note that (2.7a2.7a) entails the non trivial fact that for τ 6∈ supp ̺, N
∫ τ

−∞ ̺(x) dx is always an

integer, see Proposition 5.15.1 below. Moreover, it then trivially implies that N
∫ b

a
̺(x) dx is an integer for each spectral band

[a, b], i.e. connected component of supp ̺. Finally, (2.7a2.7a) also shows that the number of eigenvalues in each band is given by
this integer with overwhelming probability. This is in sharp contrast to invariant β-ensembles where no such mechanism is
present. For example, for an odd number of particles in a symmetric double-well potential, N

∫ 0

−∞ ̺(x) dx = N/2 is a half
integer.

The main application of the optimal local law from Theorem 2.62.6 is edge universality, as stated in the following
theorem, generalising several previous edge universality results listed in the introduction. For definiteness we only
state and prove the result for regular right edges. The corresponding statement for left edges can be proven along the
same lines.

Theorem 2.11 (Edge universality). Under the Assumptions (A)(A)–(G)(G) the following statement holds true. Assume that τ0 ∈
∂ supp ̺ is a right regular edge of ̺ with slope parameter γedge as in Definition 2.42.4. The integer (see Remark 2.102.10) i0 ..=

N
∫ τ0
−∞ ̺(x) dx labels the largest eigenvalue λi0 close to the band edge τ0 with high probability. Furthermore, for test

functions F : Rk+1 → R such that ‖F‖∞ + ‖∇F‖∞ ≤ C < ∞ we have
∣∣∣EF

(
γedgeN

2/3(λi0 − τ0), . . . , γedgeN
2/3(λi0−k − τ0)

)
−EF

(
N2/3(µN − 2), . . . , N2/3(µN−k − 2)

)∣∣∣ . N−c

for some c = ck > 0. Here µ1, . . . , µN are the eigenvalues of a standard GUE/GOE matrix, depending on the symmetry
class of H .

FromTheorem 2.112.11 we can immediately conclude that the eigenvalues ofH near the regular edges follow the Tracy-
Widom distribution. We remark that the direct analogue of Theorem 2.112.11 does not hold true for invariant β-ensembles
with a multi-cut density. This is due to the fact that the number of particles close to a band of the self-consistent
density, commonly known as the filling fraction, is known to be a fluctuating quantity for general classes of potentials.
We refer the reader to [1111] for a description of this phenomenon, to [4242, 4444] for non-Gaussian linear statistics in the
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multi-cut regime and to [1212] for results on the fluctuations of filling fractions. Variants of Theorem 2.112.11 which allow
for a relabelling of eigenvalues for invariant β-ensembles can be found in [99, 4343].

3. Proof of the local law

The proof of a local law consists of three largely separate arguments. The first part concerns the analysis of the
stability operator

B[R] ..= R −MS[R]M (3.1)

forR ∈ CN×N , and shape analysis of the solutionM to (2.12.1). The second part is proving that the resolventG is indeed
an approximate solution to (2.12.1) in the sense that

D ..= I + (z −A+ S[G])G = WG+ S[G]G (3.2)

is small. Finally, the third part consists of a bootstrap argument starting in the domain Dδ
1 and iteratively increasing

the domain to Dδ
γ while maintaining the desired bound on G−M .

3.1. Stability. From (2.12.1) and (3.23.2), we see that the difference between G andM is described by the relation

B[G−M ] = −MD+MS[G−M ](G−M). (3.3)

To prove estimates on G −M we need to analyse B, the stability operator. Near the edge we will demonstrate that
B has a very small (in absolute value) simple eigenvalue, that we will denote by β, and it turns out that β is well
separated away from the rest of the spectrum of B. Let P andB denote the corresponding left and right eigenvectors
of B, i.e. B∗[P ] = β̄P and B[B] = βB, and we will specify their normalisation later. Note that B is typically not
self-adjoint, so P 6= B. Since β is small, B−1 is unstable in the direction of the eigenspace of β. We therefore separate
this unstable direction by writing G−M = ΘB + Error where

Θ ..=
〈P,G−M〉

〈P,B〉 (3.4)

is the key quantity and the error term lies in spectral subspace complementary toB. We will then establish bounds in
terms ofΘ andD from (3.33.3). We note that this separation is not necessary in the bulk regime studied in [1717], where the
stability operator is bounded in every direction, which explains the additional complexity of the proof of Theorem 2.62.6
compared to the bulk local law in [1717].

The reader should not be confused by the term “eigenvector” in the context of operators CN×N → C
N×N as

eigenvectors are in fact matrices in this setting, e.g. the eigenvectors P and B of B above are actually matrices in
CN×N .

We begin by collecting some qualitative and quantitative information about the MDE and its stability operator,
which will be proven in Section 4.54.5 below. We note that (ii) was first obtained in [2929] and (iiii) goes back to [33].

Proposition 3.1 (Stability of MDE and properties of the solution). The following hold true under Assumption (A)(A), (E)(E)
and (G)(G) for some τ0 ∈ R.

(i) The MDE (2.12.1) has a unique solution M = M(z) for all z ∈ H and moreover the map z 7→ M(z) is holomorphic.
(ii) The holomorphic function 〈M〉 : H → H is the Stieltjes transform of a compactly supported probability measure with

continuous density ̺ : R → [0,∞) given by (2.22.2). Moreover, ̺ is real analytic on the open set { ̺ > 0 }.
If τ0 ∈ ∂ supp ̺ is a regular edge then there is δ∗ ∼ 1 such that, for all z ∈ H satisfying |z − τ0| ≤ δ∗, we have

(iii) The harmonic extension of the self-consistent density of states scales like

̺(z) ∼
{√

κ+ η, if τ ∈ supp ̺,

η/
√
κ+ η, if τ /∈ supp ̺,

where τ = ℜz, η = ℑz and κ ..= |τ − τ0|.
(iv) There exist P,B ∈ CN×N left and right eigenvectors of B such that

‖B−1‖sp . (κ+ η)−1/2, ‖B−1Q‖sp + ‖B‖+ ‖P‖ . 1,

|β| ∼ √
κ+ η, |〈P,MS[B]B〉| ∼ 1, |〈P ,B〉| ∼ 1,

where Q ..= 1− P and P ..= 〈P, ·〉B/ 〈P,B〉 are spectral projections of B.
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We now design a suitable norm following [1717]. For cumulants of matrix elements κ(wab, wcd)we use the short-hand
notation κ(ab, cd). We also use the short-hand notation κ(xb, cd) for the x = (xa)a∈[N ]-weighted linear combination∑

a xaκ(ab, cd) of such cumulants. We use the notation that replacing an index in a scalar quantity by a dot (·) refers
to the corresponding vector, e.g. Aa· is a short-hand notation for the vector (Aab)b∈[N ]. We fix two vectors x,y and
some large integerK and define the sets

I0 ..= {x,y } ∪ { ea, P ∗
a· | a ∈ [N ] } ,

Ik+1
..= Ik ∪ {Mu | u ∈ Ik } ∪ { κc((Mu)a, b·), κd((Mu)a, ·b) | u ∈ Ik, a, b ∈ [N ] } ,

where κc+κd = κ is a decomposition of κ according to the Hermitian symmetry33. Due to (2.3a2.3a) such a decomposition
exists in a way that the operator norms of the matrices ‖κd(xa, ·b)‖ and ‖κc(xa, b·)‖, indexed by (a, b), are bounded
uniformly in x with ‖x‖ ≤ 1. We now define the norm

‖R‖∗ = ‖R‖K,x,y
∗

..=
∑

0≤k<K

N−k/2K ‖R‖Ik +N−1/2 max
u∈IK

‖R·u‖
‖u‖ , ‖R‖I ..= max

u,v∈I

|Ruv|
‖u‖ ‖v‖ .

We note that the sets Ik and thereby also the norm ‖·‖∗ depend implicitly on the spectral parameter z viaM and P .

Remark 3.2. Compared to [1717], the sets Ik contain some additional vectors generated by the vectors of the form P ∗
a· in I0.

This addition is necessary to control the spectral projection P in the ‖·‖∗-norm. We note, however, that the precise form of
the sets Ik were not important for the proofs in [1717]. It was only used that these sets contain deterministic vectors, and that
their cardinality grows at most as some finite power |Ik| . NCk of N .

In terms of this normwe obtain the following easy estimate onG−M in terms of its projectionΘ onto the unstable
direction of the stability operator B.

Proposition 3.3. For sufficiently small δ and fixed z such that ‖G−M‖∗ . N−3/K there are deterministic matrices
R1, R2 with norm . 1 such that

G−M = ΘB − B−1Q[MD] + E , ‖E‖∗ . N2/K(|Θ|2 + ‖D‖2∗), (3.5a)

with an error term E , where Θ, defined in (3.43.4), satisfies the approximate quadratic equation

ξ1Θ+ ξ2Θ
2 = O

(
N2/K ‖D‖2∗ + |〈R1D〉|+ |〈R2D〉|

)
with |ξ1| ∼

√
η + κ, |ξ2| ∼ 1 (3.5b)

and any implied constants are uniform in x,y and z ∈ Dδ .

Proof. We begin with an auxiliary lemma about the ‖·‖∗-norm of some important quantities, the proof of which we
defer to the appendix.

Lemma 3.4. Depending only on the model parameters we have the estimates for any R ∈ CN×N ,

‖MS[R]R‖∗ . N1/2K ‖R‖2∗ , ‖MR‖∗ . N1/2K ‖R‖∗ , ‖Q‖∗→∗ . 1,
∥∥B−1Q

∥∥
∗→∗ . 1.

Decomposing G−M = P [G−M ] +Q[G−M ] and inverting B in (3.33.3) on the range ofQ yields

G−M = ΘB +Q[G−M ] = ΘB − B−1Q[MD] +O
(
N1/2K ‖G−M‖2∗

)

= ΘB − B−1Q[MD] +O
(
N3/2K(|Θ|2 + ‖D‖2∗)

)
,

where O (·) is meant with respect to the ‖·‖∗-norm and the second equality followed by iteration, Lemma 3.43.4 and the
assumption on ‖G−M‖∗. Going back to the original equation (3.33.3) we find

βΘB + BQ[G−M ] = −MD +MS[ΘB − B−1Q[MD]](ΘB − B−1Q[MD]) +O
(
N2/K(|Θ|3 + ‖D‖3∗)

)

and thus by projecting with P we arrive at the quadratic equation

µ0 − µ1Θ+ µ2Θ
2 = O

(
N2/K(|Θ|3 + ‖D‖3∗)

)
, µ0 = 〈P,MS[B−1Q[MD]]B−1Q[MD]−MD〉 ,

µ1 = 〈P,MS[B]B−1Q[MD] +MS[B−1Q[MD]]B〉+ β 〈P,B〉 , µ2 = 〈P,MS[B]B〉 .
We now proceed by analysing the coefficients in this quadratic equation. We estimate the quadratic term in µ0 directly
by N2/K ‖D‖2∗, while we write the linear term as 〈R1D〉 for the deterministic R1

..= −M∗P with ‖R1‖ . 1. For the
linear coefficient µ1 we similarly find a deterministic matrix R2 such that ‖R2‖ . 1 and µ1 = 〈R2D〉 + β 〈P,B〉.
3If hab is strongly correlated with hcd then, by Hermitian symmetry, it is also strongly correlated with hdc = hcd. Therefore it is natural to
split the covariance into a direct and cross contribution. The precise splitting κ = κc + κd is chosen via an optimisation problem; the precise
definition is irrelevant for the current proof, see [1717, Remark 2.8] for more details.
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Finally, we find from Proposition 3.13.1(iviv) that |µ2| ∼ 1 and |β 〈P,B〉| ∼ √
κ+ η. By incorporating the |Θ|N2/K term

into ξ2 we obtain (3.5b3.5b). Here δ has to be chosen sufficiently small such that Proposition 3.13.1 is applicable. �

3.2. Probabilistic bound. We now collect the averaged and isotropic bound on D from [1717]. We first introduce a
commonly used (see, e.g. [2020]) notion of high-probability bound.

Definition 3.5 (Stochastic Domination). If

X =
(
X(N)(u) |N ∈ N, u ∈ U (N)

)
and Y =

(
Y (N)(u) |N ∈ N, u ∈ U (N)

)

are families of non-negative random variables indexed byN , and possibly some parameter u, then we say thatX is stochas-
tically dominated by Y , if for all ǫ,D > 0 we have

sup
u∈U(N)

P
[
X(N)(u) > N ǫY (N)(u)

]
≤ N−D

for large enough N ≥ N0(ǫ,D). In this case we use the notation X ≺ Y .

It can be checked (see [2020, Lemma 4.4]) that≺ satisfies the usual arithmetic properties, e.g. ifX1 ≺ Y1 andX2 ≺ Y2,
then alsoX1 +X2 ≺ Y1 + Y2 andX1X2 ≺ Y1Y2. To formulate the result compactly we also introduce the notations

|R| ≺ Λ in D ⇐⇒ ‖R‖K,x,y
∗ ≺ Λ unif. in x,y and z ∈ D,

|R|av ≺ Λ in D ⇐⇒ |〈BR〉|
‖B‖ ≺ Λ unif. in B and z ∈ D

(3.6)

for random matrices R = R(z) and a deterministic control parameter Λ = Λ(z), where B,x,y are deterministic
matrices and vectors. We also define an isotropic high-moment norm, already used in [1717], for p ≥ 1 and a random
matrix R,

‖R‖p ..= sup
x,y

(
E |〈x, Ry〉|p

)1/p

‖x‖ ‖y‖ .

Proposition 3.6 (Bound on the Error). Under the Assumptions (A)(A)–(E)(E) there exists a constant C such that for any fixed
vectors x,y and matrices B and spectral parameters z ∈ Dδ , and any p ≥ 1, ǫ > 0,

‖〈x, Dy〉‖p
‖x‖ ‖y‖ ≤ǫ,p N ǫ

√
‖ℑG‖q
Nℑz

(
1 + ‖G‖q

)C(
1 +

‖G‖q
Nµ

)Cp

(3.7a)

‖〈BD〉‖p
‖B‖ ≤ǫ,p N ǫ

‖ℑG‖q
Nℑz

(
1 + ‖G‖q

)C(
1 +

‖G‖q
Nµ

)Cp

, (3.7b)

where q ..= Cp4/ǫ. Here µ > 0 depends on s in Assumption (CD)(CD). In particular, if |G−M | ≺ Λ . 1, then

|D| ≺
√

̺+ Λ

Nη
, |D|av ≺ ̺+ Λ

Nη
. (3.7c)

Proof. This follows from combining [1717, Theorem 3.1], the following lemma44 from [1717, Lemma 4.4] and ‖M‖ ≤ M∗. �

Lemma 3.7. Let R be a random matrix and Φ a deterministic control parameter. Then the following implications hold:

(i) If Φ ≥ N−C , ‖R‖ ≤ NC and |Rxy| ≺ Φ ‖x‖ ‖y‖ for all x,y and some C , then ‖R‖p ≤p,ǫ N
ǫΦ for all ǫ > 0, p ≥ 1.

(ii) Conversely, if ‖R‖p ≤p,ǫ N
ǫΦ for all ǫ > 0, p ≥ 1, then ‖R‖K,x,y

∗ ≺ Φ for any fixed K ∈ N, x,y ∈ CN .

3.3. Bootstrapping. We now fix γ > 0 and start with the proof of Theorem 2.62.6. Phrased in terms of the ‖·‖∗-norm
we will prove

|G−M | ≺ N2/K

(√
̺

Nη
+

1

Nη

)
, |G−M |av ≺ N2/K

{
1

Nη ℜz ∈ supp ̺
1

N(κ+η) +
N2/K

(Nη)2
√
κ+η

ℜz 6∈ supp ̺
in D, (3.8)

forD = D
δ
γ andK ≫ 1/γ, i.e. forKγ sufficiently large. In order to prove (3.83.8) we use the following iteration procedure.

Proposition 3.8. There exists a constant γs > 0 depending only on K and γ such that (3.83.8) for D = Dδ
γ0

with γ0 > γ

implies (3.83.8) also for D = Dδ
γ1

with γ1 ..= max{γ, γ0 − γs}.
Proof of (3.83.8) for D = Dδ

γ , assuming Proposition 3.83.8. ForD = Dδ
γ with γ ≥ 1we have (3.83.8) by [1717, Theorem 2.1]. For γ < 1

we iteratively apply Proposition 3.83.8 starting from55
Dδ

1 finitely many times until we have shown (3.83.8) for D = Dδ
γ . �

4Cf. Remark 3.23.2, where we argue that the proof of [1717] about ‖·‖
∗
hold true verbatim in the present case despite the slightly larger sets Ik.

5Strictly speaking, in the very first step we start from D
δ ∩ {ℑz ≥ δ/2} instead of Dδ

1 since, depending on the value of δ, the latter might be
empty.
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Proof of Proposition 3.83.8. We now suppose that (3.83.8) has been proven for some D = Dδ
γ0

and aim at proving (3.83.8) for
D = Dδ

γ1
for some γ1 = γ0 − γs, 0 < γs ≪ γ. The proof has two stages. Firstly, we will establish the rough bounds

|Θ| ≺ N−5/K and |G−M | ≺ N−5/K in D
δ
γ1
, (3.9)

and then in the second stage improve upon this bound iteratively until we reach (3.83.8) for D = Dδ
γ1
.

Rough bound. By (3.83.8), Lemma 3.73.7 and monotonicity of the map η 7→ η ‖G(τ + iη)‖p (see e.g. (77) in [1717]) we find
‖G‖p ≤ǫ,p N ǫ+γs ≤ N2γs in D

δ
γ1
. As long as 2γs < µ we thus have

‖D‖p ≤ǫ,p
N ǫ+2Cγs+γs

√
Nη

≤ Nγs(2+2C)

√
Nη

, ‖〈BD〉‖p ≤ǫ,p ‖B‖ N ǫ+2γs+2γsC

Nη
≤ ‖B‖ Nγs(3+2C)

Nη
.

We now fix x,y and it follows from (3.5b3.5b) that

∣∣ξ1Θ+ ξ2Θ
2
∣∣ ≺ N2γs(3+2C)+2/K

Nη
in D

δ
γ1

and consequently by Lipschitz continuity of the lhs. with a Lipschitz constant of η−2 ≤ N2, and choosingK, γs large
and respectively small enough depending on γ we find that with high probability

∣∣ξ1Θ+ ξ2Θ
2
∣∣ ≤ N−10/K in all of

Dδ
γ1
. The following lemma translates the bound on

∣∣ξ1Θ+ ξ2Θ
2
∣∣ into a bound on |Θ|.

Lemma 3.9. Let d = d(η) be a monotonically decreasing function in η ≥ 1/N and assume 0 ≤ d . N−ǫ for some ǫ > 0.
Suppose that

∣∣ξ1Θ+ ξ2Θ
2
∣∣ . d for all z ∈ D

δ, and |Θ| . min

{
d√
κ+ η

,
√
d

}
for some z0,

then also |Θ| . min{d/√κ+ η,
√
d} for all z′ ∈ Dδ with ℜz′ = ℜz0 and ℑz′ < ℑz0.

Proof. This proof is basically identical to the analysis of the solutions to the same approximate quadratic equation, as
appeared in various previousworks, see e.g. [2626, Section 9]. In the spectral bulk this is trivial since then |ξ1| ∼

√
κ+ η ∼

1. Near a spectral edge we observe that (κ+ η)/d is monotonically increasing in η. First suppose that (κ+ η)/d ≫ 1

fromwhich it follows that |Θ| . d/
√
κ+ η .

√
d in the relevant branch determined by the given estimate onΘ at z0.

Now suppose that below some η-thresholdwehave (κ+η)/d . 1. Thenwefind |Θ| . √
κ+ η+

√
d .

√
d . d/

√
κ+ η

and the claim follows also in this regime. �

Since (3.93.9) holds in D
δ
γ0

and 1/Nη ≤ N−100/K , we know |Θ| ≤ min{N−10/K/
√
κ+ η,N−5/K} and therefore can

conclude the rough bound |Θ| ≺ N−5/K in all of Dδ
γ1

by Lemma 3.93.9 with d = N−10/K . Consequently we have also
that

‖G−M‖∗ 1(‖G−M‖∗ ≤ N−3/K) ≺ N−5/K in D
δ
γ1
.

Due to this gap in the possible values for ‖G−M‖∗ it follows from a standard continuity argument that ‖G−M‖∗ ≺
N−5/K and therefore since x,y were arbitrary, |Θ| ≺ N−5/K and |G−M | ≺ N−5/K in all of Dδ

γ1
.

Strong bound. All of the following bounds hold uniformly in the domainDδ
γ1
which iswhywe suppress this qualifier.

By combining Propositions 3.33.3 and 3.63.6 we find for deterministic 0 ≤ θ ≤ Λ ≤ N−3/K under the assumptions |Θ| ≺ θ,
|G−M | ≺ Λ, that

|G−M | ≺ θ +N2/K

√
̺+ Λ

Nη
,

∣∣ξ1Θ+ ξ2Θ
2
∣∣ ≺ N2/K ̺+ Λ

Nη
. (3.10)

The bound on |G−M | in (3.103.10) is a self-improving bound and we find after iteration that

|G−M | ≺ θ +N2/K

(
1

Nη
+

√
̺+ θ

Nη

)
, hence

∣∣ξ1Θ+ ξ2Θ
2
∣∣ ≺ N2/K ̺+ θ

Nη
+N4/K 1

(Nη)2
.

We now distinguish whether ℜz is inside or outside the spectrum. Inside we have ̺ ∼ √
κ+ η, so we fix θ and use

Lemma 3.93.9 with d = N2/K(
√
κ+ η+ θ)/(Nη) +N4/K/(Nη)2 to conclude |Θ| ≺ min{d/√κ+ η,

√
d} from the input

assumption |Θ| ≺ N2/K/Nη in Dγ0 . Iterating this bound, we obtain

|Θ| ≺ N2/K 1

Nη
, hence |G−M | ≺ N2/K

(√
̺

Nη
+

1

Nη

)
.

By an analogous argument, outside of the spectrum we have an improved bound on Θ

|Θ| ≺ N2/K 1

N(κ+ η)
+N4/K 1

(Nη)2
√
κ+ η

,



CORRELATED RANDOM MATRICES: BAND RIGIDITY AND EDGE UNIVERSALITY 10

because ̺ ∼ η/
√
κ+ η. Finally, for the claimed bound on |G−M |av we use (3.5a3.5a) in order to obtain a bound on

|G−M |av in terms of a bound on Θ. �

Due to (3.83.8), we now have all the ingredients to prove the local law, as well as delocalisation of eigenvectors, and
the absence of eigenvalues away from the support of ̺.

Proof of Theorem 2.62.6, Corollary 2.72.7 and Corollary 2.82.8. The local law inside the spectrum (2.6a2.6a)–(2.6b2.6b) follows immedi-
ately from (3.83.8). Now we prove Corollary 2.72.7. If there exists an eigenvalue λ with dist(λ, supp ̺) > N−2/3+ω , then at,
say, z = λ+iN−4/5 we have |〈G−M〉| ≥ cN−1/5. On the other hand we know from the improved local law (3.83.8) that
with high probability |〈G−M〉| ≤ N−1/4 and we obtain the claim.

We now turn to the proof of Corollary 2.82.8. For the eigenvectors uk and eigenvalues λk of H we find from the
spectral decomposition and the local law with high probability

1 & ℑ〈x, Gx〉 = η
∑

k

|〈x,uk〉|2
(τ − λk)2 + η2

≥ |〈x,uk〉|2
η

for z = τ + iη

for any normalised x ∈ CN , where the last inequality followed assuming that τ is chosen η-close to λk . With the
choice η = N−1+γ for arbitrarily small γ > 0 the claim follows. Note that for this proof only (2.6a2.6a) of Theorem 2.62.6
was used.

Finally, we establish (2.6c2.6c) and consider z ∈ Dδ with dist(ℜz, supp ̺) ≥ N−2/3+ω and x,y, B fixed. As in the
proof of [44, Corollary 1.11], the optimal local law (3.83.8) implies rigidity up to the edge as formulated in Corollary 2.92.9.
The only difference is that this standard argument proves (2.7b2.7b) only if the supremum is restricted to τ ∈ supp ̺

with dist(τ, ∂ supp ̺) ≥ N−2/3+ǫ. The cause for this restriction is a possible mismatch of the labelling of the edge
eigenvalues, in other words the precise location of N ǫ eigenvalues near an internal gap is not established yet; they
may belong to either band adjacent to this gap. This shortcoming will be remedied by the band rigidity in the proof
of Corollary 2.92.9 in Section 55 below. However, for the current argument, the imprecise location ofN ǫ eigenvalues does
not matter. In fact, already from this version of rigidity, together with the delocalisation of eigenvectors (Corollary
2.82.8) and the absence of eigenvalues outside of the spectrum by Corollary 2.72.7 we have, at z = τ + iη (recall that we
consider z ∈ Dδ with dist(ℜz, supp ̺) ≥ N−2/3+ω),

ℑ 〈x, G(z)x〉 = η
∑

k

|〈x,uk〉|2
(τ − λk)2 + η2

≺ 1

N

∑

k

η

(τ − λk)2 + η2
≺
∫

R

η ̺(x) dx

|τ − x|2 + η2

for any normalised vector x. From the square root behaviour of ̺ at the edge and κ(z) ≥ N−2/3+ω we can easily infer
‖ℑG‖∗ ≺ η/

√
κ+ η. Therefore it follows from Proposition 3.63.6 that ‖D‖2∗ + |〈RD〉| ≺ 1/(N

√
κ+ η) and from (3.5b3.5b)

and Lemma 3.93.9 that |Θ| ≺ N2/K−1/(κ+ η). Finally, we thus obtain,

|G−M |av ≺ N2/K

N(κ+ η)
+

N2/K

N
√
κ+ η

. N2/K 1

N(κ+ η)

from (3.5a3.5a) and (2.6c2.6c) follows. �

4. Analysis of the Matrix Dyson equation

The essential prerequisite for edge universality is the regularity of the edge, i.e. the local square root behavior of the
self consistent density ̺ as imposed in Definition 2.42.4. For the proof of universality via [3434], however, it is necessary to
first establish that the square-root behaviour and the adjacent gap persist in a macroscopic interval. This is achieved
in the followingmain theoremwhose proof will be given in Section 4.44.4 after several preparatory results. In particular,
as a second main result of this section, in Theorem 4.24.2, we will give a sharp estimate on the inverse of the stability
operator B = Id−MS[ · ]M which also plays a central role in the proof of the local law in Section 33.

Theorem 4.1 (Behaviour of ̺ close to a square root edge). Let (A)(A), (E)(E) and (G)(G) be satisfied for some τ0 ∈ R. If τ0 ∈
∂ supp ̺ is a regular edge then there are c ∼ 1 and δ∗ ∼ 1 such that

̺(τ0 + ω) =

{
c |ω|1/2 +O(|ω|), if ω ∈ [−δ∗, 0],

0, if ω ∈ [0, δ∗].

In this section and, in particular, the previous theorem, the comparison relation ∼ is understood with respect to
the constants in (A)(A), (E)(E) and (G)(G) as well as in (2.52.5).

We now outline the strategy for the proof of Theorem 4.14.1. First, we will extendM to the real line by showing that it
is 1/2-Hölder continuous in the vicinity of τ0 (see Corollary 4.34.3 below). The Hölder continuity also yields an a-priori
bound on∆ ..= M(τ0 + ω)−M(τ0), hence on ̺(τ0 + ω) = π−1〈ℑM(τ0 + ω)〉 = π−1〈ℑ∆〉 as well, with small ω ∈ R.
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Second, by using this bound, we will verify that ∆ is governed by a scalar quantity analogous to Θ from (3.43.4) which
satisfies a quadratic equation (see Proposition 4.124.12 below). The fact that ℑ∆ ≥ 0will select the correct solution to this
quadratic equation and Theorem 4.14.1 will follow from analysing the stability of this solution.

The equation for∆ can be obtained from subtracting the MDE at τ0 + ω and τ0. It reads as

B[∆] = MS[∆]∆ + ωM2 + ωM∆, M = M(τ0). (4.1)

To express ∆ from (4.14.1) it is therefore essential to understand the instabilities of B−1 very precisely. The main dif-
ficulty is that near the edge B has a small eigenvalue that is very sensitive to a delicate balance between S and M .
An additional complication is that B is non-selfadjoint. Both obstacles are overcome by representing B in the form
B = V(U −F)V−1, where U is unitary, V is bounded invertible, F is self-adjoint and it preserves the cone of positive
matrices. Thus a Perron-Frobenius argument can be applied to F , i.e. its norm can be obtained simply by finding
its top eigenvector. In this way we can very precisely determine the size of MS[·]M and estimate its top eigenvalue
without explicitly solving the MDE. This representation of B (cf. (4.94.9) below) with the Perron-Frobenius argument is
one of the main results of [33] and the analysis of F will partly be imported from [33]. We will see that B−1 has precisely
one unstable direction and we will obtain the quadratic equation for Θ, the projection of∆, onto this direction. The
sharp estimate on the eigenvalue of the unstable direction will give rise to the following bound on B−1.

Theorem4.2 (Sharp bound onB−1 near a regular edge). Let (A)(A), (E)(E) and (G)(G) be satisfied for a regular edge τ0 ∈ ∂ supp ̺.
Then there is δ∗ ∼ 1 such that we have

‖B(z)−1‖sp +
∥∥B(z)−1

∥∥ .
1

̺(z) + η̺(z)−1
,

for all z ∈ H satisfying |z − τ0| ≤ δ∗, where η = ℑz.

From the previous theorem, wewill immediately conclude the 1/2-Hölder continuity stated in the following corol-
lary. The proofs of both statements will be given in Section 4.24.2 below.

Corollary 4.3 (Hölder-continuity ofM ). Let (A)(A), (E)(E) and (G)(G) be satisfied for a regular edge τ0 ∈ R. ThenM is uniformly
1/2-Hölder continuous around τ0 in the sense that there is δ∗ ∼ 1 such that

‖M(z1)−M(z2)‖ . |z1 − z2|1/2

for all z1, z2 ∈ {τ + iη : |τ − τ0| ≤ δ∗, 0 < η < ∞}. In particular,M has a unique extension to [τ0 − δ∗, τ0 + δ∗].

4.1. Analysis of the stability operator. In this section, we will always assume that (A)(A), (E)(E) and (G)(G) are satisfied for
some τ0 ∈ R. The main result of this section is the bound on the inverse of the stability operator B in Proposition 4.44.4
below. We introduce the balanced polar decomposition

M = Q∗UQ, (4.2)

where we define

W ..= (ℑM)−1/2(ℜM)(ℑM)−1/2 + iI, Q ..= |W |1/2 (ℑM)1/2, U ..=
W

|W | . (4.3)

We remark thatW is normal, |W | ..= (W ∗W )1/2, U is unitary andℑU is positive definite. In this context, the balanced
polar decomposition first appeared in [33]. We also define

S ..= signℜU, FU
..= ̺−1ℑU, σ ..= 〈SF 3

U 〉. (4.4)

The quantities B,W , Q, U , S, FU and σ introduced above all depend on z through the z-dependence ofM . In the
following, we will mostly omit this dependence from our notation.

Proposition 4.4 (General bound onB−1). If (A)(A), (E)(E) and (G)(G) are satisfied for some τ0 ∈ R then, uniformly for all z ∈ Dω∗ ,
we have

‖B(z)−1‖sp +
∥∥B(z)−1

∥∥ .
1

̺(z)(̺(z) + |σ(z)|) + η̺(z)−1
, η = ℑz. (4.5)

This proposition will be shown at the end of the present section. Now, we apply it to show that M is 1/3-Hölder
continuous.

Corollary 4.5 (1/3-Hölder continuity of M ). Let (A)(A), (E)(E) and (G)(G) be satisfied for some τ0 ∈ R. Then the solution M of
the MDE, (2.12.1), is uniformly 1/3-Hölder continuous around τ0 in the sense that, for each θ ∈ (0, ω∗), we have

‖M(z1)−M(z2)‖ .θ |z1 − z2|1/3

for all z1, z2 ∈ {τ + iη : |τ − τ0| ≤ ω∗ − θ, 0 < η < ∞}.
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Before we prove the previous corollary, we state and prove the following lemma. It collects a few basic properties
ofM , Q and U which will often be used in the following.

Lemma 4.6 (Properties ofM , Q and U ). Uniformly for z ∈ Dω∗ , we have
∥∥M(z)−1

∥∥ ∼ ‖M(z)‖ ∼ 1, (4.6a)

ℑM(z) ∼ 〈ℑM(z)〉, (4.6b)

‖Q(z)‖ ∼
∥∥Q(z)−1

∥∥ ∼ 1, (4.6c)

ℑU(z) ∼ 〈ℑU(z)〉 ∼ ̺(z), (4.6d)

where A . B and A ∼ B for matrices A,B indicate that A ≤ CB and cB ≤ A ≤ CB for some constants c, C in the sense
of quadratic forms.

Proof of Lemma 4.64.6. The bounds in (4.6a4.6a) and (4.6b4.6b) follow easily from the bound on ‖M‖ onDω∗ aswell as the flatness
of S (see e.g. the proof of Proposition 4.2 in [33]).

For the proof of (4.6c4.6c), we use the monotonicity of the square root and (4.6b4.6b) to obtain

Q∗Q = (ℑM)1/2(1 + (ℑM)−1/2(ℜM)(ℑM)−1(ℜM)(ℑM)−1/2)1/2(ℑM)1/2

∼ 〈ℑM〉−1/2(ℑM)1/2
(
(ℑM)−1/2((ℑM)2 + (ℜM)2)(ℑM)−1/2

)1/2
(ℑM)1/2.

Thus, employing (ℜM)2 + (ℑM)2 ∼ 1 by (4.6a4.6a) yields (4.6c4.6c) due to (4.6b4.6b).
Owing to (4.6c4.6c), (4.6d4.6d) is a direct consequence of (4.6b4.6b). This completes the proof of Lemma 4.64.6. �

In the following, we will use the derivative ofM with respect to z several times. For z ∈ H, we take the derivative
of (2.12.1) with respect to z. Owing to the invertibility of B = B(z), this yields

∂zM(z) = B−1[M(z)2] (4.7)

for z ∈ Dω∗ .

Proof of Corollary 4.54.5. As ∂zℑM(z) = (2i)−1∂zM(z) due to the analyticity ofM , we conclude from (4.74.7) and (4.54.5) and
(4.6b4.6b) that

‖∂zℑM(z)‖ . ̺(z)−2 ∼ ‖ℑM(z)‖−2 .

This implies that z 7→ (ℑM(z))3 is Lipschitz-continuous onDω∗ . Therefore,ℑM(z) is 1/3-Hölder continuous onDω∗

(see e.g. TheoremX.1.1 in [1010]) and, thus,M is uniformly 1/3-Hölder continuous on {τ+iη : |τ − τ0| ≤ ω∗−θ, 0 < η <

∞} for all θ ∈ (0, ω∗) (see e.g. Lemma A.7 in [22] as well as Lemma A.1 in [55] for a slightly more general formulation). �

For the analysis of the stability operator B defined in (3.13.1), we now introduce the Hermitian operator F : CN×N →
CN×N defined through

F ..= CQ,Q∗SCQ∗,Q. (4.8)

Here, we used the following notation for operators on CN×N . For T1, T2 ∈ CN×N , we define the operator
CT1,T2 : C

N×N → CN×N through
CT1,T2 [R] = T1RT2

for all R ∈ CN×N . We also set CT ..= CT,T . The importance of F for the analysis of B and its inverse comes from the
following consequence of the balanced polar decomposition (4.24.2):

B = Id− CMS = CQ∗,QCU (C∗
U −F)C−1

Q∗,Q. (4.9)

When ̺ = ̺(z) is small, we will view B as a perturbation of the operator B0, which we introduce now. We define

B0
..= CQ∗,Q(Id− CSF)C−1

Q∗,Q, E ..= (CQ∗SQ − CM )S = CQ∗,Q(CS − CU )FC−1
Q∗,Q, (4.10)

with U andQ defined in (4.34.3), S defined in (4.44.4) andF defined in (4.84.8). Note B0 = Id−CQ∗SQS , i.e. in the definition of
B, the unitary matrix U inM = Q∗UQ is replaced by S. Thus, we have B = B0 + E .

In the following, we will often use (4.6c4.6c) and (4.6d4.6d). In particular, since I − |ℜU | = I −
√
I − (ℑU)2 ≤ (ℑU)2 . ̺2,

we also obtain
ℜU = S +O(̺2), ℑU = O(̺) , ℜM = Q∗SQ+O(̺2) (4.11)

and with CS − CU = O(‖S − U‖) = O(̺) we get

E = O(̺) . (4.12)

Here, we use the notation R = T + O(α) for operators R and T on CN×N and α > 0 if ‖R− T ‖ . α. By the
functional calculus, the normal matrices U , ℜU , S and FU commute. Hence, CS [FU ] = FU .



CORRELATED RANDOM MATRICES: BAND RIGIDITY AND EDGE UNIVERSALITY 13

The MDE, (2.12.1), the balanced polar decomposition,M = Q∗UQ, and the definition of F in (4.84.8) yield

− U∗ = Q(z −A)Q∗ + F [U ]. (4.13)

We take the imaginary part of (4.134.13) and use (4.6c4.6c) as well as (4.6d4.6d) to conclude that

(Id−F)[FU ] = η̺−1QQ∗ = O(η̺−1). (4.14)

We also introduce the operator B∗, and view it as a perturbation of B0, via

B∗ ..= Id− CM∗,MS, E∗ ..= (CQ∗SQ − CM∗,M )S = CQ∗,Q(CS − CU∗,U )FC−1
Q∗,Q.

Hence, we have B∗ = B0 + E∗. Analogously to (4.124.12), we conclude from (4.114.11) that

E∗ = O(̺). (4.15)

In the following, for z ∈ C and ε > 0, we denote by Dε(z) ..= {w ∈ C : |z − w| < ε} the disk in C of radius ε
around z.

Lemma 4.7 (Spectral properties of stability operator for small density). Let T ∈ {Id−F , Id−CSF ,B0,B,B∗}. Then
there are ̺∗ ∼ 1 and ε ∼ 1 such that

‖(T − ωId)−1‖sp +
∥∥(T − ωId)−1

∥∥+
∥∥(T ∗ − ωId)−1

∥∥ . 1 (4.16)

uniformly for all z ∈ Dω∗ satisfying ̺(z) + η̺(z)−1 ≤ ̺∗ and for all ω ∈ C with ω 6∈ Dε(0) ∪D1−2ε(1). Furthermore,
there is a single simple (algebraic multiplicity 1) eigenvalue λ in the disk around 0, i.e.

Spec(T ) ∩Dε(0) = {λ} and rankPT = 1 , where PT ..= − 1

2πi

∫

∂Dε(0)

(T − ωId)−1dω . (4.17)

Proof. First, we introduce the bounded operators Vt : C
N×N → CN×N for t ∈ [0, 1] interpolating between Id and CS

by
Vt

..= (1− t)Id + tCS .

Wewill perform the proof one by one for the choices T = Id−F , Id−VtF ,B0,B,B∗ in that order. We will first show
that the operator Id−F has a spectral gap above the single eigenvalue around 0, so for this choice the statements are
easy. Then we perform two approximations. First, we interpolate between Id− F and Id − CSF via Id − VtF . This
gives Lemma 4.74.7 for T = B0. Then we use perturbation theory to get the results for T = B = B0 + O(̺) and for
T = B∗ = B0 +O(̺). Note that for all these choices of T the bound ‖Id− T ‖hs→‖·‖ . 1 holds due to ‖S‖hs→‖·‖ . 1,
‖M‖ . 1 and (4.6c4.6c). Hence, the invertibility of T − ωId as an operator on (CN×N , ‖ · ‖) and on (CN×N , ‖ · ‖hs) are
therefore closely related as

∥∥(T − ωId)−1
∥∥ ≤ |1− ω|−1 (1 + ‖Id− T ‖hs→‖·‖‖(T − ωId)−1‖sp).

The proof of this bound is elementary, see e.g. Lemma B.2 (ii) of [55]. In particular, it suffices to show (4.174.17) and the
‖ · ‖sp-norm bound

‖(T − ωId)−1‖sp . 1 , (4.18)

for ω 6∈ Dε(0)∪D1−2ε(1) in (4.164.16) to establish the lemma. For T = Id−F both of these assertions are true due to the
following facts about the operator F that have been the backbone of the analysis of [33]:

(a) The norm ‖F‖sp of the Hermitian operator F : CN×N → CN×N is a simple eigenvalue of F . Moreover, there is
a unique, positive definite eigenvector F ∈ CN×N such that F [F ] = ‖F‖spF and ‖F‖hs = 1. This eigenvector
satisfies

1− ‖F‖sp = (ℑz) 〈F ,QQ∗〉
〈F ,ℑU〉 . (4.19)

In particular, ‖F‖sp ≤ 1.

Furthermore, uniformly for all z ∈ D
ω∗ , the following properties hold true:

(b) The eigenvector F is bounded from above and below, i.e.

F ∼ 1. (4.20)

(c) The operator F has a spectral gap ϑ ∼ 1, i.e.

Spec(F/‖F‖sp) ⊂ [−1 + ϑ, 1− ϑ] ∪ {1}. (4.21)

(d) The eigenvector F , FF = ‖F‖spF , satisfies
F = ‖FU‖−1

hs FU +O(η̺−1) , (4.22)
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These facts are proven as Lemma 4.7 in [33] using Lemma 4.64.6 instead of (4.11) and (4.23) in the proof of (4.33) in [33].
Moreover, the proof of (4.224.22) follows from (4.144.14) and ‖F‖sp = 1+O(η̺−1) (cf. (4.194.19)) by straightforward perturbation
theory of the simple isolated eigenvalue ‖F‖sp.

Now we consider the choice T = Tt = Id − VtF . Once (4.184.18), and with it (4.164.16), is established for Tt, the statement
about the single isolated eigenvalue (4.174.17) follows. Indeed, assuming (4.164.16) for T = Tt, we obtain that Tt and, hence,
the rank of PTt is a continuous function of t on [0, 1]. Hence, the rank of PTt is constant along this interpolation. On
the other hand, rankPT0 = 1 by Fact (aa) above. Therefore, for each t ∈ [0, 1], Spec(Tt) ∩ Dε(0) consists of precisely
one simple eigenvalue. We are thus left with establishing (4.184.18) for Tt. As ‖Vt‖sp ≤ 1 and ‖F‖sp ≤ 1 the bound (4.184.18) is
certainly satisfied for |ω| ≥ 3. Thus, we now assume |ω| ≤ 3. In order to conclude (4.184.18), we now show a lower bound
on ‖((1−ω)Id−VtF)[R]‖hs for all normalized, ‖R‖hs = 1, elements R ∈ CN×N . We decompose R asR = αF +R⊥,
where R⊥ ⊥ F with respect to the Hilbert-Schmidt scalar product on CN×N and α ∈ C. Then

‖((1− ω)Id− VtF)[R]‖2hs = |α|2 |ω|2 + ‖((1− ω)Id− VtF)[R⊥]‖2hs +O
(
η̺−1

)
, (4.23)

because of ‖F‖sp = 1 + O(η̺−1), Vt[FU ] = FU together with (4.224.22), and because the mixed terms are negligible due
to

〈F ,VtF [R⊥]〉 = 〈FVt[F ] , R⊥〉 = O(‖R⊥‖hsη̺−1) .

Using the spectral gap ϑ ∼ 1 of F from (4.214.21) and R⊥ ⊥ F we infer (4.184.18) from (4.234.23) by estimating

‖((1− ω)Id− VtF)[R⊥]‖2hs ≥ dist(ω,D1−ϑ(1))
2‖R⊥‖2hs ≥ (ϑ− 2ε)2(1− |α|2),

optimizing in α and choosing ε ≤ ϑ/3. This shows the lemma for T = Id− VtF .
Since B0 is related by the similarity transform (4.104.10) to Id − V1F = Id − CSF and ‖Q‖

∥∥Q−1
∥∥ . 1 (cf. (4.6c4.6c)), the

operator B0 inherits the properties listed in the lemma from Id−CSF . Finally, we can perform analytic perturbation
theory for the simple isolated eigenvalue in Dε(0) of B0 to verify the lemma for T = B = B0 + E with E = O(̺)

(cf. (4.124.12)) and T = B∗ = B0 + E∗ with E∗ = O(̺) (cf. (4.154.15)) if ̺∗ is sufficiently small. This completes the proof of
Lemma 4.74.7. �

In the following corollary, we use the concepts of left and right eigenvector of an operator T : CN×N → CN×N .
We say Vl ∈ CN×N (Vr ∈ CN×N ) is a left (right) eigenvector of T corresponding to the eigenvalue λ ∈ C of T if
T ∗[Vl] = λ̄Vl (T [Vr] = λVr ).

Corollary 4.8. Let z ∈ Dω∗ satisfy ̺(z) + η̺(z)−1 ≤ ̺∗ for ̺∗ ∼ 1 from Lemma 4.74.7.
Let β0 and β be the isolated eigenvalues inDε(0) of B0 and B, respectively, from Lemma 4.74.7. Furthermore, let P0 = PB0

and P = PB be the spectral projections corresponding to the isolated eigenvalue of B0 and B, respectively (see (4.174.17)). Then
with Q0

..= Id− P0 and Q ..= Id− P we have
∥∥B−1Q

∥∥+ ‖B−1Q‖sp +
∥∥B−1

0 Q0

∥∥ . 1. (4.24)

We defineB0
..= P0CQ∗,Q[FU ] and P0

..= P∗
0C−1

Q,Q∗ [FU ]. Then B0 and P0 are right and left eigenvector of B0 corresponding
to β0 and we have

B0 = CQ∗,Q[FU ] +O(η̺−1), P0 = C−1
Q,Q∗ [FU ] +O(η̺−1), (4.25a)

β0 =
η

̺

π

〈F 2
U 〉

+O(η2̺−2) = O(η̺−1) . (4.25b)

We also define B ..= P [B0] and P ..= P∗[P0]. This yields right and left eigenvectors of B corresponding to β which satisfy

B = B0 +O(̺) , (4.26a)

P = P0 +O(̺) , (4.26b)

β〈P ,B〉 = πη̺−1 − 2i̺σ +O(̺2 + η + η2̺−2) . (4.26c)

Moreover, we have

‖B‖ . 1, ‖P‖ . 1, |〈P ,B〉| ∼ 1. (4.27)

The following identity will be used a few times

〈FUQQ∗〉 = ̺−1〈ℑM〉 = π. (4.28)

It is obtained by a direct computation starting from the definition of FU in (4.44.4), the balanced polar decomposition,
M = Q∗UQ, and ̺(z) = π−1〈ℑM(z)〉.
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Proof. The bounds in (4.244.24) are a direct consequence of Lemma 4.74.7. Using (4.144.14) and CS [FU ] = FU , we see that

B∗
0C−1

Q,Q∗ [FU ] = η̺−1I , B0CQ∗,Q[FU ] = O(η̺−1) . (4.29)

The representations ofB0 andP0 in (4.25a4.25a) followby simple perturbation theory becauseβ0 is a nondegenerate isolated
eigenvalue. The expression for β0 in (4.25b4.25b) is seen by taking the scalar product with B0 in the first identity of (4.294.29)
as well as using (4.25a4.25a) and (4.284.28).

The expansions (4.264.26) follow by first order analytic perturbation theory. Indeed,B = B0+O(̺) andP = P0+O(̺)

as E = B − B0 = O(̺) due to (4.124.12). For the proof of (4.26c4.26c), we first compute E [B0]. From (4.25a4.25a), we obtain the first
equality below:

E [B0] = CQ∗,Q(CS − CU )F [FU ] +O(η) = −2i̺CQ∗,Q[SF
2
U ] +O(̺2 + η), (4.30)

For the second equality in (4.304.30), we used (4.144.14), ‖CS − CU‖ = O(̺) and (CS − CU )[FU ] = 2(ℑU − iℜU)(ℑU)FU =

−2i̺SF 2
U + O(̺2) due to (4.114.11). For the proof of (4.26c4.26c), we start from B[B] = βB, B = B0 + E , use (4.26a4.26a), (4.26b4.26b) as

well as E = O(̺) and obtain
β〈P ,B〉 = β0〈P0 , B0〉+ 〈P0 , E [B0]〉+O(̺2). (4.31)

Together with the following two expansions, this yields (4.26c4.26c). We have

β0〈P0 , B0〉 = πη̺−1 +O(η2̺−2),

〈P0 , E [B0]〉 = −2i̺〈SF 3
U 〉+O(̺2 + η) = −2i̺σ +O(̺2 + η).

The first expansion is a consequence of 〈P0 , B0〉 = 〈F 2
U 〉 +O(η̺−1) due to (4.25a4.25a) and (4.25b4.25b). The second expansion

follows from (4.25a4.25a) and (4.304.30).
The first two bounds in (4.274.27) follow directly from (4.26a4.26a) and (4.26b4.26b) as well as (4.25a4.25a), (4.6c4.6c) and (4.6d4.6d). Moreover,

(4.25a4.25a), (4.26a4.26a) and (4.26b4.26b) imply |〈P ,B〉| ∼ 〈F 2
U 〉 ∼ 1 by (4.6d4.6d). This completes the proof of Corollary 4.84.8. �

Proof of Proposition 4.44.4. As in the proof of Lemma 4.74.7, it suffices to show the bound on ‖B−1‖sp in (4.54.5).
From (4.94.9), by using Lemma 4.64.6, we conclude that

‖B−1‖sp . ‖(C∗
U −F)−1‖sp . |1− ‖F‖sp〈F ,C∗

U [F ]〉|−1
.
(
1− ‖F‖sp + |1− 〈F , C∗

U [F ]〉|
)−1

.

Here, we applied the Rotation-Inversion Lemma, Lemma 4.9 in [33], with T = F and U = C∗
U in the second step. Its

conditions are met due to Fact (aa) and Fact (cc) about F from the proof of Lemma 4.74.7.
Owing to (4.194.19) as well as (4.6c4.6c) and (4.6d4.6d), we have 1− ‖F‖sp ∼ η̺−1. Therefore, it suffices to show that

|1− 〈F , C∗
U [F ]〉| & ̺(̺+ |σ|) (4.32)

when η̺−1 is small. As 1 ≥ 〈FℜUFℜU〉 due to ‖F‖hs = 1, we estimate

|1− 〈F , C∗
U [F ]〉| = |1− 〈FU∗FU∗〉| & 〈FℑUFℑU〉+ |〈FℑUFℜU〉| .

Since ℑU ∼ ̺ by (4.6d4.6d), the first term on the right-hand side scales like ∼ ̺2. This proves (4.324.32) when ̺ ≥ ̺∗ for any
̺∗ ∼ 1 as |σ| . 1. If ̺∗ is sufficiently small and ̺+η̺−1 ≤ ̺∗ thenweuse 〈FℑUFℜU〉 = ̺‖FU‖−2

hs 〈F 3
US〉+O(̺3+η) by

(4.224.22) and (4.114.11) to conclude (4.324.32) and, thus, (4.54.5) in themissing regime. This completes the proof of Proposition 4.44.4. �

4.2. Sharp bound on B−1 and 1/2-Hölder continuity ofM . In this section, we will prove Theorem 4.24.2 and Corol-
lary 4.34.3. They will be proven directly after the following proposition, the main result of the present section. It shows
that σ introduced in (4.44.4) is of order one close to regular edges τ0 ∈ ∂ supp ̺. For the formulation of this proposition,
we define

A[R, T ] ..=
1

2

(
MS[R]T + TS[R]M

)
(4.33)

with R, T ∈ CN×N .

Proposition 4.9. Let (A)(A), (E)(E) and (G)(G) be satisfied for some τ0 ∈ R. If τ0 ∈ ∂ supp ̺ is a regular edge then the following
statements hold true

(i) At z = τ0, for P and B defined as in Corollary 4.84.8, we have

|〈P ,A[B,B]〉| ∼ 1.

(ii) There is δ∗ ∼ 1 such that

|σ(z)| ∼ 1

for all z ∈ H satisfying |z − τ0| ≤ δ∗.

Proposition 4.94.9 immediately implies Theorem 4.24.2 and Corollary 4.34.3.
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Proof of Theorem 4.24.2. By Proposition 4.94.9 (ii), there is δ∗ ∼ 1 such that |σ(z)| ∼ 1 for all z ∈ H satisfying |z − τ0| ≤ δ∗.
Therefore, Theorem 4.24.2 follows directly from Proposition 4.44.4. �

Proof of Corollary 4.34.3. We proceed exactly as in the proof of Corollary 4.54.5 but use Theorem 4.24.2 instead of (4.54.5) for all
z ∈ H such that |z − τ0| ≤ δ∗, where δ∗ is chosen as in Theorem 4.24.2. �

Theproof of Proposition 4.94.9 requires two auxiliary lemmaswhose proofs are postponed until the end of the section.
Some statements in these lemmas will be stated for more general τ0 ∈ R not only when τ0 is a regular edge, although
we will eventually use them in this case.

We now choose θ = ω∗/2 in Corollary 4.54.5 and work on the set Dω∗/2 in the following. Note that Dω∗/2 ⊂
Dω∗ . By Hölder-continuity we can then extend M to Dω∗/2, and we denote the extension by M as well. More-
over, the operators B and B∗ are defined for all z ∈ Dω∗/2 and the results about B and B∗ in Lemma 4.74.7 hold
true on {z ∈ Dω∗/2 : ̺(z) + η̺(z)−1 ≤ ̺∗}, where the closure is taken with respect to the Euclidean topology on C.
Lemma 4.104.10 below shows that this set contains a neighbourhood around any point τ0 ∈ ∂ supp ̺.

Lemma 4.10. Let (A)(A), (E)(E) and (G)(G) hold true for some τ0 ∈ R. Then the following holds true:

(i) There is ̺∗ ∼ 1 such that, for the eigenvalue β∗ of B∗ = Id− CM∗,MS in Dε(0) (cf. Lemma 4.74.7), we have

|β∗| ∼ η/̺ (4.34)

uniformly for z ∈ Dω∗ satisfying ̺(z) + η̺(z)−1 ≤ ̺∗.
(ii) If τ0 ∈ ∂ supp ̺ and ̺∗ ∼ 1 then there is δ∗ ∼ 1 such that ̺(z)+ η̺(z)−1 ≤ ̺∗ for all z ∈ H satisfying |z − τ0| ≤ δ∗.

Moreover, we have

lim
η↓0

η̺(τ0 + iη)−1 = 0. (4.35)

Lemma 4.11. Let (A)(A), (E)(E) and (G)(G) be satisfied for some τ0 ∈ R. Then there is ̺∗ ∼ 1 such that, uniformly for all z ∈ Dω∗

satisfying ̺(z) + η̺(z)−1 ≤ ̺∗, we have

〈P ,A[B,B]〉 = σ +O(̺+ η̺−1), (4.36a)

〈P ,MS[B]B〉 = σ +O(̺+ η̺−1). (4.36b)

We remark that (4.36b4.36b) will be used in the next section.

Proof of Proposition 4.94.9. In this proof, we will analyseM and B = Id−CMS on the real line outside the self-consistent
spectrum, i.e. we will consider spectral parameters z = τ + iη such that τ ∈ [τ0 −ω∗/2, τ0 +ω∗/2] \ supp ̺ and η = 0.
In particular, ̺(τ) = 0 and thus M = M∗ by (4.6b4.6b). Owing to the continuity of M (Corollary 4.54.5), M satisfies the
MDE, (2.12.1), also for these spectral parameter z. Moreover, ̺(τ + iη) . η/ dist(τ + iη, supp ̺)2 as 〈M〉 is the Stieltjes
transformof the measure µ onR (compare (4.554.55)). Thus, B is invertible at τ /∈ supp ̺ due to Proposition 4.44.4 as the term
η̺−1 has a uniform lower bound for z = τ + iη with η > 0. In particular,M and β are differentiable with respect to
ω = τ − τ0 for τ /∈ supp ̺. First order perturbation theory of the isolated eigenvalue β of the non-selfadjoint operator
B yields

∂ωβ = −〈P , C∂ωM,MS[B]〉
〈P ,B〉 − 〈P , CM,∂ωMS[B]〉

〈P ,B〉 = −〈P , (∂ωM)S[B]M +MS[B](∂ωM)〉
〈P ,B〉 . (4.37)

For definiteness, we assume in the following that τ0 is a right edge. Hence, ω > 0. The argument for a left edge works
completely analogously.

Owing to the invertibility of B, the MDE, (2.12.1), is differentiable at τ with respect to ω. Similarly to (4.74.7), we obtain

∂ωM = B−1[M2] =
〈P ,M2〉
β〈P ,B〉B + B−1Q[M2].

In the second step, we inserted P + Q = Id and employed the definition of P = PB in Corollary 4.84.8. We insert this
into (4.374.37) and get from Lemma 4.74.7 and (4.244.24) that

∂ωβ = − 〈P ,M2〉
β〈P ,B〉2 〈P ,BS[B]M +MS[B]B〉+O(1) =

2〈P ,M2〉
β〈P ,B〉2 〈P ,A[B,B]〉+O(1).

The bounds in (4.274.27) of Corollary 4.84.8 yield ‖P‖ . 1 and, hence,
∣∣〈P ,M2〉

∣∣ . 1 by Assumption (G)(G). By (4.274.27), we have
|〈P ,B〉| ∼ 1 if η > 0. Thus, as a consequence of the continuity of M by Corollary 4.54.5 and, hence, of P and B, the
derivative of β2 is bounded by

∣∣∂ω(β2)
∣∣ . |〈P ,A[B,B]〉|+ |β|. This implies

|β|2 . |〈P ,A[B,B]〉|ω + ω2. (4.38)



CORRELATED RANDOM MATRICES: BAND RIGIDITY AND EDGE UNIVERSALITY 17

On the other hand, from (4.344.34) and the continuity of β∗, and β∗ = β for η = 0 (asM = M∗) we get

|β(τ0 + ω)| ∼ lim
η↓0

η

̺(τ0 + ω + iη)
∼
(∫ δ

0

̺(τ0 − ω′)

(ω′ + ω)2
dω′
)−1

,

for some δ ∼ 1. From this and (2.52.5), we conclude that

lim inf
ω↓0

|β(τ0 + ω)|√
ω

∼ lim sup
ω↓0

|β(τ0 + ω)|√
ω

∼ 1 ,

i.e. |β|2 ∼ ω as ω ↓ 0. Therefore, we find |〈P ,A[B,B]〉| & 1 at z = τ0 due to (4.384.38). The upper bound follows from
‖P‖ . 1 and ‖B‖ . 1 by Corollary 4.84.8. This completes the proof of (i).

For the proof of (ii), we conclude that 〈P ,A[B,B]〉 is a uniformly 1/3-Hölder continuous function of z on {w ∈
H ∪ R : |w − τ0| ≤ δ∗} for some δ∗ ∼ 1 due to Corollary 4.54.5 and Lemma 4.104.10 (ii). By possibly shrinking δ∗ ∼ 1, we
can thus assume that |〈P ,A[B,B]〉| ∼ 1 for all z ∈ H satisfying |z − τ0| ≤ δ∗. From Lemma 4.104.10 (ii) and (4.36a4.36a), we
conclude that |σ(z)| ∼ 1 for all z ∈ H such that |z − τ0| ≤ δ∗ for some sufficiently small δ∗ ∼ 1. Hence, we have
completed the proof of Proposition 4.94.9. �

Proof of Lemma 4.104.10. Similarly to the proof of Corollary 4.84.8, we find a left eigenvector P∗ of B∗ corresponding to β∗,
i.e. (B∗)∗[P∗] = β∗P∗, such that

P∗ = Q−1FU (Q
∗)−1 +O(̺+ η̺−1) (4.39)

provided that z ∈ Dω∗ satisfies ̺(z)+η̺(z)−1 ≤ ̺∗. We take the imaginary part of (2.12.1) and compute the scalar product
with P∗. This yields

β∗ =
η

̺

〈P∗ ,M∗M〉
〈P∗ , ̺−1ℑM〉 . (4.40)

Using (4.394.39) and the balanced polar decomposition,M = Q∗UQ, we obtain

〈P∗ ,M
∗M〉 = 〈FUQQ∗〉+O(̺+ η̺−1) = π +O(̺+ η̺−1),

〈P∗ , ̺
−1ℑM〉 = 〈F 2

U 〉+O(̺+ η̺−1).

Here, we used thatU andFU commute and (4.284.28) in order to compute 〈P∗ ,M∗M〉. We thus deduce that |〈P∗ ,M∗M〉| ∼
1 and

∣∣〈P∗ , ̺−1ℑM〉
∣∣ ∼ 1 for all z ∈ Dω∗ satisfying ̺(z) + η̺(z)−1 ≤ ̺∗ for some sufficiently small ̺∗ ∼ 1 due to

(4.6d4.6d). Therefore, taking the absolute value in (4.404.40) and using these scaling relations complete the proof of (4.344.34).
For the proof of (ii), we remark that, owing to the continuity of ̺, we have

lim
η↓0

̺(τ + iη)−1η = 0

for all τ ∈ R satisfying ̺(τ) > 0. From (4.344.34), we thus conclude that β∗(τ) = 0 if ̺(τ) > 0 for all τ ∈ [τ0 − ω∗/2, τ0 +
ω∗/2]. The continuity of M from Corollary 4.54.5 implies that B∗ is also 1/3-Hölder continuous. Consequently, β∗ is
also 1/3-Hölder continuous as it is an isolated eigenvalue of B∗. Owing to the continuity of ̺, we find a sequence
(τn)n such that τn → τ0 ∈ ∂ supp ̺ and ̺(τn) > 0 for all n. Thus, the continuity of β∗ yields β∗(τ0) = 0. Therefore,
we have |β∗| + ̺ = 0 at z = τ0. Hence, the 1/3-Hölder continuity of |β∗| + ̺ implies that there is δ∗ ∼ 1 such that
̺(z) + η̺(z)−1 ≤ ̺∗ since ̺+ η̺−1 ∼ ̺+ |β∗| by (4.344.34). From β∗(τ0) = 0 and (4.344.34), we directly conclude (4.354.35). This
completes the proof of Lemma 4.104.10. �

Proof of Lemma 4.114.11. First, we use the balanced polar decomposition,M = Q∗UQ, (4.84.8) and the definition ofA in (4.334.33)
to obtain

A[R, T ] =
1

2
CQ∗,Q

[
U(FC−1

Q∗,Q[R])C−1
Q∗,Q[T ] + C−1

Q∗,Q[T ](FC−1
Q∗,Q[R])U

]
(4.41)

for R, T ∈ CN×N .
We choose ̺∗ ∼ 1 small enough such that Lemma 4.74.7 is applicable. By using U = S +O(̺) due to (4.114.11) as well as

(4.44.4), (4.144.14) and (4.25a4.25a) in (4.414.41), we get

A[B0, B0] = CQ∗,Q[SF
2
U ] +O(̺+ η̺−1). (4.42)

In order to show (4.36a4.36a), we use (4.26a4.26a) as well as (4.26b4.26b) and obtain

〈P ,A[B,B]〉 = 〈P0 ,A[B0, B0]〉+O(̺) = 〈SF 3
U 〉+O(̺+ η̺−1) = σ +O(̺+ η̺−1).

This completes the proof of (4.36a4.36a). A similar computation yields (4.36b4.36b). �
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4.3. Derivation of the quadratic equation. In this section, we expandM(τ0 +ω) aroundM(τ0) for a regular edge
τ0 ∈ ∂ supp ̺. We show that this approximation is to leading order dominated by a scalar-valued quantity, Θ, which
satisfies a quadratic equation. That is the content of the following propositionwhich is the main result of this section.

Proposition 4.12 (Quadratic equation for shape analysis). Let (A)(A), (E)(E) as well as (G)(G) be satisfied for some regular edge
τ0 ∈ ∂ supp ̺. Then there is δ∗ ∼ 1 such that the following hold true:

(a) For all ω ∈ [−δ∗, δ∗], we have
M(τ0 + ω)−M(τ0) = Θ(ω)B +R(ω), (4.43)

where Θ: [−δ∗, δ∗] → C and R : [−δ∗, δ∗] → CN×N are defined by

Θ(ω) ..=

〈
P

〈B ,P 〉 , M(τ0 + ω)−M(τ0)

〉
, R(ω) ..= Q[M(τ0 + ω)−M(τ0)]. (4.44)

Here, P = P (τ0), B = B(τ0) and Q = Q(τ0) are the eigenvectors and spectral projection of B(τ0) introduced in
Corollary 4.84.8. We have B = B∗ and P = P ∗ as well as B ∼ 1 and P ∼ 1. Moreover, Θ(ω) and R(ω) are bounded by

|Θ(ω)| . |ω|1/2 , ℑΘ(ω) ≥ 0, ‖ℑR(ω)‖ . |ω|1/2 ℑΘ(ω) (4.45)

uniformly for all ω ∈ [−δ∗, δ∗].
(b) The function Θ satisfies the quadratic equation

σΘ2(ω) + ωΞ(ω) = 0, Ξ(ω) = π(1 + ν(ω)), (4.46)

for all ω ∈ [−δ∗, δ∗], where σ = 〈P ,MS[B]B〉, M = M(τ0), and the error term ν(ω) satisfies

|ν(ω)| . |ω|1/2 , |ℑν(ω)| . ℑΘ(ω) (4.47)

for all ω ∈ [−δ∗, δ∗].

The definition σ = 〈P ,MS[B]B〉 for τ0 ∈ ∂ supp ̺ extends the definition of σ in (4.44.4) on H owing to (4.36b4.36b), (4.354.35)
as well as the continuity ofM and, thus, P , B and ̺.

We warn the reader that, in this section, functions of z likeM , B, P , U , Q, etc. without argument are understood
to be evaluated at τ0 instead of the generic spectral parameter z which is the convention in most of the other parts of
this work.

Proof. The first bound in (4.454.45) follows directly from Corollary 4.34.3.
From (4.25a4.25a), (4.26a4.26a), (4.26b4.26b), ̺(τ0) = 0 and (4.354.35), we conclude that B and P are the limits of Hermitian, positive-

definite matrices which are ∼ 1 due to Lemma 4.64.6. Thus, B = B∗ ∼ 1 and P = P ∗ ∼ 1. This also implies that
ℑΘ(ω) ≥ 0 in (4.454.45) as ℑM(τ0 + ω) is always positive semidefinite and ℑM(τ0) = 0.

In the following lemma whose proof we postpone till the end of this section we establish a quadratic equation for
Θ.

Lemma 4.13 (Derivation of the quadratic equation). Let Θ(ω) and R(ω) be defined as in (4.444.44) and A be defined as in
(4.334.33). Then there is δ∗ ∼ 1 such that, for all ω ∈ [−δ∗, δ∗], Θ = Θ(ω) satisfies the quadratic equation

µ2Θ
2 + µ1Θ+ µ0 = e(ω)

with some error term e(ω) = O(|ω|3/2) and with coefficients

µ2 = 〈P ,A[B,B]〉, µ1 = −β〈P ,B〉, µ0 = ω〈P ,M2〉. (4.48)

Moreover, for all ω ∈ [−δ∗, δ∗], we have

|ℑe(ω)| . |ω| ℑΘ(ω), ‖ℑR(ω)‖ . |ω|1/2 ℑΘ(ω). (4.49)

We now compute the coefficients defined in (4.484.48) precisely. This will yield the quadratic equation in (4.464.46).
Owing to (4.36a4.36a), (4.36b4.36b), (4.354.35), ̺(τ0) = 0 and the continuity ofM and, thus, P , B and ̺, we have µ2 = σ as defined

in Proposition 4.124.12 (bb).
The expansion in (4.26c4.26c) implies µ1 = 0 at τ0 by (4.354.35). We now compute µ0. At z ∈ H satisfying ̺(z)+ ̺(z)−1ℑz ≤

̺∗, we conclude from (4.26b4.26b), (4.25a4.25a) and the balanced polar decomposition,M = Q∗UQ, from (4.24.2) that

〈P ,M2〉 = 〈Q−1FU (Q
∗)−1 , Q∗UQQ∗UQ〉+O(̺+ η̺−1) = 〈FUQQ∗〉+O(̺+ η̺−1) = π +O(̺+ η̺−1).

Here, we also employed that U = S + O(̺) by (4.114.11) and FU and S commute in the second step and (4.284.28) in the last
step. Thus, we have µ0 = ωπ at τ0 by (4.354.35).

We set ν(ω) ..= −(πω)−1e(ω) with e(ω) as introduced in Lemma 4.134.13. This immediately implies the first bound in
(4.474.47). From (4.494.49), we conclude the second estimate in (4.474.47) and the third estimate in (4.454.45). This completes the proof
of Proposition 4.124.12. �
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Proof of Lemma 4.134.13. Owing to the Hölder-continuity ofM , we conclude thatM(z) is invertible and satisfies (2.12.1) for
all z ∈ Dω∗/2. Hence, evaluating (2.12.1) at z = τ0+ω and z = τ0, computing their difference and introducingM ..= M(τ0)

as well as∆ ..= M(τ0 + ω)−M , we obtain

B[∆] = A[∆,∆] + ωM2 + ωK[∆], K[∆] ..=
1

2
(M∆+∆M). (4.50)

In order to computeR = Q[∆], we apply B−1Q to (4.504.50), use∆ = ΘB+R and, owing to the Hölder-continuity ofM ,
‖∆(ω)‖ . |ω|1/2 and |Θ(ω)| . |ω|1/2, find δ∗ ∼ 1 such that

‖R(ω)‖ . |ω| , ‖ℑR(ω)‖ . |ω|1/2 ℑΘ(ω) (4.51)

for all ω ∈ [−δ∗, δ∗]. Here, in order to estimate ℑR, we used that M = M∗ and, hence, A[B,B] = A[B,B]∗ as
τ0 ∈ ∂ supp ̺. This shows the second estimate in (4.494.49).

We apply 〈P , · 〉 to (4.504.50) and use the decomposition∆ = ΘB +R as well as B[B] = βB which yield

Θβ〈P ,B〉 = ω〈P ,M2〉+Θ2〈P ,A[B,B]〉+ e, e ..= 〈P ,Θ(A[B,R] +A[R,B]) +A[R,R]〉+ ω〈P ,K[∆]〉.
From (4.514.51), we conclude

|e(ω)| . |ω|3/2 , |ℑe(ω)| . |ω| ℑΘ(ω).

This establishes the quadratic equation aswell as themissing bounds on e and, thus, completes the proof of Lemma 4.134.13.
�

4.4. Shape analysis. In this section, we conclude Theorem 4.14.1 from Proposition 4.124.12.

Proof of Theorem 4.14.1. We recall that σ = µ2 = 〈P ,MS[B]B +BS[B]M〉/2 as in the proof of Proposition 4.124.12 and
|σ| ∼ 1 by Proposition 4.94.9 (i). We will show that there is δ∗ ∼ 1 such that

̺(τ0 + ω) =





π1/2

|σ|1/2
|ω|1/2 +O(|ω|), if signω = signσ,

0, if signω = − signσ,

(4.52)

for all ω ∈ [−δ∗, δ∗]. This directly implies Theorem 4.14.1 with c =
√
π/ |σ| as we conclude σ < 0 from (2.52.5) and (4.524.52).

We now computeΘ(ω) in (4.434.43) by identifying the correct solution of (4.464.46). The general quadratic equationΩ(ζ)2+
ζ = 0with ζ ∈ C has two solutions:

Ω±(ζ) = ±
{
iζ1/2, if ℜζ ≥ 0,

−(−ζ)1/2, if ℜζ < 0,

where ζ1/2 denotes the standard branch of the square root with the branch cut (−∞, 0).
SinceΘ(ω) is a continuous function of ω and |ν(ω)| < 1 for all ω ∈ [−δ∗, δ∗] for δ∗ ∼ 1 sufficiently small due to the

first bound in (4.474.47), we conclude from (4.464.46) that there are p, q ∈ {+,−} such that
Θ(ω) = Ωp(Λ(ω))1(ω/σ < 0) + Ωq(Λ(ω))1(ω/σ ≥ 0), Λ(ω) ..=

πω

σ
(1 + ν(ω)) (4.53)

for all ω ∈ [−δ∗, δ∗].
We now show that q = + by a proof by contradiction. We assume q = −. For ω/σ ≥ 0, we have

ℑΩ−(Λ(ω)) = −
(
πω

σ

)1/2

+O
(
|ν(ω)| |ω|1/2

)
.

For sufficiently small ω we thus obtain ℑΩ−(Λ(ω)) < 0 in contradicition to ℑΘ(ω) ≥ 0 from (4.454.45). This implies
q = +.

Next, we prove that ℑΘ(ω) = 0 for all ω ∈ Iδ∗ with δ∗ ∼ 1 sufficiently small, where Iδ∗
..= {ω ∈ R : signω =

− signσ, |ω| ≤ δ∗}. We will not determine p in (4.534.53) but rather show that ℑΘ = 0 on Iδ∗ for either choice of p (In fact,
p = + can be shown [55, Proposition 7.10 (ii)]). By possibly shrinking δ∗ ∼ 1, we get

|ℜΩ±(Λ(ω))| ∼ |ω|1/2

as σ ∈ R and |σ| ∼ 1. Therefore, taking the imaginary part of (4.464.46) and using the second bound in (4.474.47), (4.534.53) and
σ ∈ R yield

|ω|1/2 ℑΘ(ω) . |ω| ℑΘ(ω)

for all ω ∈ Iδ∗ . If δ∗ ∼ 1 is sufficiently small then we obtain ℑΘ(ω) = 0 for all ω ∈ Iδ∗ .
We now take the imaginary part of (4.434.43) and apply 〈 · 〉. Hence, we obtain

̺(τ0 + ω) = ℑΘ(ω)π−1〈B〉+ π−1〈ℑR(ω)〉 = ℑΘ(ω) +O
(
|ω|1/2 ℑΘ(ω)

)
(4.54)
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for all ω ∈ [−δ∗, δ∗]. Here, we used B = B∗ in the first step and 〈B〉 = π by (4.26a4.26a), (4.25a4.25a), (4.284.28) and (4.354.35) as well as
the third bound in (4.454.45) in the second step.

Since q = + in (4.534.53), we can bound ℑΘ(ω) = ℑΩ+(Λ(ω)) directly in (4.544.54) to obtain the first case in (4.524.52). Since
ℑΘ(ω) = 0 for all ω ∈ Iδ∗ , (4.544.54) implies the second case in (4.524.52). This completes the proof of (4.524.52) and, thus, the one
of Theorem 4.14.1. �

4.5. Proof of Proposition 3.13.1. We have now established all results which are necessary for the proof of Proposi-
tion 3.13.1.

Proof of Proposition 3.13.1. Claims (ii) and (iiii) follow directly from [2929] and [33].
Part (iiiiii) is a direct consequence of Theorem 4.14.1 and the Stieltjes transform representation of 〈M(z)〉, i.e.

〈M(z)〉 =
∫

R

̺(τ)

τ − z
dτ (4.55)

for z ∈ H (this simple calculation can be found, e.g. in Corollary A.1 in [22]).
For the proof of (iviv), we first remark that (iiiiii) implies ̺(z) + η̺(z)−1 ∼

√
|τ − τ0|+ η for all z ∈ H satisfying

|z − τ0| ≤ δ∗. Thus, Theorem 4.24.2 yields the first bound in (iviv). Owing to (4.244.24), we have ‖B−1Q‖sp . 1. Moreover, we
choose P and B as in Corollary 4.84.8. This completes the proof of the second bound in (iviv) due to (4.274.27).

Moreover, |σ| ∼ 1 by Proposition 4.94.9. Hence, we conclude |〈P ,MS[B]B〉| ∼ 1 from Lemma 4.114.11. Furthermore,
owing to (4.274.27), we have |〈P ,B〉| ∼ 1. Thus, since σ ∈ R and |σ| ∼ 1 we get from (4.26c4.26c) that

|β| ∼ |β〈P ,B〉| ∼ ̺+ η̺−1 ∼
√
|τ − τ0|+ η.

This completes the proof of Proposition 3.13.1. �

5. Band rigidity

Within this section we establish band rigidity for correlated random matrices H . This topological rigidity phe-
nomenon asserts that the number of eigenvalues of H within a spectral band, i.e. a connected component of supp ̺,
does not fluctuate and is accurately predicted by the self-consistent density of states with high probability. On the
level of the MDE this phenomenon is reflected by the band mass formula (5.15.1) below, guaranteeing that N̺ assigns
only integer values to each band. In particular, small continuous deformations of the data (A,S) of the MDE cannot
change these values.

Proposition 5.1 (Band mass formula). For τ ∈ R \ supp ̺ the integrated self-consistent density of states satisfies
∫ τ

−∞
̺(x)dx =

1

N
|Spec(M(τ)) ∩ (−∞, 0)| . (5.1)

In particular, N
∫ τ

−∞ ̺(x)dx is an integer.

Before we prove Proposition 5.15.1 we show how it is used to establish band rigidity forH .

Proof of Corollary 2.92.9. We begin with the proof of (2.7a2.7a) and consider a flow that interpolates between H = H0 and a
deterministic matrixH1. We fix τ 6∈ supp ̺ with ǫ ..= dist(τ, supp ̺) > 0 and set

Ht
..=

√
1− tW +At, At

..= A− tS[M(τ)], St
..= (1− t)S, t ∈ [0, 1]. (5.2)

The MDE corresponding toHt is
I + (z −At + St[Mt(z)])Mt(z) = 0 (5.3)

with data (At,St), solutionMt(z) and self-consistent density of states ̺t. We refer to this t-dependent MDE asMDEt.
It is designed in such a way thatMt(τ) at the fixed spectral parameter z = τ is kept constant at t varies. Moreover, by
the following lemma, whose proof we postpone, τ stays away from the self-consistent spectrum along the flow.

Lemma 5.2. Let ǫ ..= dist(τ, supp ̺) > 0 and Mt be the solution to MDEt (5.35.3). Then dist(τ, supp ̺t) ≥ǫ 1 and
limη↓0 Mt(τ + iη) = M(τ) for all t ∈ [0, 1].

Wewill now show that along the flow,with overwhelming probability, no eigenvalue crosses the spectral parameter
τ . More precisely we claim that

P
(
τ ∈ SpecHt for some t ∈ [0, 1]

)
≤ǫ N

−D (5.4)

for anyD > 0. SinceH0 = H andH1 = A− S[M(τ)], (5.45.4) implies that with overwhelming probability

|SpecH ∩ (−∞, τ)| = |Spec(A− S[M(τ)] − τ) ∩ (−∞, 0)| = N 〈1(−∞,0)(M(τ))〉 ,
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where the last identity used the the MDE (2.12.1) at z = τ . Now (2.7a2.7a) follows from the band mass formula (5.15.1), i.e. from
〈1(−∞,0)(M(τ))〉 =

∫ τ

−∞ ̺(λ) dλ.
It remains to show (5.45.4). We first consider the regime of values t close to 1. Since τ is separated away from supp ̺,

and M(τ) is bounded we conclude from (2.12.1) at z = τ that the spectrum of A − S[M(τ)] is also separated away
from τ . Moreover, applying [1717, Corollary 2.3] to H = W yields ‖W‖ ≤ C with overwhelming probability as the
corresponding self-consistent density of states has compact support by Proposition 3.13.1(iiii). Since therefore Ht is a
small perturbation of A − S[M(τ)] as long as t is close to 1, we conclude that the spectrum of Ht is bounded away
from τ as well for every fixed t ≥ 1 − c for some small enough constant c > 0. We are thus left with the regime
t ≤ 1 − c, where the flatness condition from Assumption (E)(E) for Ht is satisfied. In this regime we use [1717, Corollary
2.3] again. Since dist(τ, supp ̺t) ≥ǫ 1 this corollary implies that the spectrum of Ht is bounded away from τ with
overwhelming probability for every fixed t ≤ 1− c. Applying a discrete union bound in t together with the Lipschitz
continuity of the eigenvalues in t for the flow (5.25.2) on the set ‖W‖ ≤ C yields (5.45.4).

Finally, (2.7b2.7b) follows from the optimal local law as in the proof of Theorem 2.62.6 and Corollary 2.72.7 above. This
time, however, (2.7a2.7a) ensures that there is no mismatch between location and label of eigenvalues close to internal
edges. In the spectral bulk this potential discrepancy between label and location does not matter as (2.7b2.7b) allows for
anN ǫ-uncertainty. At the spectral edge, however, neighbouring eigenvalues can lie on opposite sides of a spectral gap
and we need (2.7a2.7a) to make sure that each eigenvalue has, with high probability, a definite location with respect to the
spectral gap. �

Proof of Lemma 5.25.2. Note thatM(z) is analytic and bounded away from the self-consistent spectrum because it admits
a Stieltjes transform representation (cf. Proposition 2.1 of [33]). We consider MDEt (5.35.3) at a spectral parameter τ + ζ

with some ζ ∈ H such that |ζ| ≪ 1 and subtract it from MDEt at spectral parameter τ . Properly symmetrised the
resulting quadratic equation for∆ = ∆(ζ) = Mt(τ + ζ)−M(τ) takes the form

Bt[∆] = ζM2 +
ζ

2
(M∆+∆M) + (1− t)A[∆,∆], (5.5)

where M = M(τ), A is as in (4.334.33) and Bt = Id − (1 − t)CMS is the stability operator. We will see that equation (5.55.5)
is linearly stable in the sense that

∥∥B−1
t

∥∥ ≤ǫ 1 uniformly in t. Note that the terms containing ∆ on the right hand
side are lower order. Thus we may apply the implicit function theorem to show that∆(ζ) is an analytic function for

sufficiently small ζ with ∆(ζ) = ζB−1
t [M2] + O

(
|ζ|2
)
. In particular, it extends to small ζ ∈ C. Since M = M(τ)

is self-adjoint and B−1
t preserves the cone of positive definite matrices, M + ∆(ζ) coincides for any small ζ ∈ H

with the unique solution toMDEt with positive definite imaginary part. But since∆(ζ) is analytic in ζ for any small
enough ζ , even with negative imaginary part,Mt(z) can be analytically extended to a t-independent neighbourhood
of τ in C. Furthermore, since Bt and R 7→ A[R,R] preserve the space of self-adjoint matrices, this extension takes
self-adjoint values on the real line. Thus for every t the density ̺t = 1

π 〈ℑMt〉 vanishes in a neighbourhood of τ ,
i.e. dist(τ, supp ̺t) ≥ǫ 1.

To show the bound on B−1
t we use the symmetrisation (4.94.9) with the self energy operator St = (1− t)S to see that

∥∥B−1
t

∥∥
sp

≤ǫ

∥∥(C∗
U −Ft)

−1
∥∥
sp

.
1

1− (1− t) ‖F‖sp
, (5.6)

where U is unitary andFt = (1− t)F with the self-adjoint operatorF from (4.84.8). Exactly as in the proof of Lemma 4.74.7
the boundedness of B−1

t in the ‖·‖sp-norm also implies
∥∥B−1

t

∥∥ ≤ǫ 1. Thus it remains to show that the right hand side
of (5.65.6) is bounded. For this purpose we apply the lower bound on 1 − ‖F‖sp ≥ǫ 1 from [66, Lemma 3.6], finishing the
proof of the lemma. �

Proof of Proposition 5.15.1. Let ǫ ..= dist(τ, supp ̺) > 0. Again we make use ofMDEt (5.35.3). Recall thatM(τ) solvesMDEt

at spectral parameter τ , which stays away from the self-consistent spectrum by Lemma 5.25.2.
Since Mt(z) is the Stieltjes transform of a matrix valued measure on supp ̺t it can be analytically extended to

C \ supp ̺t, a set that contains the spectral parameter τ for which Mt(τ) = M(τ) by the lemma. When ̺ and M(τ)

are replaced by ̺t and Mt(τ), respectively, in (5.15.1) then clearly this identity holds at time t = 1 since M1(z) = (A −
S[M(τ)] − z)−1 = (τ +M(τ)−1 − z)−1 is the resolvent of the self-adjoint matrix τ +M(τ)−1. AsMt(τ) = M(τ), it
suffices to establish that the left-hand side of (5.15.1) with ̺ replaced by ̺t does not change along the flow.

To show that the left hand side is independent of t, we differentiate the contour integral representation
∫ τ

−∞
̺t(x)dx = −

∮
dz

2πi
〈Mt(z)〉 ,
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where the contour encircles [min supp ̺t, τ) counterclockwise, passing through the real line only at τ and to the left
of inft min supp ̺t. WithMt = Mt(z) we find

d

dt

∮
〈Mt〉dz =

∮
〈(C−1

M∗

t
− St)

−1[I],S[M(τ) −Mt]〉 =
∮

∂z

(
〈MtS[M(τ)]〉 − 1

2
〈MtS[Mt]〉

)
dz = 0,

where the formula (C−1
Mt

− St)[∂tMt] = S[M(τ) −Mt], used in the first identity, is obtained by differentiatingMDEt

with data (5.25.2) with respect to t and the formula (C−1
Mt

− St)[∂zMt] = I , used in the second identity, follows from
differentiating (5.35.3) with respect to z. �

6. Proof of Universality

In order to prove Theorem 2.112.11, we define the Ornstein Uhlenbeck (OU) process starting fromH = H0 by

dHt = −1

2
(Ht −A) dt+Σ1/2[dBt], Σ[R] ..= EW Tr(WR), (6.1)

where Bt is a matrix of, up to symmetry, independent (real or complex, depending on the symmetry class of H )
Brownian motions andΣ1/2 is the square root of the positive definite operatorΣ: CN×N → CN×N . We note that the
same process has already been used in [33, 1515, 1717] to prove bulk universality. The proof now has two steps: Firstly, we
will prove edge universality for Ht if t ≫ N−1/3 and then we will prove that for t ≪ N−1/6, the eigenvalues of Ht

have the same k-point correlation functions as those ofH = H0.

6.1. Dyson Brownian Motion. The process (6.16.1) can be integrated, and we have

Ht −A = e−t/2(H0 −A) +

∫ t

0

e(s−t)/2Σ1/2[dBs],

∫ t

0

e(s−t)/2Σ1/2[dBs] ∼ N (0, (1 − e−t)Σ).

The process is designed in such a way that it preserves expectation EHt = A and covariances Cov(ht
ab, h

t
cd) =

Cov(hab, hcd) along the flow. Due to the fullness Assumption (F)(F) there exists a constant c > 0 such that (1− e−t)Σ−
ctΣGUE/GOE ≥ 0 for t ≤ 1, whereΣGOE/GUE denotes the covariance operator of the GOE/GUE ensembles. It follows
that we can write

Ht = H̃t +
√
ctU, κt = κ− ctκGOE/GUE, E H̃t = A, U ∼ GOE/GUE,

where κt here denotes the cumulants of H̃t, and U is chosen to be independent of H̃t. Due to the fact that Gauss-
ian cumulants of degree more than 2 vanish, it is easy to check that Ht, H̃t satisfy the assumptions of Theorem 2.62.6
uniformly in, say, t ≤ N−1/10. From now on we fix t = N−1/3+ǫ with some small ǫ > 0.

Since theMDE is purely determined by the first twomoments of the corresponding randommatrix, it follows that
Gt

..= (Ht − z)−1 is close to the sameM in the sense of a local law for all t. For G̃t
..= (H̃t − z)−1 we have the MDE

I + (z −A+ St[Mt])Mt = 0, St
..= S − ctSGOE/GUE (6.2)

that can be viewed as a perturbation of the original MDE with t = 0. The corresponding self-consistent density
of states is ̺t(τ) ..= limηց0 ℑ 〈Mt(τ + iη)〉 /π. The fact that Mt remains bounded uniformly in t ≤ N−1/10 follows
from a similar (but much simpler) argument as those leading to the local law in Section 33. The analogue of (3.33.3) withG

replaced byMt(z) is obtained by subtracting (2.12.1) from (6.26.2) and the analogue of the error termD is trivially controlled
by t. The details are presented in the MDE perturbation result in [55, Proposition 10.1] with S = S , St = St and at = A

as the condition on St in [55, Eq. (10.1)] is obviously satisfied for this choice of St due to
∥∥SGOE/GUE[R]

∥∥ . 〈R〉 for all
positive semidefinite matrices R. In particular the shape analysis from Section 44 also applies toMt.

The Stieltjes transformsof the free convolutions of the empirical spectral density of H̃t and ̺t with the semicircular
distribution generated by

√
ctU are given implicitly as the unique solutions to the equations

m̃t
fc(z) = 〈G̃t(z + ctm̃t

fc(z))〉 , mt
fc(z) = 〈Mt(z + ctmt

fc(z))〉 .
We denote the corresponding right-edges close to τ0 by τ̃t and τt. By differentiating the defining equations for mt

fc

and m̃t
fc we find

(mt
fc)

′(z)

1 + ct(mt
fc)

′(z)
= 〈M ′

t(ξt(z))〉 ,
(m̃t

fc)
′(z)

1 + ct(m̃t
fc)

′(z)
= 〈G̃′

t(ξ̃t(z))〉 ,
(mt

fc)
′′(z)

(1 + ct(mt
fc)

′(z))3
= 〈M ′′

t (ξt(z))〉 , (6.3a)

where ξt(z) ..= z + ctmt
fc(z) and ξ̃t(z) ..= z + ctm̃t

fc(z). From the first two equalities in (6.3a6.3a) we conclude

1 = ct 〈M ′
t(ξt(τt))〉 , 1 = ct 〈G̃′

t(ξ̃t(τ̃t))〉 , (6.3b)

by considering the z → τt and z → τ̃t limits and that (mt
fc)

′, (m̃t
fc)

′ blow up at the edge due to the well known square
root behaviour of the density along the semicircular flow. We now compare the edge location and edge slope of
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the densities ̺tfc and ˜̺tfc corresponding to mt
fc and m̃t

fc with that of M . Very similar estimates for deformed Wigner
ensembles have been used in [3030]. We split the analysis into four claims.

Claim 1 |τt − τ0| . t/N . Using that SGUE[R] = 〈R〉, SGOE[R] = 〈R〉 + Rt/N and (6.26.2) evaluated at ξt(z), we find
using the boundedness ofMt,

I + (z −A+ S[Mt(ξt(z))])Mt(ξt(z)) = ct
(
SGOE/GUE[Mt(ξt(z))]− 〈Mt(ξt(z))〉

)
Mt(ξt(z)) = O

(
t

N

)
.

It thus follows that Mt(ξt(z)) approximately satisfies the MDE for M at z. By using the first bound in Proposition
3.13.1(iviv) expressing the stability of the MDE against small additive perturbations it follows that

∣∣mt
fc(z)− 〈M(z)〉

∣∣ = |〈Mt(ξt(z))−M(z)〉| . t

N
√
η + dist(ℜz, ∂ supp ̺)

≤ t

N
√
dist(ℜz, ∂ supp ̺)

. (6.4)

Suppose first that τ0 = τt + δ for some positive δ > 0. Then
√
δ . ℑ 〈M(τt + δ/2)〉 . t/N

√
δ, where the first bound

follows from the square root behaviour of ̺ at the edge τ0, while the second bound comes from (6.46.4) at z = τt + δ/2

and ℑmt
fc(τt + δ/2) = 0. We thus conclude δ . t/N . If on the contrary τ0 = τt − δ for some δ > 0, then with a similar

argument
√
δ . ℑmt

fc(τ0 + δ/2) . t/N and we have δ . t/N also in this case and the claim follows.

Claim 2 |γt − γ| . (t/N)1/4, where γ = γedge from Definition 2.42.4. From the third equality in (6.3a6.3a) we can relate
the edge-slope ofmt

fc toM ′′
t . Indeed, if γ

3/2
t denotes the slope, i.e. ̺tfc(x) = γ

3/2
t

√
(τt − x)+/π+O(τt − x), then using

the elementary integrals

lim
η→0

η1/2
∫ ∞

0

√
x/π

(x − iη)2
dx =

i1/2

2
, lim

η→0
η3/2

∫ ∞

0

√
x/π

(x− iη)3
dx =

i3/2

8

we obtain the precise divergence asymptotics of the derivatives (mt
fc)

′(z) and (mt
fc)

′′(z) as z = τt + iη → τt and
conclude

2

γ3
t

= lim
z→τt

(ct)3(mt
fc)

′′(z)

(1 + ct(mt
fc)

′(z))3
= (ct)3 〈M ′′

t (ξt(τt))〉 , i.e, γt =

(
〈M ′′

t (ξt(τt))〉 /2
)−1/3

ct
.

We now use (6.46.4) at, say, z = x ..= τ0 −
√
t/N . By Claim 1 we have τt − x ∼

√
t/N and thus

γ
3/2
t =

ℑmt
fc(x)√

τt − x
+O

(
(t/N)1/4

)
=

ℑ 〈M(x)〉√
τt − x

+O
(
(t/N)1/4

)
=

ℑ 〈M(x)〉√
τ0 − x

+O
(
(t/N)1/4

)
= γ3/2+O

(
(t/N)1/4

)
,

where we used Claim 1 again in the third equality. This completes the proof of the claim.

Claim 3 |τ̃t − τt| ≺ 1/Nt. SinceMt has a square root edge at some τ̂t, it follows from the first equality in (6.3b6.3b) that
ξt(τt)− τ̂t ∼ t2. Using rigidity in the form of Corollary 2.92.9 for the matrix H̃t to estimate G̃′

t from below at a spectral
parameter outside of the support, we have the bound

ct =
∣∣ 〈G̃′

t(ξ̃t(τ̃t))〉
∣∣−1 ≺

∣∣ξ̃t(τ̃t)− τ̂t
∣∣1/2.

Consequently using the local law in the form of Lemma A.1A.1 it follows that
∣∣ 〈M ′

t(ξ̃t(τ̃t))〉
∣∣ = 1/ct+O≺(1/Nt4) ∼ 1/t,

whence ξ̃t(τ̃t)− τ̂t ∼ t2 where we again used the square root singularity of 〈Mt〉 at τ̂t. We can conclude, starting from
(6.3b6.3b), that

0 = 〈M ′
t(ξt(τt))〉 − 〈G̃′

t(ξ̃t(τ̃t))〉 = 〈M ′
t(ξt(τt))〉 − 〈M ′

t(ξ̃t(τ̃t))〉+ 〈(M ′
t − G̃′

t)(ξ̃t(τ̃t))〉
∼ |ξt(τt)− ξ̃t(τ̃t)|/t3 +O≺(1/Nt4),

where we used that |〈M ′′
t (τ̂t + rt2)〉| ∼ t−3 for c < r < C and the improved local law 〈G′ −M ′〉 ≺ 1/Nκ2 at a

distance κ ∼ t2 away from the spectrum, as stated in Lemma A.1A.1. We thus find that |ξt(τt)− ξ̃t(τ̃t)| ≺ 1/Nt. It remains
to relate this to an estimate on |τt − τ̃t|. We have

|τt − τ̃t| . |ξt(τt)− ξ̃t(τ̃t)|+ t|mt
fc(τt)−mt

fc(τ̃t)|+ t|(mt
fc − m̃t

fc)(τ̃t)|,

where we bounded the second term by t|〈Mt(ξt(τt))−Mt(ξ̃t(τ̃t))〉| ≺ 1/Nt using |〈M ′
t(τ̂t + rt2)〉| ∼ 1/t and the

third term by t|〈(Mt − G̃t)(ξ̃t(τ̃t))〉| ≺ 1/Nt using the local law t2 away from supp ̺t. Thus we can conclude that
|τt − τ̃t| ≺ 1/Nt.
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Claim 4 |γt − γ̃t| ≺ 1/Nt3. We first note that γt ∼ 1 follows from |〈M ′′
t (ξt(τt))〉| ∼ t−3. Therefore it suffices to

estimate

t3|〈M ′′
t (ξt(τt))− G̃′′

t (ξ̃t(τ̃t))〉| ≤ t3|〈M ′′
t (ξt(τt))−M ′′

t (ξ̃t(τ̃t))〉|+ t3|〈M ′′
t (ξ̃t(τ̃t))− G̃′′

t (ξ̃t(τ̃t))〉| ≺
1

Nt3
,

as follows from 〈M ′′′
t (τ̂t + rt2)〉 ∼ t−5 for c < r < C and the local law from Lemma A.1A.1 at a distance of κ ∼ t2 away

from the spectrum. Thus we have |γt − γ̃t| ≺ 1/Nt3.
We now check that H̃t is η∗-regular in the sense of [3434, Definition 2.1] for η∗ ..= N−2/3+ǫ. It follows from the local

law that c̺t(z) ≺ ℑ〈G̃t(z)〉 ≺ C̺t(z) for some constants c, C , whenever ℑz ≥ η∗. Now (2.4)–(2.5) in [3434] follow
in high probability from the assumption that ̺t has a regular edge at τt . Furthermore, the absence of eigenvalues
in the interval [τt + η∗, τt + c/2] with high probability follows directly from Corollary 2.72.7. Finally, ‖H̃t‖ ≤ N with
high probability follows directly from ‖H̃t‖ ≤ (Tr|H̃t|2)1/2. We can thus conclude that with high probability, H̃t is
η∗ = N−2/3+ǫ regular for any positive ǫ > 0.

We denote the eigenvalues of Ht = H̃t + c
√
tU by λt

1 ≤ · · · ≤ λt
N . Then it follows from [3434, Theorem 2.2] that for

N−ǫ ≥ t ≥ N−2/3+ǫ with high probability for test functions F : Rk+1 → R with ‖F‖∞ + ‖∇F‖∞ . 1 there exists
some c > 0 such that∣∣∣E

[
F
(
γ̃tN

2/3(λt
i0 − τ̃t), . . . , γ̃tN

2/3(λt
i0−k − τ̃t)

)∣∣H̃t

]
−EF

(
N2/3(µN − 2), . . . , N2/3(µN−k − 2)

)∣∣∣ ≤ N−c. (6.5)

By combining (6.56.5) with |τ0 − τ̃t| ≺ N−2/3−ǫ, |γ − γ̃t| ≺ N−ǫ from Claims 1–4, we obtain
∣∣∣E
[
F
(
γN2/3(λt

i0 − τ0), . . . , γN
2/3(λt

i0−k − τ0)
)]

−EF
(
N2/3(µN − 2), . . . , N2/3(µN−k − 2)

)∣∣∣ . N−c +N−ǫ

(6.6)
for our choice of t = N−1/3+ǫ.

6.2. Green’s Function Comparison. It remains to prove that the local correlation functions ofHt agree with those
ofH . We want to prove that for any fixed xi ∈ R,

lim
N→∞

P
(
N2/3(λt

i0−i − τ0) ≥ xi, i = 0, . . . , k
)

is independent of t as long as, say, t ≤ N−1/3+ǫ. We first note that the local law holds uniformly in t also for Ht.
This follows easily from the fact that the assumptions stay uniformly satisfied along the flow because expectation
and covariance are preserved while higher order cumulants also remain unchanged up to a multiplication with a t-
dependent constant. For l = N−2/3−ǫ/3, η = N−2/3−ǫ, and smooth monotonous cut-off functionsKi withKi(x) = 0

for x ≤ i− 1 andKi(x) = 1 for x ≥ i we have

E

k∏

i=0

Ki0−i

(
ℑ
π

∫ N−2/3+ǫ

xiN−2/3+l

TrGt(x+ τ0 + iη) dx

)
−O

(
N−ǫ/9

)
≤ P

(
N2/3(λt

i0−i − τ0) ≥ xi, i = 0, . . . , k
)

≤ E

k∏

i=0

Ki0−i

(
ℑ
π

∫ N−2/3+ǫ

xiN−2/3−l

TrGt(x+ τ0 + iη) dx

)
+O

(
N−ǫ/9

)
.

(6.7)

We note that the strategy of expressing k-point correlation functions of edge-eigenvalues through a regularized ex-
pression involving the resolvent was already used in [2828, 3030, 3333, 3737] for proving edge universality. The precise formula
(6.76.7) has been already used, for example, in [3030, Eq. (4.8)].

In order to compare the expectations in (6.76.7) at times t = 0 and t = N−1/3+ǫ, we claim that we have the bound

Xy
..= ℑ

∫ N−2/3+ǫ

yN−2/3±l

TrGt(τ0 + x+ iη) dx,

∣∣∣∣E g(Xx0, . . . , Xxk
)
dXxj

dt

∣∣∣∣ . N1/6+3ǫ (6.8)

for any 0 ≤ j ≤ k and smooth function g. Assuming (6.86.8), it follows for the smooth functions Kj and by Taylor
expansion that that for t . N−1/3+ǫ,
∣∣∣∣∣E

k∏

i=0

Ki0−i

(
ℑ
π

∫ N−2/3+ǫ

xiN−2/3±l

TrGt(x+ τ0 + iη) dx

)
−E

k∏

i=0

Ki0−i

(
ℑ
π

∫ N−2/3+ǫ

xiN−2/3±l

TrG0(x+ τ0 + iη) dx

) ∣∣∣∣∣ .
1

N1/6−4ǫ
.

Together with (6.76.7) we obtain for any k, xi

P
(
N2/3(λt

i0−i − τ0) ≥ xi, i = 0, . . . , k
)
= P

(
N2/3(λ0

i0−i − τ0) ≥ xi, i = 0, . . . , k
)
+O

(
N−ǫ/9

)
. (6.9)

Eq. (6.86.8) for g ≡ 1 follows from Itô’s lemma in the form

E
df(H)

dt
= E

[
− 1

2

∑

α

wα(∂αf)(H) +
1

2

∑

α,β

κ(α, β)(∂α∂βf)(H)

]
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and the general neighbourhood cumulant expansion involving pre-cumulants, as introduced in [1717, Proposition 3.5].
This expansion formula was a key input to the Green’s function comparison argument in the spectral bulk in [1717,
Corollary 2.6] for correlated matrix models under Assumptions (CD)(CD). Given the local law, Theorem 2.62.6, the extension
of this proof to the edge is a routine power counting argument even for g 6≡ 1 and is left to the reader.

Proof of Theorem 2.112.11. The theorem follows directly from (6.66.6) and (6.96.9). �

Appendix A. Auxiliary results

Proof of Lemma 3.43.4. From (70a)–(70b) in [1717] we have66

‖MS[R]R‖∗ . N1/2K ‖R‖2∗ , ‖MR‖∗ . N1/2K ‖R‖∗ (A.1a)

and furthermore by a three term geometric expansion also
∥∥B−1Q

∥∥
∗→∗ ≤ (1 + ‖Q‖∗→∗)

(
1 + ‖CMS‖∗→∗ + ‖CMS‖∗→hs ‖B−1Q‖sp ‖CMS‖hs→∗

)
. (A.1b)

Since

‖P [R]‖∗ =
|〈P,R〉|
|〈P,B〉| ‖B‖∗ ≤ ‖B‖

|〈P,B〉|N
∑

a

∣∣RP∗

a·
a

∣∣ ≤ ‖B‖ ‖R‖∗
|〈P,B〉|N

∑

a

‖P ∗
a·‖ ≤ ‖P‖ ‖B‖

|〈P,B〉| ‖R‖∗

it follows that ‖P‖∗→∗ . 1 and therefore also ‖Q‖∗→∗ . 1. Now, since ‖R‖max ≤ ‖R‖∗ ≤ ‖R‖ and according to
(73) in [1717] also max{‖S‖max→‖·‖ , ‖S‖hs→‖·‖} . 1, the lemma follows together with ‖B−1Q‖sp . 1 from Proposition
3.13.1(iviv). �

Lemma A.1. Fix any ǫ, δ > 0 and an integer k ≥ 0. Under the assumptions of Theorem 2.62.6, for the k-th derivatives of M
and G we have the bound ∣∣∣〈G(k)(z)−M (k)(z)〉

∣∣∣ ≺ 1

Nκk+1
. (A.2)

uniformly in z ∈ Dδ with κ = dist(z, supp ̺) ≥ N−2/3+ǫ.

Proof. We will fix z = x + iη throughout the proof. Let χ : R → R be a smooth cut-off function such that χ(x′) = 1

for κ′ = dist(x′, supp ̺) ≤ κ/3 and χ(x′) = 0 for κ′ ≥ 2κ/3 and let χ̃ be a cut-off function such that χ̃(η′) = 1 for
η′ ≤ 1 and χ̃(η′) = 0 for η′ ≥ 2. We also assume that the cut-off functions have bounded derivatives in the sense
‖χ′‖∞ . 1/κ, ‖χ′′‖∞ . 1/κ2 and ‖χ̃′‖∞ . 1. We now define f(x′) ..= (x′ − z)−kχ(x′) and the almost analytic
extension

fC(z′) = fC(x′ + iη′) ..= χ̃(η′)
[
f(x′) + iη′f ′(x′)

]
, ∂zf

C(z′) =
iη′

2
χ̃(η′)f ′′(x′) +

i

2
χ̃′(η′)

[
f(x′) + iη′f ′(x′)

]
.

It follows from the Cauchy Theorem and the absence of eigenvalues outside {χ = 1 } in the sense of Corollary 2.72.7
that with high probability

〈G(k)(z)−M (k)(z)〉 = 2

π
ℜ
∫

R

∫

R+

∂zf
C(z′) 〈G(z′)−M(z′)〉dη′ dx′.

Due to the fact that χ̃′ = 0 for η′ ≤ 1 the second term in ∂zf
C only gives a contribution of 1/Nκk+1 even by the local

law and the ‖·‖∞ bound for ∂zfC and we now concentrate on the first term. First, we exclude the integration regime
η′ . N−1+γ in which we cannot use the local law but only the trivial bound 〈G−M〉 . 1/η′. For the contribution
of this regime to (A.2A.2) we thus have to estimate

N−1+γ

∫

R

|f ′′(x′)| dx′ .
1

N

∫

|x−x′|≥2κ/3

[
1

κ2 |x− x′|k
+

1

κ |x− x′|k+1
+

1

|x− x′|k+2

]
dx′ .

Nγ

Nκk+1

and we have shown that
∣∣∣〈G(k)(z)−M (k)(z)〉

∣∣∣ ≺ Nγ

Nκk+1
+

∫

R

∫ 2

N−1+γ

η′
[

χ(x′)

|x′ − z|k+2
+

χ′(x′)

|x′ − z|k+1
+

χ′′(x′)

|x′ − z|k
]
|〈G(z′)−M(z′)〉| dη′ dx′.

We now use the local law of the form |〈G−M〉| ≺ 1/N(κ+ η′) and that in the second and third term the integration
regime is only of order κ to obtain the final bound of Nγ/Nκk+1 for any γ > 0. �

6C.f. Remark 3.23.2 for the applicability of these bounds in the present setup.
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