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Abstract. We derive an accurate lower tail estimate on the lowest singular value σ1(X − z) of a real
Gaussian (Ginibre) random matrixX shifted by a complex parameter z. Such shift effectively changes the
upper tail behaviour of the condition numberκ(X−z) from the slowerP(κ(X−z) ≥ t) . 1/t de-

cay typical for real Ginibre matrices to the faster 1/t2 decay seen for complex Ginibre matrices as long as

z is away from the real axis. This sharpens and resolves a recent conjecture in [8] on the regularizing effect

of the real Ginibre ensemble with a genuinely complex shift. As a consequence we obtain an improved up-

per bound on the eigenvalue condition numbers (known also as the eigenvector overlaps) for real Ginibre

matrices. The main technical tool is a rigorous supersymmetric analysis from our earlier work [19].

1. Introduction

The condition number κ(X) = ‖X‖‖X−1‖ of large N × N random matrices X has been a

central object in numerical linear algebra at least since the pioneering work of Goldstine and von-

Neumann [28], and Demmel [21]. Demmel showed that for a large class of complex random matricesX
the probability that κ(X) is larger than a threshold t � 1 decays as 1/t2, while for real matrices the

decay rate is slower, of order 1/t. While the dependence onN was not optimal in Demmel’s work, for

the specific Gaussian case much more precise results are available. Gaussian randommatrices have fre-

quently been used as a test case since often explicit formulas are available for their spectral distribution.

The simplest non-Hermitian randommatrixmodel is the real or complexGinibre ensemble, consisting
of matrices with independent identically distributed (i.i.d) Gaussian matrix elements. We fix the cus-

tomary normalization,Exab = 0,E |xab|2 = N−1
that guarantees that the density of eigenvalues of

X converges to the uniformmeasure on the complex unit disk (known as the Circular law) and that the
spectral radius ofX converges to 1 with very high probability (these results also hold for non-Gaussian

matrix elements, see e.g. [27, 4, 39, 26, 5, 10, 11]), c.f. Fig. 1. Edelman in [22] gave an exact formula for

the distribution of the lowest singular value of a Ginibre matrix in both symmetry classes and derived

precise large N asymptotics for the condition number, confirming Demmel’s upper tail decay on the

distribution of κ(X) uniformly in the dimension. Non-asymptotic upper and lower bounds with good

explicit constants were obtained in [3] for the real case and later extended to rectangular matrices [23,

15] in both symmetry classes.

In more recent applications Ginibre matrices arise as additive perturbations of a deterministic ma-

trix A. The prominent example is the concept of smoothed analysis (originally introduced in [38] in the

context of the simplex algorithm), where Sankar, Spielman and Teng [37] considered the Gaussian elim-

ination algorithm without pivoting for solving large dimensional linear systems of equationsAx = b.
The bit-complexity of Gaussian elimination, i.e. the computational cost of achieving a desired output ac-

curacy, depends primarily on κ(A) and its upper tail is mainly determined by the lower tail behaviour

of σ1(A), the lowest singular value of A (note that σ1(A)2 = λ1(AA∗), the lowest eigenvalue of
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Figure 1. The top figure shows the eigenvalues of a single real and complex Gini-

bre matrix. Note that the eigenvalues of the real Ginibre matrix are symmetric

with respect to the real axis, and that some (in fact∼
√
N ) eigenvalues are on the

axis itself. The bottom figure shows the singular values of X − z for three dif-

ferent values of z in histogram form (for the single matrix whose eigenvalues are

displayed in the top-left figure), together with their theoretic density (solid lines).

The singular value density depends only on the absolute value |z| and not on the

phase of z since the effect of the real axis is only visible in the density of the smallest

singular values, and not in the global density of all singular values. We note that

the singular value density is strictly positive at 0 whenever |z| < 1.

AA∗). In order to obtain a bound on the real world accuracy loss of the problem Ax = b, rather than
the averaged or worst case accuracy loss, the main result of [37] is an estimate on the smoothed value of

κ(A+γX) for small γ and Ginibre-distributedX . In practice γ is then optimized to balance between

the gain in bit-complexity versus the loss in precision.

More recently smoothed analysis has been applied to the problem of finding eigenvalue/eigenvector

pairs [2] and to fullmatrix diagonalization [7, 6] by Banks, Vargas, Kulkarni and Srivastava. This required

to develop the ideas of smoothed analysis for the eigenvector condition number (see (16) later) in [7] and

then in [6] further to the minimal eigenvalue gap (see (29) later).

In [37], the authors proved
1

the following lower tail bound on the (square of the) lowest singular value

of the regularised matrixA+ γX :

P

(
σ1(A+ γX) ≤

√
x

N

)
≤ C

√
x

γ2
, x > 0, (1)

for a real Ginibre matrixX , and

P

(
σ1(A+ γX) ≤

√
x

N

)
≤ C x

γ2
, x > 0, (2)

for a complex Ginibre matrix X . The constant C is universal, the estimates are uniform in A and

γ. The N−2
scaling naturally comes from the typical 1/N spacing between the eigenvalues of the

corresponding Hermitized matrix

HA :=

(
0 A+ γX

(A+ γX)∗ 0

)
(3)

1
The paper [37] states the result only for the real case, but the complex case easily follows by the same proof.
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in its bulk spectrum. Comparing the bounds (1) and (2) in the small x regime, note that the regularizing

effect of a complex Ginibre matrix is much stronger. Can one achieve the same effect with real Ginibre

matrices?

On one hand, inspecting the proof in [37], the exponents of x in the right hand side of (1) and (2) are

direct consequences of the one- vs. two-dimensionality of the support of the real vs. complex random

variables xab and the effect is completely independent of A. On the other hand, quite remarkably, the

local eigenvalue statistics of the real and complex Ginibre ensemble coincide away from the real axis,

see [12, Theorem 11]. Very recently in [16, 18] we showed an analogous phenomenon for the singular

values of the shifted Ginibre matrix. More precisely, in [16] the density of the low lying singular values

ofX − z for a real and complex GinibreX was shown to coincide if the shift parameter z is genuinely

complex, |=z| � N−1/2
. In the regime |=z| ∼ 1 the same coincidence was proven for all k-point

correlations functions [18, Theorem 2.8]. In particular, on the level of the small singular values, the real
Ginibre matrix with a complex shift behaves as a complex Ginibre matrix!

102 103 104
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100

t

CCDF[κ(XC)]

CCDF
[
κ(XR − i/3)

]
CCDF

[
κ(XR −N−1/2i/3)

]
CCDF

[
κ(XR)

]
2.2(t/N)−1.8

1.7(t/N)−0.9

Figure 2. The complementary cumulative distribution functions (CCDF)P(κ ≥
t) for the condition number κ(X − z) of shifted Ginibre matrices obtained from

10 000 randommatrices of size 100×100. Away from the real axis the probability

of having condition number larger than t decays as t−2
for both real and complex

Ginibre matrices. On the real axis the real Ginibre ensemble has a slower tail of

t−1
and exhibits an interpolating behaviour as =z ∼ N−1/2

.

For the purpose of the smoothed analysis this indicates the possibility that real Ginibre matrices are

as effectively regularizing as the complex ones, at least away from the real axis. To test this hypothesis,

we consider the simplest A = −zI case, the shifted Ginibre ensemble. In fact, the following conjec-

ture in this spirit was very recently posed in Section 7 of [8] (with our notations and with γ = 1 for

simplicity):

P

(
σ1(X − z) ≤

√
x

N

)
≤ C x

|=z| , x > 0. (4)

Here and in the sequel we will frequently omit the identity matrix for brevity and write simplyX − z
for X − zI . While (4) highlights the role of =z, its scaling is far from optimal: by analogy with the

eigenvalues, one expects that a real Ginibre matrixX near z behaves essentially as a complex Ginibre

matrix as long as |=z| � N−1/2
. Indeed, our main result in Theorem 2.1 shows that

P

(
σ1(X − z) ≤

√
x

N

)
. (1 + |log x|)x+ e−

1
2
N|=z|2 min

{√
x,

x√
N |=z|

}
, x > 0, (5)

proving that the essentially linear bound (in x) from (2) already dominates the tail behaviour of the

lowest singular value for |=z| � N−1/2
, while themuch larger

√
x tail prevails in the opposite regime.



ON THE CONDITION NUMBER OF THE SHIFTED REAL GINIBRE ENSEMBLE 4

Since κ(X − z) ∼ σ1(X − z)−1
, we directly obtain the transition from 1/t to 1/t2 for the upper tail

P(κ(X − z) ≥ t) as |=z| increases well aboveN−1/2
, see Fig. 2. A similar behaviour is expected to

hold for general matrixA, see Conjecture 2.4.
The bound (5) has several consequences on the eigenvalue condition number κ(λ) := ‖L‖‖R‖ that

determines the stability of the eigenvalue λ against small perturbations, where L,R denote the cor-

responding left and right eigenvectors with the customary normalization 〈L,R〉 = 1. For complex

Ginibre matrices it is known that κ(λ) is of order
√
N , see [14, 13, 24]. For the real Ginibre case a sim-

ilar result is obtained in [24] but only for real eigenvalues λ ∈ R. Suboptimal bounds in N have very

recently been established in [8] and [33] that also hold for a general matrixA, in particular for any shift

z ∈ C.

The proof of our main estimate (5) uses the supersymmetric (SUSY) approach that is common in

the physics literature on random matrices, but is less known in the numerics community. Most of the

necessary technical work has already been done in our previous paper [19]; hence the current paper

is short and focuses on the results. Our purpose is to demonstrate the power of the SUSY method

to obtain very accurate estimates. For example, the exponential suppression factor exp(− 1
2
N |=z|2)

in (5) expressing the true effect of the non-zero imaginary part of the shift parameter seems very hard

to obtain with any other method, while it easily comes out from the SUSY formalism.

Notations and conventions. For positive quantities f, g we write f . g and f ∼ g if f ≤ Cg or
cg ≤ f ≤ Cg, respectively, for some constants c, C > 0 which are independent of N and z. We

write D ⊂ C for the open unit disk. We abbreviate the minimum and maximum of real numbers by

a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2. Main results

We consider the ensemble Y z := (X− z)(X− z)∗ withX ∈ RN×N
being a real Ginibrematrix,

i.e. its entries xab are such that

√
Nxab are i.i.d. standard real Gaussian random variables, and z ∈ C

is a fixed complex parameter such that |z| ≤ 1. Our main results are an optimal lower tail estimate

for the smallest singular value ofX − z and its consequences for eigenvector overlaps and eigenvalue
condition number of real Ginibre matrices.

2.1. Singular value and condition number tail estimates forX − z. The following theorem gives

an estimate on the lowest singular value ofX − z uniformly in all the relevant parameters and on the

optimal scale. Its direct corollary is an analogous estimate on κ(X − z).

Theorem 2.1. Let η := =z, δ := 1− |z|2 and

c(N, δ) :=
1

N3/2
∧ 1

N2|δ| . (6)

Then, denoting by λ1(Y z) the smallest eigenvalue of Y z , uniformly in x ∈ [0,∞), η ∈ [−1, 1], δ ∈
[−10N−1/2, 1], it holds

P (λ1(Y z) ≤ xc(N, δ)) ≤ C∗(1 + |log x|)x+ C∗e
− 1

2
Nη2

(√
x ∧ x√

N |η|

)
(7)

where C∗ is a universal constant.

Note that c(N, δ) is the correct scale of the typical size of λ1(Y z). Indeed the level spacing of the

eigenvalues of Y z close to zero for |z| < 1 is given by N−2δ−1
and for |z| = 1 by N−3/2

, see [1,

Section 5]. The N−3/2
scaling in the edge regime |z| = 1 comes from the fact that the density of

eigenvalues of the Hermitized matrix

Hz :=

(
0 X − z

(X − z)∗ 0

)
(8)

develops a cubic cusp singularity that has a natural eigenvalue spacingN−3/4
.

Remark2.2. Introducing the coupling parameter γ and thus replacingλ1(Y z) byλ1[(γX−z)(γX−z)∗]
we then conclude a bound analogous to (7) after replacing x by xγ−2.

Remark 2.3. Theorem 2.1 is proven only for matricesX with Gaussian entries. However, the bound (7) can
be extended to matrices X with generic independent identically distributed (i.i.d.) entries at the price of an
additional error term. More precisely, for such matrices there exists ω > 0 such that

P
(
λ1(Y z) ≤ xc(N, δ)

)
≤ rhs. of (7) + CN−ω, (9)
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for any x ≥ N−ω . Given (7), the bound in (9) is obtained by a standard Green function comparison (GFT)
argument (see e.g. [17, Proposition 3]).

For a general deterministicmatrixAwe canmake the following conjecture. Note that (7) provesCon-

jecture 2.4 for the special caseA = −zI up to a logarithmic correction.

Conjecture 2.4. Let X be an N × N real Ginibre matrix. There exist constants c∗, C∗ > 0 such that
for any deterministic matrix A and for any γ > 0 it holds

P

(
σ1(γX +A) ≤

√
x

N

)
≤ C∗

x

γ2
+ C∗e

−c∗ Tr(=A)2
(√x
γ
∧ x√

Tr(=A)2γ2

)
(10)

where =A := 1
2i

(A−A∗).

We conclude this section by remarking that, by κ(X−z) = [λmax(Y z)/λ1(Y z)]1/2, from a lower

tail estimate (7) on λ1(Y z) we immediately obtain an upper tail bound on κ(X− z) for |z| < 99/100
(the complementary bound in the edge regime |z| ≈ 1 follows similarly)

P (κ(X − z) ≥ t) . |log t|
(N
t

)2

+ e−
1
2
Nη2

(N
t
∧ N

3/2

|η|t2
)

+ e−N . (11)

Here we used that the largest eigenvalue λmax(Y z) can be controlled by the large deviation bound

P(‖X‖ ≥ K) ≤ e−αK
2N

for some small α and any large K . The bound (11) shows Demmel’s

transition between the 1/t and 1/t2 tail behaviour up to an exponentially small additive error.

0.25 0.5 0.75 1

0.25

0.5

0.75

1

|z|

E[OC
ii/N ]

E
[
OR
ii /N

∣∣ (=λi)2 ≥ 10/N
]

1− |z|2

Figure 3. The figure shows the empirical averaged overlap conditioned on |λi| =
|z|, as well as (=λi)2 ≥ 10/N in the real case, together 95% confidence intervals,

obtained from computing the eigenvalues for 10,000Ginibrematrices of size 100×
100. For the complex case, the corresponding behaviour E

[
OC
ii/N

∣∣λi = z
]
≈

1 − |z|2 in the large N limit has been established by Chalker and Mehlig [36, 14].

The figure above suggests that the same relation holds true for realGinibrematrices

sufficiently far away from the real axis.

2.2. Overlaps and condition numbers for X . Our main result on the tail of the smallest singular

value from (7) directly translates into optimal (up to logarithmic corrections) bounds on the eigenvector
overlaps and eigenvector condition number. We denote the left- and right eigenvectors ofX correspond-

ing to an eigenvalue λi by Li, Ri so that X =
∑
λiLiR

∗
i with the normalization 〈Li, Ri〉 = 1

customary in the theory of non-normal matrices. The diagonal eigenvector overlap Oii or eigenvalue
condition number κ(λi) are defined as

Oii := ‖Li‖2‖Ri‖2 =: κ(λi)
2. (12)

The overlap Oii is directly related to the stability of the eigenvalue λi = λi(X) under perturbations
in the sense that

lim
ε→0

sup
‖E‖≤1

|λi(X + εE)− λi|
ε

=
√
Oii. (13)

Theorem 2.5. LetX be a real Ginibre matrix with left and right eigenvectors Li, Ri corresponding to the
eigenvalue λi. Then for any open set Ω ⊂ D and anyK > 0 we have

P

( ∑
i:λi∈Ω

‖Li‖2‖Ri‖2 ≥ t(logN)N2

∫
Ω+B(0,N−1/2)

(1− |z|2)+ d2z

)
≤ CKt−1 +

CK
NK

(14)
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for any t > 0, with some universal constant C andK-dependent constants CK . Here Ω + B(0, N−1/2)

denotes the Minkowski sum of Ω with the ball of radiusN−1/2.

101 102 103

10−3

10−2

10−1

100

t

CCDF[OC
ii/N ]

CCDF
[
OR
ii /N

∣∣ (=λi)2 ≤ 0.1/N
]

CCDF
[
OR
ii /N

∣∣ (=λi)2 ≥ 10/N
]

4.0t−1.9

1.9t−0.9

Figure 4. The complementary cumulative distribution functionsP(Oii/N ≥ t)
for the eigenvector overlaps of real and complex Ginibre matrices obtained from

10,000matrices of size 100×100. The complex overlaps as well as the real overlaps

away from the real axis share the same decay exponent of 1.9 ≈ 2, consistent
with the fact [13] that in the complex case the overlaps are 1/γ2-distributed. The

fatter tail of the real overlap close to the real axis is responsible for the fact [24] that

E[OR
ii |λi ∈ R] =∞.

Remark 2.6.
(i) For complex Ginibre matrices Chalker and Mehlig [36, 14] computed the expected overlap (rigorously

only for z = 0) and showed for its conditional expectation that

E
[
OC
ii

∣∣∣ λi = z
]

= E
[
‖Li‖2‖Ri‖2

∣∣ λi = z
]
∼ N(1− |z|2). (15)

See Fig. 3 for a comparison between the real Ginibre overlaps far away from the real axis and the
complex Ginibre overlaps as a function of |z|.

(ii) In the case of complex Ginibre matrices the distribution of individual overlaps ‖Li‖2‖Ri‖2 has
been identified in [13, 24], showing that

N−1(1− |λi|2)−1‖Li‖2‖Ri‖2

converges in distribution to an inverse γ2 random variable.
(iii) Similarly, in the case of real Ginibre matrices the joint distribution of overlaps and their corresponding

real eigenvalues has been identified in [24] via supersymmetric techniques. See Fig. 4 for the tail decay
of the CCDF of the overlaps corresponding to real and complex eigenvalues in the real Ginibre
ensemble. Our numerics reproduce the t−1 decay for the CCDF of overlaps corresponding to real
eigenvalues as shown in [24, Eq. (2.2)].

(iv) Recently, suboptimal versions of (14) could be established for the more general case of non-Hermitian
random matricesX with i.i.d. entries with deterministic additive deformationX+A in [8] and [33],
resulting in bounds of orderN5 andN3, respectively.

(v) Assuming Conjecture 2.4 holds we expect that near-optimal versions of (14) can be established for
general perturbationsA+X with real Ginibre matricesX , potentially extending previous results [7]
with complex Ginibre regularisation.
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Eigenvector overlaps can be used to estimate the eigenvector condition number2

κv(X) := inf
VXV−1=D

‖V ‖‖V −1‖ ≤
√
N

√√√√ N∑
i=1

‖Li‖2‖Ri‖2, (16)

whereD is the diagonal matrix of eigenvalues. Thus we immediately obtain the following corollary.

Corollary 2.7. For real Ginibre matricesX we have

P
(
κv(X) ≥ tN3/2

√
logN

)
≤ CKt−2 +

CK
NK

, t > 0, (17)

for anyK > 0 with some universal constant C andK-dependent constants CK .

We note that it is generally expected that for dense random matrices κv(X) scales linearly in N ,

c.f. [40, Page 338]. Therefore our Corollary 2.7 is still an overestimate by a factor N1/2√logN , even

though the estimate in (14) seems optimal. This is essentially due to the fact the ultimate inequality in (16)

loses a factor of

√
N by estimating operator norms by Frobenius norms.

2.3. Implications for numerical analysis. Our results on the condition number have direct impli-

cations for the running time of various algorithms from numerical analysis. The conjugate gradient

(CG) algorithm is commonly used for solving positive-definite linear systems [32]. Given an iid. ran-

dom matrix X and a random vector b the running time of the CG algorithm for solving the positive

definite linear systemX∗Xx = b has empirically been shown to be universal [20] with respect to the

distribution of the input dataX (for rectangular matrices with real Gaussian and Bernoulli distributed

entries). Theoretical bounds for the convergence rate of the CG algorithm for solvingAx = b,A > 0
in terms of the condition number are given by [31]

‖xk − x‖ ≤ 2
(√κ(A)− 1√

κ(A) + 1

)k
‖x0 − x‖, (18)

where xk is the k-th iterate of the CG algorithm. In Figs. 5 and 6 we study the running time of the CG

algorithm for randommatrices of the form (X−z)∗(X−z) with real or complex shift z, andX with

real/complex Gaussian or Bernoulli entries. In agreement to our results on the condition number we

find that real matrices with real shift lead to longer running times compared with real matrices with

complex shift, or complex matrices with any shift.

3. Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the following triple integral representation for the expected trace

of the resolvent [Y z + E]−1 = [Y z + E · I]−1
at any positive numberE > 0 (cf. [19, Eqs. (34)-(37)]):

ETr[Y z + E]−1 =
N

4πi

∮
Γ

dξ

∫ +∞

0

da

∫ 1

0

dτ
ξ2a

τ1/2
eN [f(ξ)−g(a,τ,η)]GN (a, τ, ξ, z), (19)

whereΓ any counter-clockwise contour around zero not crossing or encircling−1. Here the functions
f and g are given explicitly as

f(ξ) = f(ξ, E) := Eξ + log(1 + ξ)− log ξ − |z|
2

1 + ξ
, (20)

g(a, τ, η) = g(a, τ, η, E) := Ea+
1

2
log[1 + 2a+ a2τ ]− log a− 1

2
log τ

− |z|
2(1 + a)− 2η2a2(1− τ)

1 + 2a+ a2τ
,

(21)

where we denoted η := =z. Furthermore, the functionGN = GN (a, τ, ξ, η) is given by

GN :=
(
N2 p2,0,0

a2ξ2(ξ + 1)2τ
−N p1,0,0

a2ξ2(ξ + 1)τ
+ δN2 p2,0,1

aξ(ξ + 1)2τ
−Nδ p1,0,1

aξ(ξ + 1)τ

+N2δ2 p2,0,2

(ξ + 1)2
+N2η2 p2,2,0

aξ(ξ + 1)3τ
−Nη2 p1,2,0

aξτ
+N2η2δ

p2,2,1

(ξ + 1)

)
×
(

(a2τ + 2a+ 1)2(ξ + 1)2
)−1

,

(22)

2
The proof of the simple inequality can be found e.g. in [7, Lemma 3.1]
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0.1

0.2 XGin(R) − 1/2

XGin(R) − i/2

0.1

0.2 XBer − 1/2

XBer − i/2

160 180

0.1

0.2 XGin(C) − z, |z| = 1/2

Figure 5. The figure shows the distribution of the running time of the CG algo-

rithm for solving the linear system (X − z)(X − z)∗x = b for different choices

of z and distributions of X . The distributions have been obtained by sampling

32 000 random matricesX of size 100× 100 with independent (a) real Gaussian,

(b) Bernoulli, and (c) complex Gaussian entries, and random vectors bwith iid uni-
formly distributed entries. The random matrices have been scaled such that their

empirical spectrum is approximately uniformly distributed in the unit disc, and the

random vectors b have been normalised by their Euclidean norm. The horizontal

axis shows the number of steps in the CG algorithm to reach a tolerance of 10−8
.

While for complex randommatricesX we observe no difference between real and

complex shift, we find that for real random matrices both mean and fluctuation

of the running time are smaller for the complex shift X − i/2 than for the real

shiftX − 1/2. We note that the observed runtimes seem to be significantly influ-

enced by rounding errors as the CG algorithm in exact arithmetic is guaranteed

terminate in at mostN = 100 steps [29, 30].

140 160 180 200

10−3

10−2

10−1

100 XGin(R) − 1/2

XGin(R) − i/2

XBer − 1/2

XBer − i/2

XGin(C) − z, |z| = 1/2

Figure 6. The figure shows the tail behaviour of the CCDF of the running times

from Fig. 5. It is evident that the running times for real matrices with real shift

has a significantly heavier tail than those for real matrices with complex shift, or

complex matrices with any shift.

where δ := 1− |z|2 and pi,j,k = pi,j,k(a, τ, ξ) are explicit polynomials in a, τ, ξ whose precise form
is not particularly relevant so we defer listing them to Appendix B. The indices i, j, k in the definition

of pi,j,k indicate theN , η and δ powers, respectively.
The formula (19) looks somewhat complicated, but it is especially well suited for an accurate as-

ymptotic analysis in the large N regime via contour deformations and Laplace asymptotics. Note a
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remarkable reduction in the number of integration variables: while the expectation in the lhs. of (19)

involvesN2
real integrations, the rhs. is a three-fold integral.

We derived this formula in [19, Section 3] using supersymmetric (SUSY) methods. We will not repeat

here the entire derivation of (19), but we explain themain steps by giving a very short glimpse into SUSY.

The interested reader can find the detailed and self-contained proof of (19) in [19, Section 3.4].

A fundamental identity on which SUSY methods rely is the following integral representation for

the trace of the resolvent of anyN ×N Hermitian matrixH for any spectral parameter
3 w ∈ C with

=w > 0:

Tr(H − w)−1 = i

∫
〈χ, χ〉e−iTr[H−w](ss∗+χχ∗),

∫
:=

∫
CN

ds ∂χ. (23)

We now explain the individual components in this formula. Here s ∈ CN
is a standard complex vector

and

∫
CN

ds is the usualN-fold complex area integral of the entries of s, e.g. ds1 = π−1 d<s1 d=s1.

The letter χ denotes the column vector with entries χ1, . . . , χN , while χ∗ denotes the row vector

with entries χ1, . . . , χN , where the collection of 2N symbols {χi, χi : i = 1, 2, . . . , N} consists of
independent Grassmannian variables, i.e. they are 2N non-commuting algebraic variables satisfying

χiχj = −χjχi, χiχj = −χjχi, χiχj = −χjχi

(the overline does not indicate any complex conjugation). These variables naturally generate a 22N
-

dimensional algebra over the complex scalar field. For Grassmannian vectors χ, φwe define the "scalar

product"

〈χ, φ〉 :=

N∑
i=1

χiφi.

Beyond polynomials, one may define analytic functions of Grassmannian variables via power series,

but notice that any polynomial of degree higher than 2N vanishes since χ2
i = 0, hence in practice any

analytic function is a polynomial. For example

exp (2χ1 + 3χ2χ3) = 1 + 2χ1 + 3χ2χ3 +
1

2
(2χ1 + 3χ2χ3)2 = 1 + 2χ1 + 3χ2χ3 + 6χ1χ2χ3.

One may also define a concept of integration (in the sense of Berezin [9]) over Grassmannian variables,

which may be expressed equivalently via introducing the (formal) derivatives

∂χiχi = ∂χiχi = 1, ∂χi1 = ∂χi1 = 0, ∂χ := ∂χ1∂χ1 . . . ∂χN ∂χN

and extend them by multilinearity to all finite combinations of monomials in Grassmannians.

The integral representation in (23) consists of N complex integrals and 2N Grassmann integrals.

To heavily reduce the number of integrals, and obtain (19), we rely on another key ingredients of SUSY

calculus, the superbosonization formula [34, Eq. (1.13)]. We will not write it up here in full generality, but

only in the form we need.

We now chooseH = Y z in (23) and define theN × 4 matrix Ψ := (s, s, χ, χ). The main advan-

tage of the r.h.s. of (23) over its l.h.s. is that Gaussian expectation of a quadratic function (as TrY z ) in
the exponent can be directly computed. Taking the expectation of (23), and performing the Gaussian

integration for the entries of Y z , we are left with an integrand that turns out to be a meromorphic

function depending on the variables only via Ψ∗Ψ, which is the 4×4 matrix consisting of all the scalar

products of the four vectors s, s, χ, χ. This special form of the resulting function allows us to use the

superbosonization formula:∫
F (Ψ∗Ψ) =

∫
Q

SDetN/2(Q)F (Q), Q :=

(
x σ
τ y

)
∫
Q

:=
1

(2π)2i

∫
dx

∮
dy∂σ

(
det(y)

det(x)

)1/2

det

(
1− x−1

y
στ

)1/2

,

(24)

for any meromorphic F (see [19, Appendix A] for the extension of the superbosonization formula to

meromorphic functions). Here SDet denotes the superdeterminant, which is defined by

SDet

(
x σ
τ y

)
:=

det(x)

det(y − τx−1σ)
.

3
The imaginary part=w > 0 of the spectral parameter is a regularisation which can be removed later
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The matrixQ in (24) is a 4×4 matrix written as a 2×2 block matrix of 2×2 blocks: x is non-negative
Hermitian with x11 = x22, y is a scalar multiple of the identity matrix. The off-diagonal block σ is a

2× 2 matrix with fresh Grassmannian entries and τ is given by

τ := −
(

0 −1
1 0

)
σt
(

0 1
1 0

)
.

In (24)

∫
dx denotes the integral over the Lebesgue measure on non-negative Hermitian matrices with

the additional constraint x11 = x22,
∮

dy denotes the contour integral over |y| = 1 in a counter-

clockwise direction (as before, we identified the scalar multiple of the identity matrix y with the corre-
sponding scalar) and ∂σ := ∂σ11∂σ22∂σ21∂σ12 denote the Grassmann derivatives.

Notice that the superbosonisation formula (24) entails a drastic reduction in the number of inte-

gration variables; the l.h.s. involves N complex integration, the r.h.s. has only four one-dimensional

integrals after all Grassmannians are eliminated. In our concrete application one of these four integrals

can be performed trivially, yielding eventually the three-fold integration in (19). For more details on

SUSY calculus and for the complete proof of (19), see the proof of [19, Eqs. (34)-(37)].

Having explained our key formula (19), we now conclude this section with the proof of Theorem 2.1.

Proof of Theorem 2.1. The proof of this theorem is completely analogous to the proof of [19, Theorem 2.3]

after replacing the bound in [19, Lemma 6.4] with the improved bound in Lemma 3.1 below. Furthermore,

two technical estimates from [19, Lemma 5.2, Lemma 6.3] are used throughout the proof. These are

straightforward but tedious bounds on explicit integrals of the form∫
Γ\Γ̃

eNf(ξ)

ξb
dξ and

∫ ∞
Nρ

∫ 1

Nρ/2a−1

e−Ng(a,τ,η)

aα−1τγ−1/2
dτ da,

respectively. Here Γ is any contour around zero not crossing or encircling−1,

Γ̃ := {ξ ∈ Γ : |ξ| ≤ Nρ},

with some small fixed constant ρ > 0 and b ≥ 0, α ≥ 2, 1 ≤ γ ≤ α are additional parameters.

We will use these technical lemmas also in the proof of Theorem 2.1, but we will not repeat them here,

just refer to [19]. To make the presentation cleaner we only present the proof in the more critical case

δ ∈ [0, 1], the case δ ∈ [−10N−1/2, 0) is analogous and is omitted (see e.g. [19, Section 6.2]).

First we show that the regime where at least one among a, τ and ξ is small gives a negligible con-

tribution to the triple integral. The proof of this lemma is postponed to Appendix A.

Lemma 3.1. Fix a small ρ > 0. Let δ ∈ [0, 1], I = Ia := [0, Nρ/2a−1], and let c(N, δ) be defined as
in (6). Then, for any positive E . c(N, δ) it holds that∫

Γ

dξ

∫ +∞

0

da

∫ 1

0

dτ
ξ2a

τ1/2
eN [f(ξ)−g(a,τ,η)]GN (a, τ, ξ, z)

=

∫
Γ\Γ̃

dξ

∫ +∞

Nρ
da

∫
[0,1]\I

dτ
ξ2a

τ1/2
eN [f(ξ)−g(a,τ,η)]GN (a, τ, ξ, z) +O(E)

E := N5/2+ρe−
1
2
N1−2ρ

(
c(N, δ)−1/2e−(Nη2)/2

E1/2 ∨ [c(N, δ)1/2N1/2|η|]
+

1 + |log(NE2/3)|
c(N, δ)

)
.

(25)

Using Lemma 3.1, by (19), we conclude that

ETr[Y z + E]−1

=
N

4πi

∫
Γ\Γ̃

dξ

∫ +∞

Nρ
da

∫
[0,1]\I

dτ
ξ2a

τ1/2
eN [f(ξ)−g(a,τ,η)]GN (a, τ, ξ, z) +O(NE),

(26)

with E defined in (25). In particular, we are left only with the regime where all a, τ , ξ are large (in

absolute value). In this regime we can use Taylor and Laurent expansions for the functions f , g, GN ;

these are listed in [19, Eqs. (75)-(77)]. Then we use the bounds from [19, Lemma 5.2] to estimate the regime

|ξ| ≥ Nρ
and the ones from [19, Lemma 6.3] to estimate the regime (a, τ) ∈ [Nρ,+∞)× ([0, 1] \ I),
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which together imply∣∣∣∣∣ N4πi

∫
Γ\Γ̃

dξ

∫ +∞

Nρ
da

∫
[0,1]\I

dτ
ξ2a

τ1/2
eN [f(ξ)−g(a,τ,η)]GN (a, τ, ξ, z)

∣∣∣∣∣
.

e−
1
2
Nη2c(N, δ)−1/2

√
E ∨ [c(N, δ)1/2N1/2|η|]

+ c(N, δ)−1[1 + |log(NE2/3)|
]
.

(27)

Finally, combining (26) and (27), we readily conclude

|ETr[Y z + E]−1| . e−
1
2
Nη2c(N, δ)−1/2

√
E ∨ [c(N, δ)1/2N1/2|η|]

+ c(N, δ)−1[1 + |log(NE2/3)|
]
, (28)

where we used theNE is always smaller than the r.h.s. of (28). Given (28), choosingE = xc(N, δ), the
bound in (7) follows by a simple Markov inequality. �

4. Proof of Theorem 2.5

We begin with an a priori bound on the minimal eigenvalue gap

∆ := min
i6=j
|λi − λj | (29)

which follows directly from estimating the smallest two singular values ofX − z, see e.g. [25, Theorem
3.1.1] or [35, Theorem 1.9].

Lemma 4.1. There exist constants c, C > 0 such that for Ginibre matrices X and for anyK ≥ 100 we
have

Ω∆ := {∆ > N−3K}, P(Ωc∆) ≤ C

N2K−5
+ Ce−cN . (30)

Together with the singular value bound from Theorem 2.1 we obtain the following a priori bound

on overlaps.

Lemma4.2. There exists a constantC > 0 such that for GinibrematricesX the eventΩO := {maxiOii <
N12K} satisfies

P(ΩcO ∩ Ω∆) ≤ C

NK
, (31)

for anyK ≥ 100.

Proof. We claim that

ΩcO ∩ Ω∆ ⊂
N8K⋃
z

{σ1(X − z) ≤ 2N−10K}, (32)

where the union is taken over z’s on anN−4K
-grid inside the unit disk. Indeed, for i := arg maxj Ojj

there exists z ∈ B(λi, N
−4K) on the grid and we now show that σ1(X − z) ≤ 2N−10K

for this z.
We use σ1(X − z) = ‖(X − z)−1‖−1

and the spectral decomposition

1

X − z =
∑
i

RiL
∗
i

λi − z
.

Since on the event Ω∆ for each j 6= iwe have |λj − z| ≥ |λi−λj | − |λi− z| ≥ N−3K −N−4K ≥
N−3K/2 it follows that

1

σ1(X − z) = ‖(X − z)−1‖ ≥
√
Oii
( 1

|λi − z|
−
∑
j 6=i

1

|λj − z|

)
≥
√
Oii(N

4K − 2N3K+1) ≥
√
OiiN

4K/2 ≥ N10K/2,

(33)

confirming (32). Thus it follows from Theorem 2.1 and a union bound that

P(ΩcO ∩ Ω∆) ≤ CN8K−10K+2 ≤ C

NK
, (34)

concluding the proof of the Lemma. �

Using the a priori bounds from Lemmas 4.1–4.2 we are ready to present the proof of Theorem 2.5.

The basic idea is to relate the eigenvalue overlaps to the area of the pseudo-spectrum ofX , see e.g. [40,

Section 52], [13, Section 3.6], [7, Lemma 3.2] or [33, Lemma 2.3] for a quantitative version.
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Proof of Theorem 2.5. We introduce the event Ω∆,O := Ω∆ ∩ ΩO and claim that on Ω∆,O for ε :=
N−12K

we have ∑
λi∈Ω

Oii ≤ 4
|
{
z ∈ Ω +B(0, N−6K) : σ1(X − z) ≤ ε

}
|

ε2
. (35)

Indeed, first note thatB(λi, O
1/2
ii ε/2) ∩B(λj , O

1/2
jj ε/2) = ∅ for i 6= j due to

|λi − λj | ≥ ∆ > N−3K > ε(O
1/2
ii /2 +O

1/2
jj /2).

Then, for z ∈ B(λi, O
1/2
ii ε/2) we have

1

σ1(X − z) = ‖(X − z)−1‖ ≥ O
1/2
ii

|λi − z|
−
∑
j 6=i

O
1/2
jj

|λj − z|
≥ 2

ε
−N N6K

∆− εO1/2
ii /2

≥ 1

ε

and from this relation it follows that⋃
λi∈Ω

B(λi, O
1/2
ii ε/2) ⊂

{
z ∈ Ω +B(0, N−6K) : σ1(X − z) ≤ ε

}
.

Comparing the volumes of both sides we obtain (35).

Now from (35) and (7) we get

E

∑
λi∈Ω

Oii

∣∣∣∣∣∣ Ω∆,O


.
∫

Ω+B(0,N−6K)

P[σ1(X − z) ≤ ε | Ω∆,O]

ε2
d2z

.
∫

Ω+B(0,N−1/2)

[
(N2

∣∣1− |z|2∣∣ ∨N3/2)K logN

+ e−
1
2
N(=z)2

(
N
∣∣1− |z|2∣∣1/2 ∨N3/4

ε
∧ N

3/2(1− |z|2)+ ∨N
|=z|

)]
d2z

. K logN

(
N2

∫
Ω+B(0,N−1/2)

∣∣1− |z|2∣∣d2z ∨N3/2|Ω +B(0, N−1/2)|

)
.

(36)

In the last inequality, in order to estimate the terms multiplied by e−N(=z)2/2
, we performed the d<z

and d=z integrations separately and split the analysis into three regimes: (i) |1 − |z|2| ≤ N−1/2
,

(ii) 1 − |z|2 > N−1/2
and |=z| ≥ N−1/2+ξ

, for some small ξ > 0, (iii) 1 − |z|2 > N−1/2
and

|=z| ≤ N−1/2+ξ
. The regime (i) is trivial since the factor |1− |z|2| can be neglected; for (ii) we used

that e−N(=z)2/2 ≤ e−N
ξ/2

and so the contribution of this regime is exponentially small; finally in (iii)

we used that

∣∣1− |z|2∣∣ ≤ ∣∣1− |<z|2∣∣ and that∫
Π(Ω̃)

(1− y2) dy .
√
N

∫
Ω̃

(1− |z|2) d2z,

where Ω̃ := (Ω+B(0, N−1/2))∩{|=z| ≤ N−1/2+ξ}∩{1−|z|2 > N−1/2} andΠ(Ω̃) ∈ R is the

projection of Ω̃ onto the real axis. Finally, by the estimate (36) used on the event Ω∆,O together with

a simple Markov inequality combined with the probability bound on the complement P(Ωc∆,O) ≤
N−K from Lemmas 4.1–4.2, we conclude (14). �

Appendix A. Proof of Lemma 3.1

The proof of this lemma is very similar to the proof of [19, Lemma 6.4], howeverwe present a detailed

proof here since we need the slightly improved bound (25) compared to [19, Eq. (92)]. More precisely, in

the current paper we exploit the regularising effect of η in the very small E regime (see Eqs. (42)–(43)

below); notice the additional regularisation c(N, δ)1/2N1/2|η| in the denominator of the first error

term in (25). The analogous term in [19, Lemma 6.4] had aE−1/2
singularity for smallE.



ON THE CONDITION NUMBER OF THE SHIFTED REAL GINIBRE ENSEMBLE 13

Proof of Lemma 3.1. Throughout the proof we choose Γ as in [19, Eq. (48a)] to make the comparison

clearer, i.e. Γ = Γz∗ := Γ1,z∗ ∪ Γ2,z∗ with

Γ1,z∗ :=

{
−2

3
+ it :

∣∣∣∣∣ 0 ≤ |t| ≤
√
|z∗|2 −

4

9

}
, Γ2,z∗ :=

{
|z∗|eiψ : ψ ∈ [−ψz∗ , ψz∗ ]

}
,

where ψz∗ := arccos[2/(3|z∗|)], and z∗ = z∗(E, δ) is defined in [19, Eq. (45)]. We remark that

|z∗| ∼ E−1/3 ∨
√
δE−1

, and recall that Γ̃ := {ξ ∈ Γ : |ξ| ≤ Nρ}.
Note that g(a, τ, η) ≥ g(a, τ, 0) for any a, τ and that the map τ 7→ g(a, τ, 0) is decreasing for any

a ∈ [0,+∞) (see [19, (iii) of Lemma 6.1]). Hence, using that g(a, τ, η) ≥ g(a, 1, 0) = f(a), together
with [19, (ii)-(iv) of Lemma 6.1], we conclude that

sup
ξ∈Γ̃

∣∣∣eNf(ξ)
∣∣∣+ sup

a∈[0,Nρ]

∣∣∣e−Ng(a,τ,η)
∣∣∣ . e−Nf(Nρ) . e−

1
2
N1−2ρ

, (37)

where in the last inequality we also used that f(Nρ) = (δN−ρ + (2N2ρ)−1)(1 +O(N−ρ)).
The proof of (25) is divided into three regimes:

(1) a ∈ [0, Nρ], ξ ∈ Γ, τ ∈ [0, 1] (see (38) below),
(2) a ≥ Nρ

, ξ ∈ Γ, τ ∈ I (see (42) below),
(3) a ≥ Nρ

, ξ ∈ Γ̃, τ ∈ [0, 1] \ I (see (43) below).
We will now prove that all these three regimes give an exponentially small contribution.

To estimate the regime Item (1) we consider two further sub-cases: (i) (a, ξ) ∈ [0, Nρ] × Γ̃, (ii)

(a, ξ) ∈ [0, Nρ]× Γ \ Γ̃. In case (i), we writeNg(a, τ, η) = (N − 2)g(a, τ, η) + 2g(a, τ, η). Then

we use (37) to estimate e−(N−2)g(a,τ,η)
and eNf(ξ)

and we use e−2g(a,τ,η) . a2τ for the remaining

part. In this way, together with the bound |GN | . N2+5ρ(a2|ξ|2τ)−1
which follows by the explicit

expression ofGN in (22), we readily get the estimateN2+7ρe−N
1−2ρ/2

. Here we used that the area of

the domain of integration is bounded by N2ρ
. In case (ii), we first notice that by the explicit form of

GN in (22) and the fact that |ξ| ≥ Nρ
we have∣∣∣∣∣

∫
Γ\Γ̃

eNf(ξ)ξ2GN (a, τ, ξ, z) dξ

∣∣∣∣∣ . N2+5ρN
1/2 ∨ (Nδ)

a2τ
,

by [19, Lemma 5.2]. Then, proceeding exactly as in case (i) to estimate the (a, τ)-integral, we conclude

that this regime is bounded byN2+5ρ(N1/2 ∨ (Nδ))e−N
1−2ρ/2

. Combining the bounds in cases (i)

and (ii) we conclude that∣∣∣∣∣
∫

Γ

dξ

∫ Nρ

0

da

∫ 1

0

dτ
ξ2a

τ1/2
eN [f(ξ)−g(a,τ,η)]GN (a, τ, ξ, z)

∣∣∣∣∣
. N2+7ρ(N1/2 ∨ (Nδ))e−

1
2
N1−2ρ

.

(38)

Next we consider the regime Item (2). In this case we will use that g(a, τ, 0) ≥ g(a,Nρ/2a−1, 0),
by [19, (iii) of Lemma 6.1] and that by explicit computations

g(a,Nρ/2a−1, 0) = Ea+
δ

Nρ/2
+

1

2Nρ
+O

(
δ

Nρ
+

1

N3ρ/2

)
. (39)

Then, using (37) to estimate eNf(ξ)
when ξ ∈ Γ̃, and [19, Lemma 5.2] for the regime ξ ∈ Γ \ Γ̃, we get

that ∣∣∣∣∣
∫

Γ\Γ̃
eNf(ξ)ξ2GN (a, τ, ξ, z) dξ

∣∣∣∣∣ . C(N, δ, a, τ), (40)

with

C(a, τ) = C(N, δ, a, τ) := N2+5ρ(N1/2 ∨ (Nδ))

(
1 +

1

a2τ

)
.

We now write

g(a, τ, η) = g(a, τ, 0) +
2η2a2(1− τ)

1 + 2a+ a2τ
≥ g(a,Nρ/2a−1, 0) +

2η2a2(1− τ)

1 + 2a+ a2τ
,

and so, using that e−2g(a,τ,η) . aτ and that

2η2a2(1− τ)

1 + 2a+ a2τ
≥ η2a

2
,
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by (39) we get ∣∣∣∣∣ a

τ1/2
e−Ng(a,τ,η)

∫
Γ\Γ̃

eNf(ξ)ξ2GN (a, τ, ξ, z) dξ

∣∣∣∣∣
. C(a, τ)a2τ1/2e−(N−2)g(a,τ,η)

. C(a, τ)a2τ1/2e−
1
2
N1−ρ

e−(N−2)[Ea+η2a/2].

(41)

Computing the (a, τ)-integral of the r.h.s. of (41), we conclude that∣∣∣∣∫
Γ

dξ

∫ ∞
Nρ

da

∫
I

dτ
ξ2a

τ1/2
eN [f(ξ)−g(a,τ,η)]GN (a, τ, ξ, z)

∣∣∣∣
. N3/2+7ρ(N1/2 ∨ (Nδ)

)
e−

1
2
N1−2ρ e−(Nη2)/2

E1/2 ∨ [c(N, δ)1/2N1/2|η|]
.

(42)

Notice that in (42) we estimated the integral of r.h.s. of (41) more precisely than in [19]. This addi-

tional improvement, which is relevant only for small E, comes from using the regularising effect of

e−(N−2)η2a/2
.

Finally, in order to conclude the proof of this lemma, we are left with the regime Item (3). In this

case, since |ξ| ≤ Nρ
, we use (37) to bound eNf(ξ)

and [19, Lemma 6.3] to estimate the (a, τ)-integral,
with again exploiting the regularising effect of η. Hence, we conclude that∣∣∣∣∣
∫

Γ̃

dξ

∫ ∞
Nρ

da

∫
[0,1]\I

dτ
ξ2a

τ1/2
eN [f(ξ)−g(a,τ,η)]GN (a, τ, ξ, z)

∣∣∣∣∣
. N5/2+ρ(N1/2 ∨ (Nδ)

)
e−

1
2
N1−2ρ

×

(
e−(Nη2)/2

E1/2 ∨ [c(N, δ)1/2N1/2|η|]
+
[
N1/2 ∨ (Nδ)

]
·
[
1 + |log(NE2/3)|

])
.

(43)

Combining (38), (42), (43) we conclude (25). �

Appendix B. Explicit formulas for the real symmetric integral representation

Here we collect the explicit formulas for the polynomials of a, ξ, τ in the definition ofGN in (19).

p2,0,0 := a4τ2 + 2a3ξτ + 4a3τ − a2ξ2τ + 4a2ξ2 + 8a2ξ + 2a2τ

+ 4a2 + 2aξ3 + 8aξ2 + 10aξ + 4a+ ξ4 + 4ξ3 + 6ξ2 + 4ξ + 1,

p1,0,0 := −a4ξτ2 + a4τ2 − 2a3ξ2τ − 2a3ξτ + 4a3τ − a2ξ3τ − 3a2ξ2τ

− 2a2ξτ + 4a2ξ + 2a2τ + 4a2 + 2aξ2 + 6aξ + 4a+ ξ3 + 3ξ2 + 3ξ + 1,

p2,2,0 := 4(a+ 1)
(
a2τ + aξτ + 2aτ + ξ2 + 2ξ + 1

)
,

p1,2,0 := 4(a+ 1)
(
a2τ + aξτ + 2aτ + ξ + 1

)
,

p2,0,1 := 2
(
a3τ2 + 2a2ξτ + 4a2τ + 2aξ2 + 2aξτ

+ 4aξ + 3aτ + 2a+ ξ3 + 4ξ2 + 5ξ + 2
)

p1,0,1 := 2
(
a3τ2 + 2a2ξτ + 4a2τ + aξ2τ + 3aξτ

+ 2aξ + 3aτ + 2a+ ξ2 + 3ξ + 2
)
,

p2,2,1 := 4(a+ 1)(a+ ξ + 2),

p2,0,2 := a2τ + 2aξ + 4a+ ξ2 + 4ξ + 4.
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