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Abstract. Following E. Wigner’s original vision, we prove that sampling the eigenvalue gaps within the bulk spectrum of
a fixed (deformed) Wigner matrix H yields the celebrated Wigner-Dyson-Mehta universal statistics with high probability.
Similarly, we prove universality for a monoparametric family of deformed Wigner matrices H + xA with a deterministic
Hermitian matrixA and a fixed Wigner matrixH , just using the randomness of a single scalar real random variable x. Both
results constitute quenched versions of bulk universality that has so far only been proven in annealed sense with respect to the
probability space of the matrix ensemble.

1. Introduction

Random matrix theory in physics was originally envisioned by E. Wigner to predict statistics of gaps between the

energy levels of heavy atomic nuclei. The underlying physical systems have no inherent disorder and the statistical

ensemble in Wigner’s description was generated by randomly (uniformly) sampling from the experimentallymeasured

gaps of a fixed nucleus within a large energy range. The model ensemble, the space of Hermitian random matrices

with independent, identically distributed entries (Wigner ensemble), is however inherently random. Accepting the

replacement of the original physical Hamiltonian with a Hermitian random matrix, one may ask whether uniform

sampling within the spectrum of a fixed, typical realisation of a Wigner matrix also gives rise to the celebrated Wigner-

Dyson-Mehta (WDM) universality. In this paper we affirmatively answer this question, in the sense that for any fixed

typical Wigner matrix the empirical gap statistic is close to the Wigner surmise, see Figure 1. We thus prove a stronger

version of WDM universality and confirm the applicability of Wigner’s theory even in the quenched sense. All previous
universality proofs, see e.g. [36, 30, 31, 29, 32, 8, 16, 10, 26, 18, 37, 19, 20] (see also [3, 6, 7, 35, 14, 34] for invariant ensembles),

were valid in the annealed sense, i.e. where the eigenvalue statistics were directly generated by the randomness of the

matrix ensemble.

More generally, we consider random matrices of the form Hx := H + xA, whereH is a large N × N Wigner

matrix, A is a fixed nontrivial Hermitian deterministic matrix, and x is a real random variable (in fact we can even

consider more general deformed Wigner matricesH ). We show that for a typical but fixed (quenched)H the randomness

of x alone is sufficient to generate WDM universality in the bulk of the limiting spectrum ofHx, i.e. we prove that the

local statistics ofH + xA are universal for all fixed H in a high probability set. The special case A = I and x being

uniformly distributed on some small interval yields Wigner’s spectral sampling model. Another special case covered

by our general result is when A itself is chosen from a Wigner ensemble. The correspondingH + xA model for the
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Figure 1. The two types of universality: The first histogram shows the normalised gaps of the

twomiddle eigenvalues in the spectrum of 5000 complexWigner matrices of size 100× 100. The
second histogram shows the empirical normalised bulk eigenvalue gaps of a single complexWigner

matrix of size5000×5000. Both distributions asymptotically approach theWigner surmise, drawn

as solid lines.

Gaussian casewas introduced byH.Gharibyan,C. Pattison, S. Shenker1 andK.Wells who coined it as themonoparametric
ensemble [23].

The basic guiding principle for establishing quenched universality of Hx is to show that near a fixed energy E

the eigenvalues of Hx and Hx′

are essentially uncorrelated whenever x and x′ are not too close. This provides the

sufficient (asymptotic) independence along the sampling in the space of x. Following a similar idea in [11] for a different

setup, the independence of eigenvalues is proven by running the Dyson Brownianmotion (DBM) for thematrixH . The

corresponding stochastic differential equations for the eigenvalues ofHx andHx′

have almost independent stochastic

differentials if the corresponding eigenvectors are asymptotically orthogonal. Therefore, independence of eigenvalues

can be achieved by running the DBM already after a short time, provided we can understand eigenvector overlaps. The

small Gaussian component added along the DBM flow can later be removed by fairly standard perturbation argument

(Green function comparison theorem).
Thus the main task is to show that eigenvectors ofHx become asymptotically orthogonal for different, sufficiently

distant values of x. This orthogonality can be triggered by two quite different mechanisms that we now explain.

The first mechanism is present when A is not too close to a diagonal matrix, in other words if Å := A − 〈A〉 is
nontrivial in the sense that 〈Å2〉 ≥ c with someN-independent constant c > 0. Here 〈A〉 := 1

N
TrA denotes the

normalized trace. In this case the entire eigenbasis ofHx is rotated, i.e. it becomes essentially orthogonal to that ofHx′

whenever x and x′ are not too close. As a consequence, the entire spectra ofHx andHx′

are essentially uncorrelated.

To establish this effect of eigenbasis rotation, we use a multi-resolvent local law for the resolvents of Hx and Hx′

; this

method currently requires |x − x′| ≥ N−ǫ for typical choices of x, x′. To ensure this, we assume that x = N−aχ
where χ is anN-independent real random variable with some regularity and a ∈ [0, ǫ].

The second mechanism is the most transparent whenA = I and x = N−aχ where χ is uniformly distributed on

some small fixed interval; we call this mechanism the sampling in the spectrum. In this case the eigenbasis ofHx actually

does not depend on x. However, the eigenvectors corresponding to eigenvalues close to a fixed energy are algebraically
orthogonal for sufficiently distant x, x′. We also prove that distant eigenvalue gaps of H , and hence the local spectral

data of Hx,Hx′

are essentially uncorrelated. By the rigidity property of the eigenvalues, already a small change in x
triggers this effect, so it works in the entire range of scales a ∈ [0, 1− ǫ]. Moreover, the proof can easily be extended

1Private communication via Stephen Shenker and Sourav Chatterjee in June 2020.
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to more complicated random matrix ensembles well beyond the Wigner case. No multi-resolvent local law is needed

in the proof.

A combination of these two mechanisms can be used in the situation whenA 6= I , butA is still close to 〈A〉 times

the identity in the sense that |〈A〉| ≥ C〈Å2〉1/2 for some large C . This extension complements the main condition

〈Å2〉 ≥ c needed in the first mechanism thus proving the result unconditionally for anyA.

1.1. Notations and conventions. We introduce some notations we use throughout the paper. For integers k ∈ N

we use the notation [k] := {1, . . . , k}. For positive quantities f, g we write f . g and f ∼ g if f ≤ Cg or

cg ≤ f ≤ Cg, respectively, for some constants c, C > 0which depend only on themodel parameters appearing in our
base Assumptions 2.3–2.2. For any two positive real numbers ω∗, ω

∗ ∈ R+ by ω∗ ≪ ω∗ we denote that ω∗ ≤ cω∗ for

some small constant 0 < c < 1/100. We denote vectors by bold-faced lower case Roman lettersx,y ∈ C
k , for some

k ∈ N. Vector and matrix norms, ‖x‖ and ‖A‖, indicate the usual Euclidean norm and the corresponding induced

matrix norm. For vectors x,y ∈ C
k we define

〈x,y〉 :=
∑

i

xiyi

and for any N × N matrix A we use the notation 〈A〉 := N−1 TrA to denote the normalized trace of A. We will

use the concept of “with very high probability” meaning that for any fixedD > 0 the probability of anN-dependent

event is bigger than 1−N−D ifN ≥ N0(D). Moreover, we use the convention that ξ > 0 denotes an arbitrary small

constant which is independent ofN .

Acknowledgement. The authors are indebted to Sourav Chatterjee for forwarding the very inspiring question that

Stephen Shenker originally addressed to him which initiated the current paper. They are also grateful that the authors

of [23] kindly shared their preliminary numerical results in June 2021.

2. Main results

In this paper we consider real and complexWigner matrices, i.e. HermitianN ×N randommatricesH = H∗ with

independent identically distributed (i.i.d.) entries (up to Hermitian symmetry)

hab
d
= N−1/2

{
χod, a < b,

χd, a = b,
hba := hab (2.1)

having finite moments of all orders, i.e. E|χod|p +E|χd|p ≤ Cp. The entries are normalised such thatE|χod|2 = 1,
and additionallyEχ2

od = 0 in the complex case. The normalisation guarantees that the eigenvalues λ1 ≤ λ2 ≤ . . . ≤
λN ofH asymptotically follow Wigner’s semicircular distribution ρsc(x) :=

√
(4− x2)+/(2π). In the bulk regime,

i.e. where ρsc ≥ c for some c > 0, the eigenvalue gaps are of order; λi+1 − λi ∼ 1/N .

TheWigner-Dyson-Mehta conjecture for the bulk of Wigner matricesH asserts that for any i ∈ [ǫN, (1− ǫ)N ] the
distribution of the rescaled eigenvalue gap converges

lim
N→∞

P

(
Nρsc(λi)[λi+1 − λi] ≤ y

)
=

∫ y

0

pβ(t) dt (2.2)

to a universal distribution with density p1 (for real symmetric Wigner matrices) or p2 (for complex HermitianWigner

matrices) which can be computed explicitly from the integrable Gaussian GOE/GUE ensembles, see Section 2.3 later.

This WDM conjecture was resolved in [20] while similar results with a small averaging in the index i were proven
earlier [18, 37].

As a corollary to our main result Theorem 2.7 below on the monoparametric ensemble we prove a considerable

strengthening of (2.2), namely that with high probability the sampling of eigenvalues within a single fixedWigner matrix

generates WDM universality.

Corollary 2.1 (to Theorem 2.7). Let H be a Wigner matrix and I ⊂ (−2 + ǫ, 2 − ǫ) be an interval in the bulk ofH of

length |I | ≥ N−1+ξ for some ǫ, ξ > 0. Then there exist small κ, α > 0 and an event ΩI in the probability space PH of
H withPH(Ωc

I) ≤ N−κ , such that for allH ∈ ΩI it holds that

sup
y≥0

∣∣∣∣
1

N
∫
I
ρsc

#{i |Nρsc(λi)[λi+1 − λi] ≤ y, λi ∈ I} −
∫ y

0

pβ(t) dt

∣∣∣∣ = O(N−α), (2.3)
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where the implicit constant in (2.3) and κ, α depend on ǫ, ξ.

Our main results are on the quenched (bulk) universality of monoparametric random matrices

Hx := H + xA (2.4)

for general deterministic Hermitian matrices A of the same symmetry class2 as H , and independent scalar random

variables x, just using the randomness of x for any fixed Wigner matrixH from a high probability set. For A = I the
monoparametric universality ofHx implies the spectral sampling universality as stated in Corollary 2.1, see Section 3.3.

Our results extend beyond Wigner matrices, we also allow for arbitrary additive deformations (certain results even

extend to Wigner matrices with correlated entries), and cover general sufficiently regularly distributed scalar random

variables x.

Assumption 2.2 (Deformed Wigner matrix). We consider deformed Wigner matrices of the form H = W + B, where
W is a Wigner matrix as in (2.1), and B = B∗ is an arbitrary deterministic matrix of bounded norm, i.e. ‖B‖ ≤ C0 for
some N-independent constant C0.

Assumption 2.3. Assume that x = N−aχ with a ∈ [0, 1), where χ is an N-independent compactly supported real

random variable such that for any small b1 > 0 there exists b2 > 0 such that for any interval I ⊂ R with |I | ∼ N−b1 it

holds P(χ ∈ I) ≤ |I |b2 .
To state the result, we now introduce the self-consistent density of states of Hx = W + B + xA. It has been

proven in [1, Theorem 2.7] that the resolventGx(z) = (Hx − z)−1 ofHx at a spectral parameter z ∈ C \R can be

well approximated by the unique deterministic matrixM =Mx(z), solving theMatrix Dyson Equation (MDE) [2] (see

also [24])

−M−1 = z −B − xA+ 〈M〉, ℑM(z)ℑz > 0. (2.5)

We define the self consistent density of states (scDos) [2, Section 4.1] ofHx as

ρx(E) := lim
η→0+

1

π
〈ℑMx(E + iη)〉, (2.6)

and, in particular, the scDos of H by ρ := ρ0. It is well known that ρx is a probability density which is compactly

supported and real analytic inside its support [2, Proposition 2.3]. For the special caseEH = B = 0 the scDos ofH is

the standard Wigner semicircle law, i.e. ρ = ρsc. We say that an energy E ∈ R lies in the bulk of the spectrum ofHx

if ρx(E) ≥ c for someN-independent constant c > 0. For E in the bulk, the solutionMx(z) can be continuously

extended to the real line,Mx(E) := limη→0+ M
x(E+ iη), andMx(E+ iη) forE in the bulk is uniformly bounded,

c.f. [2, Proposition 3.5]. Finally, we define the classical eigenvalue locations to be the quantiles of ρx, i.e. we define γx
i by

∫ γx
i

−∞

ρx(τ ) dτ =
i

N
, i ∈ [N ]. (2.7)

For clarity, in this section we only present single-gap versions of both mechanisms explained in the introduction that

yield quenched universality. Subsequently we will present the multi-gap analogues in Section 6.

2.1. Monoparametric universality via eigenbasis rotation. The main universality result for the first mechanism

(eigenbasis rotation) is the following quenchedfixed-indexuniversality result for themonoparametric ensemble. We denote

the probability measure and expectation of x byPx,Ex in order to differentiate it from the probability measurePH

ofH .

Theorem 2.4 (Quenched universality for monoparametric ensemble). Let H be a deformed Wigner matrix satisfying
Assumption 2.2, and let x = N−aχ be a scalar real random variable satisfying Assumption 2.3 with a ∈ [0, a0], where a0 is

a small universal constant3. Fix any c0, c1 > 0 small constants and assume that 〈Å2〉 ≥ c0, with Å := A− 〈A〉. Suppose
that i ∈ [N ] is a bulk index4 forHx = H + xA, i.e. it holds that

ρx(γx
i ) ≥ c1 for Px-almost all x. (2.8)

2This restriction apparently excludes the case when A is complex Hermitian but H is real symmetric. With a slight modification of our proof
(similar to the modification required in [13, Section 7] compared to [11, Section 7]), however, we can handle this case as well, but for brevity we refrain
from presenting it.

3Following the explicit constants along the proof, one may choose a0 = 1/100
4To specify the c1-dependence, we often speak of c1-bulk index.
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Then there exist small α, κ > 0 and an event Ωi = Ωi,A with PH(Ωc
i ) ≤ N−κ , so that for all H ∈ Ωi the statistics of

the i-th rescaled gap of the eigenvalues λx
i ofHx is universal, i.e.

∣∣∣∣Exf
(
Nρx(λx

i )[λ
x
i+1 − λx

i ]
)
−
∫ ∞

0

pβ(t)f(t) dt

∣∣∣∣ = O(N−α‖f‖C5 ) (2.9)

for any smooth, compactly supported function f where the implicit constant in (2.9) depends on a0, c0, c1 and κ, α depend
on a0.

0.5
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Figure 2. Here we show the histogram of a (rescaled) single eigenvalue gap λN/2+1−λN/2 in the

middle of the spectrum forN ∈ {2, 100, 1000} and for randommatrices sampled from either the

GUE or the monoparametric ensemble. For the GUE ensemble the histogram has been generated

by sampling 2000 independent GUE matrices H . For the monoparametric ensemble only two

GUE matricesH,A have been drawn at random, and the histogram has been generated by sam-

pling 2000 standard Gaussian random variables x and considering the gaps of Hx = H + xA.
The solid black line represents the theoretical limit p2(s) which matches the empirical distribu-

tion very closely already forN = 2. In Appendix B we present numerical evidence for the speed

of convergence, inspired by the observation on the slow convergence of the spectral form factor

made in [23].

Remark 2.5. We mention a few simple observations about Theorem 2.4.

(i) By the regularity of f , ρx and by rigidity of the bulk eigenvalues (see (3.14) later) we may replace the random scaling
factor ρx(λx

i ) with ρ
x(γx

i ) at negligible error.
(ii) For EH = 0 and a > 0 the condition (2.8) can simply be replaced by i ∈ [Nǫ′, N(1− ǫ′)] for some ǫ′ > 0 and

the argument of f in (2.9) simplifies to f
(
Nρsc(λ

x
i )[λ

x
i+1 − λx

i ]
)
.

(iii) Empirically we find that the convergence towards the universal gap statistics in (2.9) is much slower for the monopara-
metric ensemble compared to GUE, c.f. Figure 2. While even for 2× 2 GUE matrices the empirical gap distribution
is already very close to the Gaudin-Mehta distribution (see Section 2.3), we observe the same effect only for large
monoparametric matrices.

Remark 2.6. We mention an interesting special case of Theorem 2.4 when H is a Wigner matrix and A itself is chosen
from a Wigner ensemble that is independent ofH and x. In this case Theorem 2.4 implies5 that for any fixed pair of Wigner
matricesA,H from a high probability set, the universality of the i-th gap statistics ofH + xA for i ∈ [Nǫ′, N(1− ǫ′)] is
solely generated by the single real random variable x, i.e.

PH,A

(
i-th gap statistics ofH + xA is universal

)
= 1−O(N−ǫ). (2.10)

This mathematically rigorously answers to a question of Gharibyan, Pattison, Shenker and Wells [23]. While their original
question referred to a standard Gaussian x, which is not compactly supported, a simple cut-off argument extends our proof to
this case as well.

5The condition on 〈Å2〉 is satisfied since 〈A2〉 = 1 + o(1) and 〈A〉 = o(1) with very high probability. Moreover, the scDos ρx is very close

to a rescaled semicircle law with radius 2
√
1 + x2 with very high probability in the joint probability space ofH andA, hence the condition (2.8) holds

for all i ∈ [Nǫ′, N(1 − ǫ′)] for some ǫ′ > 0.
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2.2. Monoparametric universality via spectral sampling. The main universality result for the second mechanism

(spectral sampling) is the following quenched fixed-energy universality result for themonoparametric ensemble. We define

i0 = i0(x,E) as the index such that γx
i0 is the quantile of ρx closest to E , i.e.

i0(x,E) =

⌈
N

∫ E

−∞

ρx(t) dt

⌉
∈ [N ] (2.11)

with ⌈·⌉ denoting rounding to the next largest integer. For the special caseA = I (formulated as Case 1) in Theorem 2.7

below) we obtain quenched sampling universality for a much broader class of Hermitian randommatricesH with slow

correlation decay6 defined in [17]. In the second situation, Case 2) in Theorem 2.7 below we consider deformed Wigner

matricesH and generalA with a condition complementary to the condition 〈Å2〉 ≥ c0 of Theorem 2.4.

Theorem 2.7 (Quenched monoparametric universality via spectral sampling mechanism). There is a small universal
constant a0 and for any small c1 > 0 there exists a c0 > 0 such that the following hold. Let x = N−aχ be a scalar random
variable satisfying Assumption 2.3, and letH,A, a be such that either

Case 1) H is a correlated random matrix6, A = I , and a ∈ [0, 1− a1] with an arbitrary small fixed a1; or

Case 2) H is a deformed Wigner matrix (cf. Assump. 2.2), c0|〈A〉| ≥ 〈Å2〉1/2, |〈A〉| ≥ c0 , and a ∈ [0, a0],

and fix an energyE with ρx(E) ≥ c1 > 0 forPx-almost all x. Then there exist smallα, κ > 0 and an eventΩE = ΩE,A

with PH(Ωc
E) ≤ N−κ such that for allH ∈ ΩE the matrixHx satisfies

∣∣∣∣Exf
(
Nρx(E)[λx

i0(x,E)+1 − λx
i0(x,E)

)
−
∫
pβ(t)f(t) dt

∣∣∣∣ = O
(
N−α‖f‖C5

)
. (2.12)

The exponents κ, α depend on a0, a1 while the implicit constant in (2.12) depends on a0, a1, c0, c1.

We remark that the condition c0|〈A〉| ≥ 〈Å2〉1/2 in Case 2) is not really necessary for (2.12) to hold. Indeed,

if 〈Å2〉 ≥ c with any small positive constant, then we are back to the setup of Theorem 2.4 where the eigenbasis
rotationmechanism is effective. One can easily see that the proof of (2.9) implies (2.12) in this case (see Remark 3.5 below).

However, we kept the condition c0|〈A〉| ≥ 〈Å2〉1/2 with a sufficiently small c0 in the formulation of Theorem 2.7 since

it is necessary for the spectral sampling mechanism to be effective which is the mechanism represented in Theorem 2.7.

Note that as long as Å 6= 0, i.e. Case 1) is not applicable, the eigenbasis ofHx changes with x and we have to rely

on the multi-resolvent local law method. However, lacking an effective lower bound on 〈Å2〉, the effective asymptotic

orthogonality still comes from the spectral sampling effect of 〈A〉, the nontrivial tracial part of A. So along the proof
of Case 2), technically we follow the eigenbasis rotation mechanism, but morally the effect is similar to the spectral

sampling mechanism as it still comes from a shift in the spectrum triggered by x〈A〉, the leading part of xA inHx =

H + xA. Finally, a simple perturbation shows that xÅ has no sizeable effect on the sampling, but its presence hinders

the technically simpler orthogonality proof used in Case 1).

2.3. Gaudin-Mehta distribution. For completeness we close this section by providing explicit formulas for the uni-

versal Gaudin-Mehta gap distributions p1, p2 which can either be defined as the Fredholm determinant of the sine ker-

nel [33] or via the solution to the Painlevé V differential equation [25]. Given the solution σ to the nonlinear differential

equation

(tσ′′)2 + 4(tσ′ − σ)(tσ′ − σ + (σ′)2) = 0, σ(t) ∼ − t

π
− t2

π2
(as t→ 0), (2.13)

we have [22]

p2(s) =
d2

ds2
exp
(∫ πs

0

σ(t)

t
dt
)
, p1(s) =

d2

ds2
exp
(1
2

∫ πs

0

(σ(t)
t

−
√

− d

dt

σ(t)

t

)
dt
)
. (2.14)

6These are N × N Hermitian matrices H with covariance operator S[R] := 1
N

EWRW , where W :=
√
N(H − EH) is a correlated

centred random matrix. Note that this W is
√
N -times bigger than the Wigner matrix W defined in Assumption 2.2. This notational inconsistency

occurs only in this description of the correlated ensemble where we follow the convention of [17]. We assume that ‖EH‖ ≤ C and thatW satisfies
Assumptions (B)–(E) of [17]. We recall that Assumption (B) requires that all moments of the matrix elements ofW are finite, i.e.E |Wab|q ≤ Cq with

some constantCq for any q integer, uniformly in the indices a, b ∈ [N ]2, while Assumption (E) requires that the covariance operator satisfies the so
called flatness condition

c〈R〉 ≤ S[R] ≤ C〈R〉
for any positive semi-definitematrixR, where c,C are some fixed positive constants. Finally, Assumptions (C), (D) or their simplified version (CD) impose
decay conditions on the cumulants of different entries of W , we refer the reader to [17, Eqs. (2.5a)–(2.5b)] for the precise condition. The self-consistent
density of states ρ is defined analogously to (2.6), whereM solves the MDE (2.5) with 〈M〉 replaced by S[M ].
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Remarkably, the Wigner surmise

pWigner
2 (s) :=

32s2

π2
exp
(
−4s2

π

)
, pWigner

1 (s) :=
sπ

2
exp
(
−πs

2

4

)
(2.15)

obtained by E. Wigner from explicitly computing the gap distribution for 2× 2 matrices, is very close to the largeN

limit p2(s), more precisely sups|p2(s)− pWigner
2 (s)| ≈ 0.005 and sups|p1(s)− pWigner

1 (s)| ≈ 0.016.

3. Quenched universality: Proof of Theorem 2.4 and Theorem 2.7

In Section 3.1 we prove Theorem 2.4 while in Section 3.2 we present the proof of Theorem 2.7 which structurally is

analogous to the argument in Section 3.1. For notational simplicity we introduce the discrete difference operator δ, i.e.
for a tuple λ we set

(δλ)i = δλi := λi+1 − λi (3.1)

in order to express eigenvalue differences (gaps)more compactly. We also introduce the notation 〈f〉gap for the expec-

tation of test functions f with respect to the density pβ from (2.14), i.e.

〈f〉gap :=

∫
pβ(t)f(t) dt. (3.2)

3.1. Universality via eigenbasis rotationmechanism: Proof of Theorem 2.4. To prove Theorem 2.4 wewill show

that the gaps λx1
i+1−λx1

i , λx2
i+1−λx2

i for sufficiently large |x1−x2| are asymptotically independent in the sense of the

following propositionwhose proof will be presented in Section 4. In the following we will often denote the covariance

of two random variablesX,Y in theH-space by

CovH(X,Y ) := EH XY − (EH X)(EH Y ).

Proposition 3.1. Under the conditions of Theorem 2.4 there exists a sufficiently small c∗ > 0 (depending on c0, c1) and for
any small ζ1 there exists ζ2 > 0 such that the following holds. Pick real numbers x1, x2 withN

−ζ1 ≤ |x1−x2| ≤ c∗ and
indices j1, j2 with |j1 − j2| . N |x1 − x2|, such that the corresponding quantiles γxr

jr
, are in the c1-bulk of the spectrum

ofHxr for each r = 1, 2. Then the covariance CovH(X,Y ) satisfies

CovH

(
P1(Nδλ

x1
j1
), P2(Nδλ

x2
j2
)
)
= O

(
N−ζ2‖P1‖C5‖P2‖C5

)
(3.3)

for any P1, P2 : R → R bounded smooth compactly supported test functions, and where the implicit constant inO(·) may
depend on c0, c1 at most polynomially.

Remark 3.2. We stated the asymptotic independence of a single gap in Proposition 3.1 and only for two x1, x2 for notation
simplicity. Exactly the same proof as in Section 4 directly gives the result in (3.3) for test functions Pr : Rp → R of several
gaps, for some fixed p ∈ N. Additionally, by the same proof we can also conclude the asymptotic independence of several gaps
for several x1, . . . , xq . For the same reason we also state Proposition 3.3 and Proposition 4.1 below only for two x1, x2 and
test functions Pr : R → R.

Proof of Theorem 2.4. Wewill first prove thatwithout loss of generalitywemay assume that the linear size of the support

of x is bounded by c∗, where c∗ is from Proposition 3.1. This initial simplificationwill then allow us to use perturbation

in x when proving Proposition 3.1. Suppose that Theorem 2.4 is already proved for random variables with such a small

support with an error termN−α on sets of probability at least 1−N−2κ and we are now given a random variable x
with a larger support of size bounded by some constant C . Then we define the random variables

xi :=
x · 1(x ∈ Ji)

Px(Ji)
,

where Ji ’s, for i = 1, 2, . . . , C/c∗ , are disjoint intervals of size c∗ such that supp(x) =
⋃

i Ji . For any test function
f we can then write

Exf(Nρ
x(γx

j )δλ
x
j ) =

C/c∗∑

i=1

Px(Ji)Exif(Nρ
xi(γxi

j )δλxi
j )

= 〈f〉gap
C/c∗∑

i=1

Px(Ji) +O(N−α) = 〈f〉gap +O
(
N−α),

(3.4)
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on a set of probability at least 1 − (C/c∗)N−2κ ≥ 1 −N−κ , where we used Theorem 2.4 for the random variables

xi in the last step and a union bound.

Fromnow onwe assume that the linear size of the support of x is bounded by c∗. With ν(dx) denoting themeasure

of x we have

EH

∣∣Exf
(
Nρx(γx

j )δλ
x
j

)
− 〈f〉gap

∣∣2 (3.5)

=

∫∫

|x1−x2|≥N−ǫ2

ν(dx1)ν(dx2)EH

[ 2∏

r=1

f
(
Nρxr (γxr

j )δλxr
j

) ]
− 〈f〉2gap +O

(
N−c(ǫ2)‖f‖2C5

)
,

for some sufficiently small ǫ2 so that we can apply Proposition 3.1 with ζ1 = ǫ2 . In (3.5) we used that the regime

|x1 − x2| ≤ N−ǫ2 can be removed at the price of a negligible error by the regularity assumption on the distribution

of x = N−aχ, with χ satisfying Assumption 2.3. For the cross-term in (3.5) we used that by gap universality for the

deformedWigner matrixHx with a fixed x (see e.g. [1, Corollary 2.11]) it follows that

EH f
(
Nρx(γx

j )δλ
x
j

)
= 〈f〉gap +O

(
N−ζ3‖f‖C5

)
(3.6)

for some small fixed ζ3 > 0 depending only on the model parameters and on the constants a0, c1 .
ApplyingProposition 3.1 to the first term in (3.5) withPr(t) := f(ρxr (γxr

j )t) noting that ρxr is uniformly bounded,

so that forN−ǫ2 ≤ |x1 − x2| ≤ c∗ , we get

EH

[ 2∏

r=1

f
(
Nρxr (γxr

j )δλxr
j

)]
=

2∏

r=1

EH f
(
Nρxr (γxr

j )δλxr
j

)
+O

(
N−ζ2‖f‖2C5

)
. (3.7)

By using (3.7) and (3.6) in (3.5) it follows that

EH

∣∣Ex f
(
Nρx(γx

j )δλ
x
j

)
− 〈f〉gap

∣∣2 ≤
(
N−c(ǫ2) +N−ζ2 +N−ζ3

)
‖f‖2C5 . (3.8)

From (3.8) and the Chebyshev inequalitywe obtain eventsΩj,f onwhich (2.9) holdswith probabilityPH(Ωc
j,f ) ≤ N−κ

for some suitably chosen κ, α > 0. �

3.2. Universality via spectral sampling mechanism: Proof of Theorem 2.7. The mechanism behind the proof of

Theorem 2.7 is quite different compared to Theorem 2.4. In particular, in order to prove Theorem 2.7 we will first show

that under the assumptions of Theorem 2.4 the gaps δλx
i , δλ

x
j are asymptotically independent for any fixed x in the

probability space ofH as long as |i−j| is sufficiently large. This independence property for theA = I case has already
been used as a heuristics without proof, e.g. in [4, 5] (a related result for not too distant gaps for local log-gases can be

deduced from the De Giorgi-Nash-Moser Hölder regularity estimate, see [20, [Section 8.1]). More precisely, we have the

following proposition:

Proposition 3.3. Under the conditions of Theorem 2.7 there exists a sufficiently small c∗ > 0 (depending on c0, c1) and for
any sufficiently small ζ1 > 0 there exists ζ2 > 0 such that the following hold. Pick indices j1, j2 and real numbers x1, x2

such that the corresponding quantiles γxr
jr

are in the c1-bulk of the spectrum ofHxr , i.e. ρxr (γxr
jr

) ≥ c1 , for r = 1, 2. In
the two different cases listed in Theorem 2.7 we additionally assume the following:

Case 1) |j1 − j2| ≥ Nζ1 ;

Case 2) N1−ζ1 ≤ |j1 − j2| ≤ c∗N and N |x1 − x2| . |j1 − j2|.
Then in both cases it holds that

CovH

(
P1(Nδλ

x1
j1
), P2(Nδλ

x2
j2
)
)
= O

(
N−ζ2

2∏

r=1

‖Pr‖C5

)
(3.9)

for Pr : R → R bounded, smooth, compactly supported test functions. The implicit constant inO(·) may depend on c0, c1
at most polynomially.

Proof of Theorem 2.7. We present the proof only for the more involved Case 2), the Case 1) is much easier and omitted.

Similarly to (3.8) in the proof of Theorem 2.4 it is enough to consider the case when the linear size of the support of x
is bounded by some c̃ > 0 (determined later) and prove that

EH

∣∣Exf
(
Nρx(E)δλi0(x,E)

)
− 〈f〉gap

∣∣2 ≤ N−2α−κ‖f‖2C5 , (3.10)
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for some small α, κ > 0.
Note that under the assumptions of Case 2) in Theorem 6.2 for any x1, x2 in the support of the random variable x

it holds

θ|i0(x1, E)− i0(x2, E)| ≤ N |x1 − x2| ≤ Θ|i0(x1, E)− i0(x2, E)| (3.11)

with some θ,Θ (depending on c0, c1) as long as |x1 − x2| ≫ N−1 . The bound in (3.11) is a direct consequence of the

following Lemma 3.4 (assuming that c̃ ≤ c∗) whose proof is postponed to Appendix A.

Lemma 3.4. For any c1 > 0, there exists a c∗ = c∗(c1) > 0 such that for x1, x2 with |x1 − x2| ≤ c∗ it holds that

γx1
i = γx2

i + (x1 − x2)〈A〉+O
(
|x1 − x2|〈Å2〉1/2 + |x1 − x2|2

)
, (3.12)

where γxr
i are the quantiles of ρxr and i is in the c1-bulk, i.e. ρ

xr (γxr
i ) ≥ c1 , for r ∈ [2].

Indeed, (3.11) follows from |〈A〉| ≥ c0 and from the inequality
∣∣∣∣
i0(x1, E)

N
− i0(x2, E)

N

∣∣∣∣ =
∣∣∣∣∣

∫ γ
x1
i0(x1,E)

γ
x1
i0(x2,E)

ρx1(E) dE

∣∣∣∣∣ ≥ c1
∣∣∣γx1

i0(x2,E) − γx1
i0(x1,E)

∣∣∣

≥ c1
2

∣∣∣γx1
i0(x2,E) − γx2

i0(x2,E)

∣∣∣+O(N−1) ≥ c1
4
|x1 − x2| |〈A〉|,

where to go from the first to the second line we used that γx2
i0(x2,E)

= γx1
i0(x1,E)

+ O(N−1) by the definition of

i0(x,E) and that we are in the bulk. In the last inequality we used (3.12) and that its error terms are negligible by

c0|〈A〉| ≥ 〈Å2〉1/2 and |x1 − x2| ≤ c̃ assuming that c̃ ≤ c0/10. Then by a similar chain of inequalities, and using

(3.12) once more, we get the matching upper bound in (3.11).

To prove (3.10), we use the counterpart of (3.5) and that we can neglect the regime |x1 − x2| ≤ N−ǫ2 for some

sufficiently small ǫ2 > 0 so that we can apply Proposition 3.3 with ζ1 = ǫ2. We remove this regime to ensure that

on its complement |i0(x1, E)− i0(x2, E)| is sufficiently large by (3.11). More precisely, for any x1, x2 withN
−ǫ2 ≤

|x1 − x2| ≤ c̃, we have Θ−1N1−ǫ2 ≤ |i0(x1, E) − i0(x2, E)| ≤ θ−1c̃N from (3.11). Assuming c̃ ≤ c∗θ, we can
apply Case 2) of Proposition 3.3 by choosing j1 = i0(x1, E), j2 = i0(x2, E) and with exponent ζ2 to factorise the

expectation in the equivalent of (3.5). Using again the gap universality (3.6), similarly to (3.8) we conclude (2.12) choosing

α, κ > 0 appropriately. �

Remark 3.5. The proof of (2.12) in the case 〈Å2〉 ≥ c is analogous to the proof of Theorem 2.4 above. We note that Proposi-
tion 3.1 allows to also conclude the asymptotic independence of δλi0(x1,E) and δλi0(x2,E) since |i0(x1, E)− i0(x2, E)| .
N |x1 − x2| due to Lemma 3.4.

3.3. Proof of Corollary 2.1. Picking E = 0 and the test function7 f(u) = 1(0 ≤ u ≤ y) in Case 1) of Theorem 2.7,

and choosing the random variable x such that −x has density proportional to ρ|I , with ρ = ρsc, it follows that with
very high probability in the space ofH it holds that

Ex F (Nρx(0)δλx
i0(x,0))

= Ex F (Nρ(λi0(0,−x))δλi0(0,−x)) +O(N−1+ξ)

=
(∫

I

ρ
)−1∑

i

F (Nρ(λi)δλi)

∫

I∩(γi−1,γi]

ρ(t) dt+O(N−1+ξ)

=
(
N

∫

I

ρ
)−1

#

{
i

∣∣∣∣ λi+1 − λi ≤ y

Nρ(λi)
, λi ∈ I

}
+O

(
N−1+ξ|I |−1

)
,

(3.13)

where in the first and third step we used rigidity (see e.g. [15, Lemma 7.1, Theorem 7.6] or [21, Section 5]), i.e. that for any

small ξ > 0 we have

|λi − γi| ≤ Nξ

N
, (3.14)

for all γi in the bulk, with very high probability.

7While f does not literally satisfy the regularity condition, one can easily extend the validity of (2.12) to interval characteristic functions f by a
standard approximation argument.
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4. DBM analysis: Proof of Proposition 3.1 and Proposition 3.3

In this section we first present the proof of Proposition 3.1 in details and later in Section 4.3 we explain the very

minor changes that are required to prove Proposition 3.3.

4.1. Proof of Proposition 3.1. By standard Green function comparison (GFT) argument (see e.g. [19, Section 15]) it is

enough to prove Proposition 3.1 only for matrices with a small Gaussian component. More precisely, consider the DBM

flow

dĤt =
dB̂t√
N
, Ĥ0 = H#, (4.1)

with B̂t being a real symmetric or complex Hermitian standard Brownian motion (see e.g. [19, Section 12.1] for the

precise definition) independent of the initial condition Ĥ0 = H#, whereH# is a deformed Wigner matrix specified

later. Throughout this section we fix T > 0 and analyse the DBM for times 0 ≤ t ≤ T .

We denote the ordered collection of eigenvalues of Ĥt + xA by λx(t) = {λx
i (t)}i∈[N]. The main result of this

section is the asymptotic independence of λx1(t1), λ
x2(t1) for |x1 − x2| ≥ N−ζ1 and t1 ≥ N−1+ω1 , for some

ω1 > 0. We note that in this entire section we do not use the randomness of x, in the statement of Propositions 3.1

and 3.3 x1, x2 are fixed parameters. Hence all probabilistic statements, such as covariances etc., are understood in the

probability space of the random matrices and the driving Brownian motions in (4.1).

Proposition 4.1. LetH# be a deformed Wigner matrix satisfying Assumption 2.2, let Ĥt be the solution of (4.1), and let A

be a deterministic matrix such that 〈Å2〉 ≥ c0 and ‖A‖ . 1. Then there exists a small c∗ > 0 (depending on c0, c1) and
for any small ζ1, ω1 > 0 there exists some ζ2 > 0 such that the following hold. Fix x1, x2 withN−ζ1 ≤ |x1 − x2| ≤ c∗

and indices j1, j2 such that |j1 − j2| . N |x1 − x2|, and the corresponding quantiles γxr
jr

are in the bulk of the spectrum

ofH# + xrA for r = 1, 2. Then for the eigenvalues of Ĥt + xrA it holds that

Cov
(
P
(
Nδλx1

j1
(t1))

)
, Q
(
Nδλx2

j2
(t1))

))
= O

(
N−ζ2‖P‖C1‖Q‖C1

)
, (4.2)

with t1 = N−1+ω1 for any P,Q : R → R bounded smooth compactly supported test functions.

Using Proposition 4.1 as an input we readily conclude Proposition 3.1.

Proof of Proposition 3.1. LetH be the deformedWignermatrix fromProposition 3.1, and consider theOrnstein-Uhlenbeck

flow

dHt = −1

2
(Ht −EH0) dt+

dBt√
N
, H0 = H, (4.3)

withBt being a real symmetric or complex Hermitian standard Brownian motion independent ofH0.

LetH#
t1
, with t1 from Proposition 4.1, be such that

Ht1
d
= H#

t1
+
√
c(t1)t1U, (4.4)

with U a GOE/GUEmatrix independent ofH#
t1

and c = c(t1) = 1 +O(t1) is an appropriate constant very close to

one. Then by (4.4) it follows that

Ĥct1
d
= Ht1 , (4.5)

with Ĥct1 being the solution of (4.1) with initial condition Ĥ0 = H#
t1
.

Then, by a standard GFT argument [19, Section 15], we have that

Cov
(
P
(
Nδλx1

j1

)
, Q
(
Nδλx2

j2

))
= Cov

(
P
(
Nδλx1

j1
(ct1)

)
, Q
(
Nδλx2

j2
(ct1)

))
+O

(
N−ζ2‖P‖C5‖Q‖C5

)
.

(4.6)

Finally, by (4.6) together with (4.5) and Proposition 4.1 applied toH# := H#
t1

we conclude the proof of Proposition 3.1.

�
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4.2. Proof of Proposition 4.1. This proof is an adaptation of the proof of [11, Proposition 7.2] (which itself is based

upon [28]) with two minor differences. First, the DBM in this paper is for eigenvalues (see (4.7) below) while in [11, Eq.

(7.15)] it was for singular values. Second, in [11, Section 7] it was sufficient to consider singular values close to zero hence

the base points j1 and j2 were fixed to be 0; here they are arbitrary. Both changes are simple to incorporate, so we

present only the backbone of the proof that shows the differences, skipping certain steps that remain unaffected.

The flow (4.1) induces the following flow on the eigenvalues of Ĥt + xlA:

dλxr
i (t) =

√
2

βN
dbxr

i (t) +
1

N

∑

j 6=i

1

λxr
i (t)− λxr

j (t)
dt, (4.7)

with r ∈ [2] and β = 1, 2 in the real and complex case, respectively. Here (omitting the time dependence) we used the

notation

dbxr
i =

√
2

β

N∑

a,b=1

uxr
i (a) dB̂ab(t)u

xr
i (b), (4.8)

withuxr
i (t) being the orthonormal eigenvectors of Ĥt+xrA. The collection b

xr := {bxr
i }i∈[N], for fixed r, consists

of i.i.d standard real Brownian motions. However, the families bx1 , bx2 are not independent for different r’s, in fact

their joint distribution is not necessarily Gaussian. The quadratic covariation of these two processes is given by

d[bx1
i (t), bx2

j (t)] =
∣∣〈ux1

i (t),ux2
j (t)〉

∣∣2 dt. (4.9)

We remark that in (4.9) we used a different notation for the quadratic covariation compared to [11, Section 7.2.1].

4.2.1. Definition of the comparison processes forλxr . Tomake the notation cleanerwe only consider the real case (β = 1).
To prove the asymptotic independence of the processesλx1 ,λx2 , realized on the probability spaceΩb , wewill compare

themwith two completely independent processesµ(r)(t) = {µ(r)
i (t)}Ni=1 realized on a different probability spaceΩβ .

The processesµ(r)(t) are the unique strong solution of

dµ
(r)
i (t) =

√
2

N
dβ

(r)
i +

1

N

∑

j 6=i

1

µ
(r)
i (t)− µ

(r)
j (t)

dt, µ
(r)
i (0) = µ

(r)
i , (4.10)

with µ
(r)
i being the eigenvalues of two independent GOEmatricesH(r), andβ(r) = {β(r)

i (t)}Ni=1 being independent

vectors of standard i.i.d. Brownian motions.

We now define two intermediate processes λ̃(r)(t), µ̃(r)(t) so that for t≫ N−1 the particles λ̃
(r)
i (t), µ̃

(r)
i (t)will

be close to λxr
i (t) and µxr

i (t), respectively, for indices i close to jr , with very high probability (see Lemmas 4.2–4.3

below). Additionally, the processes λ̃(r)(t), µ̃(r)(t), which will be realized on two different probability spaces, will

have the same joint distribution:
(
λ̃

(1)(t), λ̃(2)(t)
)

0≤t≤T

d
=
(
µ̃

(1)(t), µ̃(2)(t)
)

0≤t≤T
. (4.11)

Fix any smallωA > 0 (later ωA will be chosen smaller than ωE from (4.27)) and define the process λ̃(r)(t) to be the
unique strong solution of

dλ̃
(r)
i (t) =

1

N

∑

j 6=i

1

λ̃
(r)
i (t)− λ̃

(r)
j (t)

dt+





√
2
N

dbxr
i if |i− jr| ≤ NωA ,√

2
N

db̃
(r)
i if |i− jr| > NωA ,

(4.12)

with initial data λ̃(r)(0) being the eigenvalues of independent GOE matrices, which are also independent of H# in

(4.1). Here the Brownian motions

b
in = (bx1

j1−NωA , . . . , b
x1
j1+NωA , b

x2
j2−NωA , . . . , b

x2
j2+NωA ). (4.13)

for indices close to jr are exactly the ones in (4.7). For indices away from jr we define the driving Brownian motions

to be an independent family

b
out =

{
b̃
(r)
i

∣∣∣ |i− jr| > NωA , r ∈ [2]
}
. (4.14)

of standard real i.i.d. Brownian motions which are also independent of bin. The Brownian motions bout are defined on

the same probability space of bin, which we will still denote by Ωb, with a slight abuse of notation.
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For any i, j ∈ [4NωA + 2] we use the notation

i = (r − 1)NωA + i, j = (m− 1)NωA + j (4.15)

with r,m ∈ [2] and i, j ∈ [2NωA +1]. The covariance matrixC(t) of the increments of bin, consisting of four blocks

of size 2NωA + 1, is given by

Cij(t) dt := d[bini , b
in
j ] = Θxr,xm

ij (t) dt, (4.16)

where

Θxr,xm

ij (t) :=
∣∣〈uxr

i+jr−NωA−1(t),u
xm

j+jm−NωA−1(t)〉
∣∣2 (4.17)

and {uxr
i (t)}Ni=1 are the orthonormal eigenvectors of Ĥt + xrA. Note that {uxr

i (t)}Ni=1 are not well-defined if

Ĥt + xrA has multiple eigenvectors, however, without loss of generality, we can assume that almost surely Ĥt + xlA
does not havemultiple eigenvectors for any r ∈ [2] for almost all t ∈ [0, T ] by [9, Proposition 2.3] togetherwith Fubini’s
theorem. ByDoob’smartingale representation theorem [27,Theorem 18.12] there exists a real standard Brownianmotion

θ(t) ∈ R
4NωA+2 such that

dbin =
√
C dθ. (4.18)

Similarly, on the probability spaceΩβ we define the comparison process µ̃(r)(t) to be the solution of

dµ̃
(r)
i (t) =

1

N

∑

j 6=i

1

µ̃
(r)
i (t)− µ̃

(r)
j (t)

dt+






√
2
N

dζ
(r)
i if |i− jr| ≤ NωA ,√

2
N

dζ̃
(r)
i if |i− jr| > NωA ,

(4.19)

with initial data µ̃(r)(0) being the eigenvalues of independent GOE matrices defined on the probability space Ωβ ,

which are also independent ofH(r). We now construct the driving Brownian motions in (4.19) so that (4.11) is satisfied.

For indices away from jr the standard real Brownian motions

ζ
out =

{
ζ̃
(r)
i

∣∣∣ |i− jr| > NwA , r ∈ [2]
}

(4.20)

are i.i.d. and they are independent of β(1) , β(2) in (4.10). For indices |i− jr| ≤ NωA the collections

ζ
in = (ζ

(1)
j1−NωA , . . . , ζ

(1)
j1+NωA , ζ

(2)
j2−NωA , . . . , ζ

(2)
j2+NωA ) (4.21)

will be constructed from the independent families8

β
in := (β

(1)
j1−NωA , . . . , β

(1)
j1+NωA , β

(2)
j2−NωA , . . . , β

(2)
j2+NωA ), (4.22)

as follows. Since the original processλxr (t) and the comparison processesµ(r)(t) are realized on two different proba-

bility spaces, we construct a matrix valued processC#(t) and a vector-valued Brownianmotionβin on the probability

spaceΩβ such that (C#(t),βin(t)) have the same joint distribution as (C(t),θ(t)) withC,θ from (4.18). This βin is

the driving Brownian motion of the µ(r)(t) process in (4.10). Define the process

ζ
in(t) :=

∫ t

0

√
C#(s) dβin(s) (4.23)

on the probability spaceΩβ . By construction we see that the processes b
in and ζin have the same distribution, and that

the two collections bout and ζout are independent of bin, βin and among each other. Hence we conclude that

(
b
in(t), bout(t)

)
0≤t≤T

d
=
(
ζ
in(t), ζout(t)

)
0≤t≤T

. (4.24)

Finally, by the definitions in (4.12), (4.19) and by (4.24), we conclude that the processes λ̃(r)(t), µ̃(r)(t) have the same

joint distribution (see (4.11)), since their initial conditions and their driving processes (4.24) agree in distribution.

8The familiesβin , bin were denoted byβ and b, respectively, in [11, Eqs. (7.22)-(7.23)].
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4.2.2. Proof of the asymptotic independence of the eigenvalues. In this sectionwe use that the processesλxr(t), λ̃(r)(t) and

µ̃(r)(t), µ(r)(t) are close pathwise at time t1 = N−1+ω1 as stated below in Lemma 4.2 and Lemma 4.3, respectively,

to conclude the proof of Proposition 4.1. The proof of these lemmas is completely analogous to the proof in [11, Lemmas

7.6–7.7], [28, Eq. (3.7), Theorem 3.1], hence we will only explain the very minor differences required in this paper. First,

we compare the processesλxr (t), λ̃(r)(t), in particular this lemma shows that for i for away from j1, j2 the Brownian
motions bx1

i , bx2
i can be replaced by the independent Brownian motions from bout at a negligible error.

Lemma 4.2. Let λxr (t), λ̃(r)(t), with r ∈ [2], be the processes defined in (4.7) and (4.12), respectively. For any small
ω1 > 0 there exists ω > 0, with ω ≪ ω1, such that it holds∣∣∣ρxr (γxr

jr
)δλxr

jr
(t1)− ρsc(γjr )δλ̃

(r)
jr

(t1)
∣∣∣ ≤ N−1−ω , (4.25)

for any jr in the c1-bulk, with very high probability on the probability space Ωb , where t1 := N−1+ω1 . Here by γjr we
denoted the jr-quantile of the semicircular law.

Second,we compare the processes µ̃(r)(t),µ(r)(t), i.e. we control the errormade by replacing theweakly correlated

Brownian motions ζin by the independent Brownian motions βin.

Lemma 4.3. Let µ(r)(t), µ̃(r)(t), with r ∈ [2], be the processes defined in (4.10) and (4.19), respectively. For any small

ω1, ζ1 > 0 there exists ω > 0, with ω ≪ ω1 , such that for anyN
−ζ1 ≤ |x1 − x2| ≤ c∗ it holds

∣∣∣δµ(r)
jr

(t1)− δµ̃
(r)
jr

(t1)
∣∣∣ ≤ N−1−ω, (4.26)

with very high probability on the probability space Ωβ , where t1 := N−1+ω1 .

The key ingredient for the proof of Lemma 4.3 is the following fundamental bound on the eigenvector overlaps in

(4.27) proven in Section 5, which ensures that the correlationΘxr,xm

ij in (4.17) is small.

Proposition 4.4. Given c0, c1 as in Proposition 3.1, assume 〈Å2〉 ≥ c0 , ‖A‖ . 1. There exists c∗ depending on c0, c1
such that the following holds for any small ζ1 > 0. Pick x1, x2 such that N−ζ1 ≤ |x1 − x2| ≤ c∗, and let {uxr

i }i∈[N] ,
for r ∈ [2], be the orthonormal eigenbasis of the matricesH + xrA. Then there exists ωE > 0 such that

|〈ux1
j1
,ux2

j2
〉| ≤ N−ωE (4.27)

with very high probability for any j1, j2 in the c1-bulk with |j1 − j2| . N |x1 − x2|.

Using Lemmas 4.2–4.3 as an input we conclude Proposition 4.1.

Proof of Proposition 4.1. By Lemma 4.2 we readily conclude that

E
[
P
(
Nδλx1

j1
(t1)

)
Q
(
Nδλx2

j2
(t1)

)]
= E

[
P
(
Nρ1δλ̃

(1)
j1

(t1)
)
Q
(
Nρ2δλ̃

(2)
j2

(t1)
)]

+O
(
N−ω‖P‖C1‖Q‖C1

)
,

(4.28)

where we denoted ρr := ρsc(γjr )/ρ
xr (γxr

jr
) and used the uniform boundedness of ρsc, ρ

x. Then, by (4.11), it follows

that

E

[
P
(
Nρ1δλ̃

(1)
j1

(t1)
)
Q
(
Nρ2δλ̃

(2)
j2

(t1)
)]

= E

[
P
(
Nρ1δµ̃

(1)
j1

(t1)
)
Q
(
Nρ2δµ̃

(2)
j2

(t1)
)]
. (4.29)

Moreover, by Lemma 4.3, we have that

E

[
P
(
Nρ1δµ̃

(1)
j1

(t1)
)
Q
(
Nρ2δµ̃

(2)
j2

(t1)
)]

= E

[
P
(
Nρ1δµ

(1)
j1

(t1)
)
Q
(
Nρ2δµ

(2)
j2

(t1)
)]

+O
(
N−ω‖P‖C1‖Q‖C1

)
.

(4.30)

Additionally, by the definition of the processesµ(r)(t) in (4.10) it follows thatµ(1)(t),µ(2)(t) are independent, and so
that

E

[
P
(
Nρ1δµ

(1)
j1

(t1)
)
Q
(
Nρ2δµ

(2)
j2

(t1)
)]

= E

[
P
(
Nρ1δµ

(1)
j1

(t1)
)]

E

[
Q
(
Nρ2δµ

(2)
j2

(t1)
)]

(4.31)

Combining (4.28)–(4.31) we get

E
[
P
(
Nρ1δλ

x1
j1
(t1)

)
Q
(
Nρ2δλ

x2
j2
(t1)

)]
= E

[
P
(
Nρ1δµ

(1)
j1

(t1)
)]

E

[
Q
(
Nρ2δµ

(2)
j2

(t1)
)]

+O
(
N−ω‖P‖C1‖Q‖C1

)
.

(4.32)
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Proceeding similarly to (4.28)–(4.30), but forEP andEQ separately, we also conclude that

E
[
P
(
Nδλx1

j1
(t1)

)]
E
[
Q
(
Nδλx2

j2
(t1)

)]
= E

[
P
(
Nρ1δµ

(1)
j1

(t1)
)]

E

[
Q
(
Nρ2δµ

(2)
j2

(t1)
)]

+O
(
N−ω‖P‖C1‖Q‖C1

)
.

(4.33)

Finally, combining (4.32)–(4.33), we conclude the proof of (4.2). �

Before concluding this sectionwith the proof of Lemmas 4.2–4.3, in Proposition 4.7 belowwe state themain technical

result used in their proofs. The proofs of these lemmas rely on extending the homogenisation analysis of [28, Theorem

3.1] to two DBM processes with weakly coupled driving Brownian motions. We used a very similar idea in [11, Section

7.4] for DBM processes for singular values. We now first present the general version of this idea before applying it to

prove Lemmas 4.2–4.3.

In Proposition 4.7 below we compare the evolution of two DBMs whose driving Brownian motions are nearly the

same for indices close to a fixed index i0 and are independent for indices away from i0. Proposition 4.7 is the counterpart
of [11, Proposition 7.14], where a similar analysis is performed for DBMs describing the evolution of particles satisfying

slightly different DBMs.

Define the processes si(t), ri(t) to be the solution of

dsi(t) =

√
2

N
dbsi (t) +

1

2N

∑

j 6=i

1

si(t)− sj(t)
dt, i ∈ [N ], (4.34)

and

dri(t) =

√
2

N
dbri (t) +

1

2N

∑

j 6=i

1

ri(t)− rj(t)
dt, i ∈ [N ], (4.35)

with initial conditions si(0) = si being the eigenvalues of a deformedWigner matrixH satisfying Assumption 2.2, and

ri(0) = ri being the eigenvalues of a GOE matrix. Here we used the same notations of [11, Eqs. (7.44)–(7.45)] to make

the comparison with [11] easier. For simplicity in (4.34)–(4.35) we consider the DBMs only in the real case (the complex

case is completely analogous).

Remark 4.5. In [11, Eqs. (7.44)] we assumed that the initial condition si(0) = si were general points satisfying [11, Definition
7.12], and not necessary the singular values of a matrix. Here we choose si(0) = si to be the eigenvalues of a deformedWigner
matrix to make the presentation shorter and simpler, however Proposition 4.7 clearly holds also for collections of particles
satisfying similar assumptions to [11, Definition 7.12].

We now formulate the assumptions on the driving Brownian motions in (4.34)–(4.35). Set anN-independent param-

eterK = KN := NωK , for some small fixed ωK > 0.

Assumption 4.6. Suppose that the families {bsi }i∈[N] , {bri }i∈[N] in (4.34) and (4.35) are realised on a common probability
space. Let

Lij(t) dt := d
[
b
s
i (t)− b

r
i (t), b

s
j(t)− b

r
j (t)

]
(4.36)

denote their quadratic covariation (in [11, Eqs. (7.46)] we used a different notation to denote the covariation). Fix an index i0
in the bulk ofH , and let the processes satisfy the following assumptions:

(a) {bsi }i∈[N] , {bri }i∈[N] are two families of i.i.d. standard real Brownian motions.

(b) {bri }|i−i0|>K is independent of {bsi }Ni=1, and {bsi }|i−i0|>K is independent of {bri }Bi=1.
(c) Fix ωQ > 0 so that ωK ≪ ωQ. We assume that the subfamilies {bsi }|i−i0|≤K , {bri }|i−i0|≤K are very strongly

dependent in the sense that for any |i− i0|, |j − i0| ≤ K it holds

|Lij(t)| ≤ n−ωQ (4.37)

with very high probability for any fixed t ≥ 0.

Let ρ denote the self-consistent density ofH , and recall that ρsc denotes the semicircular density. By ρt, ρsc,t we
denote the evolution of ρ and ρsc, respectively, along the semicircular flow (see e.g. [10, Eq. (4.1)]) and let γ̂i(t), γi(t)
denote the quantiles of ρt and ρsc,t.
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Proposition 4.7. Let the processes s(t) = {si(t)}i∈[N], r(t) = {ri(t)}i∈[N] be the solutions of (4.34) and (4.35), and
assume that the driving Brownian motions in (4.34)–(4.35) satisfy Assumption 4.6. Let i0 be the index fixed in Assumption 4.6.
Then for any small ω1, ωℓ > 0 such that ω1 ≪ ωℓ ≪ ωK ≪ ωQ there exist ω, ω̂ > 0 with ω̂ ≪ ω ≪ ω1 , and such
that it holds

ρ(γ̂i0)[si0+i(t1)− γ̂i0(t1)]− ρsc(γi0)[ri0+i(t1)− γi0(t1)]

=
∑

|j|≤N2ω1

1

N
pt1

(
0,

−j
Nρsc(γi0)

)[
ρ(γ̂i0)(s

xr
i0+j(0) − γ̂i0(0))− ρsc(γi0)(r

(r)
i0+j(0)− γi0(0))

]
+O(N−1−ω),

(4.38)

for any |i| ≤ N ω̂ , with very high probability, where t1 := n−1+ω1 and pt(x, y) is the fundamental solution (heat kernel)
of the parabolic equation

∂tf(x) =

∫

|x−y|≤ηℓ

f(y)− f(x)

(x− y)2
ρsc(γi0) dy, (4.39)

with ηℓ := N−1+ωℓρsc(γi0)
−1 (see [28, Eqs. (3.88)–(3.89)]) for more details).

Proof. The proof of (4.38) is nearly identical to that of [28, Theorem 3.1] up to a straightforward modification owing to

the fact that the driving Brownian motions in (4.34)–(4.35) are not exactly identical but they are very strongly correlated,

see (4.37). A similar modification to handle this strong correlation was explained in details in a closely related context

in [11, Proof of Proposition 7.14 in Section 7.6], with the difference that in [11] singular values were considered instead of

eigenvalues hence the corresponding DBMs are slightly different. Furthermore, Proposition 4.7 is stated in a simpler

form than [11, Proposition 7.14] since the initial conditions are already eigenvalues and not arbitrary points hence they

automatically satisfy certain regularity assumptions. The precise changes due to this simplification are described in the

technical Remark 4.8 below. �

Remark 4.8. There a few differences in the setup of Proposition 4.7 and [11, Proposition 7.14]. These are caused by the fact
that we now consider si(0) = si to be the eigenvalues of a deformed Wigner matrix H , instead of a collection of particles
satisfying [11, Definition 7.12]. In particular, ν in [11, Definition 7.12] can be chosen equal to zero, then, since the eigenvalues of
H are regular ([11, Eq. (7.48)]) on an order one scale, we can choose g = N−1+ξ , for an arbitrary small ξ > 0, and G = 1
in [11, Definition 7.12]. Additionally, tf = N−1+ωf is replaced by t1 = N−1+ω1 , and ρfc,tf in is replaced by ρ. Finally,

we remark that in [11, Proposition 7.14] for ωf we required that ωK ≪ ωf ≪ ωQ, instead in Proposition 4.7 we required
that ω1 ≪ ωK ≪ ωQ. This discrepancy is caused by the fact that in the proof of [11, Proposition 7.14] we first needed to run
the DBM for si(t) for an initial time t0 = N−1+ω0 to regularise the particles si(0) = si , with ωK ≪ ω0 ≪ ωQ , and
then run both DBMs for an additional time N−1+ω1 , with ω1 ≪ ωK ≪ ω0 ≪ ωQ (see below [11, Eq. (7.56)]). Finally, in
[11, Proposition 7.14] we have tf := t0 + t1 ∼ t0, hence the reader can think ωf = ω0. In the current case we do not need
to run (4.34) for an initial time t0 since si(0) = si area already regular being the eigenvalues of a deformed Wigner matrix.

We are now ready to prove Lemmas 4.2–4.3.

Proof of Lemmas 4.2–4.3. By construction the processesλxr (t), λ̃(r)(t) satisfy the assumptions of Proposition 4.7 with

i0 = jr , i = 0, ρ = ρxr and ωK = ωA. Hence, by Proposition 4.7, we get

ρxr (γxr
jr

)[λxr
jr
(t1)− γxr

jr
(t1)]− ρsc(γjr )[λ̃

(r)
jr

(t1)− γjr (t1)]

=
∑

|j|≤N2ω1

1

N
pt1

(
0,

−j
Nρsc(γjr )

)[
ρxr (γxr

jr
)(λxr

jr+j(0)− γxr
jr

(0))− ρsc(γjr )(λ̃
(r)
jr+j(0)− γjr (0))

]
+O(N−1−κ),

(4.40)

with very high probability, for some small fixed κ > 0. Here γxr
jr

(t), γjr (t) denote the quantiles of ρ
xr
t and ρsc,t,

respectively, with ρxr
t , ρsc,t the evolution of ρ

xr , ρsc along the semicircular flow (see e.g. [10, Eq. (4.1)]) and pt(x, y) is
defined in (4.39).

Analogously, we observe that the processes µ̃(r)(t),µ(r)(t) satisfy the assumptions of Proposition 4.7 with i0 = jr ,
i = 0, ρ = ρsc, ωK = ωA, ωQ = ωE due to (4.27) (in particular (4.27) is needed to check Assumption 4.6–(c)), and thus
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we obtain

µ
(r)
jr

(t1)− µ̃
(r)
jr

(t1) =
∑

|j|≤N2ω1

1

N
pt1

(
0,

−j
Nρsc(γjr )

) [
µ
(r)
jr+j(0)− µ̃

(r)
jr+j(0)

]
+O(N−1−κ). (4.41)

Fromnow onwe focus only on the precessesλxr (t1), λ̃
(r)(t1) and so on the proof of Lemma 4.2. The proof to con-

clude Lemma 4.3 is completely analogous and so omitted. Combining (4.40) with another application of Proposition 4.7,

this time for i0 = jr and i = 1, we readily conclude that

ρxr (γxr
jr

)
[
λxr
jr+1(t1)− λxr

jr
(t1)

]
− ρsc(γjr )

[
λ̃
(r)
jr+1(t1)− λ̃

(r)
jr

(t1)
]

=
∑

|j|≤N2ω1

1

N

[
pt1

(
0,

1− j

Nρsc(γjr )

)
− pt1

(
0,

−j
Nρsc(γjr )

)]

×
[
ρxr (γxr

jr
)(λxr

ir0+j(0)− γxr
jr

)− ρsc(γjr )(λ̃
(r)
ir0+j(0)− γjr )

]
+O(N−1−κ)

= O(N−1−κ+ξ +N−1−ω1+ξ),

(4.42)

with very high probability, where we used rigidity

|λxr
i − γxr

i | ≤ Nξ

N
, (4.43)

a similar rigidity bound for λ̃
(r)
i . Additionally, to go to the last line of (4.42) we used the following properties of the heat

kernel pt1(x, y):∣∣∣∣pt1
(
0,

1− j

Nρsc(γjr )

)
− pt1

(
0,

−j
Nρsc(γjr )

)∣∣∣∣ ≤
1

Nρsc(γjr )

∫ ir+1

ir

∣∣∣∣∂ypt1
(
0,

τ − j

Nρsc(0)

)∣∣∣∣dτ

.
1

Nt1

∫ ir+1

ir
pt1

(
0,

τ − j

Nρsc(γjr )

)
dτ

1

N

∑

|j|≤N2ω1

pt1

(
0,

τ − j

Nρsc(0)

)
= 1 +O(N−ω1).

(4.44)

The bound in the second line of (4.44) follows by [28, Eq. (3.96)]. The second relation of (4.44) follows by [28, Eqs. (3.90),

(3.103)]. The bound in (4.42) concludes the proof of Lemma 4.2. �

4.3. Proof of Proposition 3.3. We now turn to the proof of Proposition 3.3. We first present Case 2) which is struc-

turally very similar to the proof of Proposition 3.3. Afterwardswe turn to Case 1) which is easier but additionally requires

to modify the flow (4.3) to account for the correlations among entries ofH .

4.3.1. Case 2). Proceeding as in (4.1)–(4.5) and using the notations and assumptions from Case 2) of Proposition 3.3, it is

enough to prove

Cov
(
P
(
Nδλx1

j1
(t1)

)
, Q
(
Nδλx2

j2
(t1))

))
= O

(
N−ζ2‖P‖C1‖Q‖C1

)
, (4.45)

with t1 = N−1+ω1 , for some small ω1 > 0. Here λ(t) are the eigenvalues of Ĥt, which is the solution of (4.1) with

initial condition Ĥ0 = H#
t1
, whereH#

t1
is from in (4.4).

The proof of (4.45) follows by a DBM analysis very similar to the one in Section 4.2. More precisely, all the processes

λxr (t), λ̃(r)(t), µ̃(r)(t), and µ(r)(t) are defined exactly in the same way; the only difference is that Proposition 4.4

has to be replaced by the following bound on the eigenvector overlap (its proof will be given at the end of Section 5).

Proposition 4.9. We are in the setup of Case 2) of Proposition 3.3. For any small c1 > 0 there exists a c0 > 0 and a c∗
depending on c0, c1 such that the following hold for any ζ1 > 0 sufficiently small. Assume c0|〈A〉| ≥ 〈Å2〉1/2, |〈A〉| ≥ c0 ,
‖A‖ . 1. Pick indices j1, j2 with N1−ζ1 ≤ |j1 − j2| ≤ c∗N and choose x1, x2 with |x1 − x2| . |j1 − j2|/N such
that ρxr (γxr

jr
) ≥ c1. Let {uxr

i }i∈[N], for r ∈ [2], be the orthonormal eigenbasis of the matrices H + xrA. Then there
exists ωE > 0 such that

|〈ux1
j1
,ux2

j2
〉| ≤ N−ωE (4.46)

with very high probability.
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Then, using (4.46), instead of (4.27), as an inputwe readily conclude the analogous versions of Lemmas 4.2–4.3. Finally,

by Lemmas 4.2–4.3 we conclude the proof of (4.45) proceeding exactly as in (4.28)–(4.33).

4.3.2. Case 1). In this case we consider the following Ornstein-Uhlenbeck (OU) flow instead of (4.3):

dHt = −1

2
(Ht −EH0) dt+

Σ1/2[dBt]√
N

, H0 = H, Σ[·] := β

2
EWTr[W ·] (4.47)

HereW =
√
N(H −EH) and note that the OU flow is chosen to keep the expectation and the covariance structure

of Ht invariant under the time evolution. As usual, the parameter β = 1 in the real case and β = 2 in the complex

case. HereΣ1/2 denotes the square root of the positive operatorΣ acting onN ×N matrices equippedwith the usual

Hilbert-Schmidt scalar product structure.

Then proceeding as in (4.1)–(4.5), after replacing (4.3) with (4.47), we find that to conclude the proof of this proposition

it is enough to prove

Cov
(
P
(
Nδλx1

j1
(t1)

)
, Q
(
Nδλx2

j2
(t1))

))
= O

(
N−ζ2‖P‖C1‖Q‖C1

)
(4.48)

with t1 = N−1+ω1 , for some small ω1 > 0. Here λ(t) are the eigenvalues of Ĥt, which is the solution of (4.1) with

initial condition Ĥ0 = H#
t1
, whereH#

t1
is from in (4.4) withHt1 coming from (4.47).

Note that forA = I the gaps λx
i+1 − λx

i = λi+1 − λi do not depend on x. In particular (4.48) simplifies since

δλxr
jr

= λjr+1 − λjr , (4.49)

where we recall that {λi}i∈[N] are the eigenvalues of H , ρ is its limiting density of states, and {γi}i∈[N] are the

corresponding quantiles.

By (4.49), the proof of (4.48) is a much simpler version of the proof of Propositions 4.1 presented in Section 4.2 for

general A’s. More precisely, since for A = I the gaps are independent of x, it is enough to consider the DBM for the

evolution of the eigenvalues ofH instead ofHx:

dλi(t) =

√
2

N
dbi(t) +

1

N

∑

j 6=i

1

λi(t)− λj(t)
dt, (4.50)

with {bi}i∈[N] a family of standard i.i.d. real Brownian motion (we wrote up the real symmetric case for simplicity).

The fact that

d[bi(t), bj(t)] = δij dt, (4.51)

follows by the orthogonality of the eigenvectors ofH . Note that (4.50) does not depend onx, unlike (4.7) in Section 4. In
particular by (4.51) it follows thatCij(t) ≡ I in (4.16); indeed Proposition 4.4 is trivially satisfied by orthogonality since
j1 and j2 are sufficiently away from each other by assumption. Additionally, it is not necessary to define the comparison

processes λ̃, µ̃ since the driving Brownian motions in (4.50) are completely independent among each other, hence the

processes λ(t) with indices close to jr and µ
(r)(t) can be compared directly (see e.g. [28, Section 3]).

5. Bound on the eigenvector overlap

The overlap in (4.27) and in (4.46) will be estimated by a local law involving the trace of the product of the resolvents

ofHx1 andHx2 for any fixed x1, x2. Individual resolvents can be approximated by the solutionM of the MDE (2.5)

but the deterministic approximation of products of resolvents are not simply products ofM ’s. Local laws are typically

proven by deriving an approximate self-consistent equation and then effectively controlling its stability. In Proposi-

tion 5.1 we formulate a more accurate form of the overlap bounds (4.27)–(4.46) in terms of the stability factor of the

self-consistent equation for the product of two resolvents. In the subsequent Lemma 5.2 we give an effective control

on this stability factor. Proposition 5.1 will be proven in this section while the proof of Lemma 5.2 is postponed to

Appendix A.

For notational convenience we introduce the commonly used notion of stochastic domination. For some family of

non-negative random variablesX = X(N) ≥ 0 and a deterministic control parameterψ > 0we writeX ≺ ψ if for

each ǫ > 0, D > 0 there exists some constant C such that

P(X > Nǫψ) ≤ CN−D.
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Proposition 5.1. Let {uxr
i }i∈[N], for r ∈ [2], be the orthonormal eigenbasis of the matrices H + xrA and fix indices

i1, i2 in the bulk i.e. with 〈ℑMxr (γxr
ir

)〉 & 1. Then it holds that9

|〈ux1
i1
,ux2

i2
〉|2 ≺ N−1/15|1− 〈Mx1(γx1

i1
)Mx2(γx2

i2
)(∗)〉|−16/15. (5.1)

Lemma 5.2. For any c1 > 0 there is a c∗ such that for any x1, x2, E1, E2 such that |x1 − x2|+ |E1 − E2| ≤ c∗ and
ρxr (Er) ≥ c1 , r = 1, 2, it holds

|1− 〈Mx1(E1)M
x2(E2)

(∗)〉| & |E1 − x1〈A〉 − E2 + x2〈A〉|2 + |x1 − x2|2〈Å2〉
+O(|x1 − x2|3 + |E1 − E2|3).

(5.2)

For z1, z2 ∈ C \R we abbreviate

Gi := (Hxi − zi)
−1, Mi :=Mxi(zi), Mij :=

MiMj

1− 〈MjMj〉
(5.3)

and will prove the followingG1G2 local law.

Proposition 5.3. For δ := |〈1 − 〈M1M2〉〉| and any z1, z2 ∈ C with |ℑz1| = |ℑz2| = η ≫ N−1 in the bulk, i.e.
〈ℑMxi(zi)〉 & 1, we have

|〈G1G2A−M12A〉| ≺ ‖A‖
δNη2

(
η1/12 +

1√
Nη

+
(η
δ

)1/4
+

1

(δNη)1/3

)
(5.4)

uniformly in deterministic matrices A.

Proof of Proposition 5.1. By spectral decomposition we obtain for zr = Er + iη with Er := γxr
ir

and setting η :=

(Nδ)−4/5

∑

|λ
x1
j1

−E1|.η

∑

|λ
x2
j2

−E2|.η

|〈ux1
j1
,ux2

j2
〉|2

.
∑

j1,j2

|〈ux1
j1
,ux2

j2
〉|2 η4

[(λx1
j1

− E1)2 + η2][(λx2
j2

− E2)2 + η2]

= η2 TrℑG1ℑG2 ≺ N−1/16δ−16/15

(5.5)

from Proposition 5.3. By rigidity (4.43) the sums in the l.h.s. of (5.5) contain the term |〈ux1
i1
,ux2

i2
〉|2 as long as η ≥

N−1+ξ . This relation clearly holds with our choice since δ . 1, concluding the proof. �

Proof of Proposition 5.3. This proof is an adaptation of a similar argument from [11], so here we only give a short expla-

nation. From (2.5) obtain

(1−M1M2〈·〉)[G1G2 −M12] = ∆ := −M1WG1G2 +M1(G2 −M2)

+M1〈G1G2〉(G2 −M2) +M1〈G1 −M1〉G1G2,
(5.6)

where

WG1G2 :=WG1G2 + 〈G1〉G1G2 + 〈G1G2〉G2.

Thus we have

〈G1G2A−M12A〉 = 〈∆A〉+ 〈M1M2A〉〈∆〉
1− 〈M1M2〉

. (5.7)

Recall that it was proven in [11, Proposition 5.3] that if |〈G1G2A〉| ≺ ‖A‖θ for some constant θ ≤ η−1 uniformly in

A, then also

|〈WG1G2A〉| ≺ 1

Nη2

(
(θη)1/4 +

1

(Nη)1/2
+ η1/12

)
, (5.8)

again uniformly inA. Strictly speaking [11, Proposition 5.3] was stated in the context of Hermitized i.i.d. randommatri-

ces. However, a simpler version of the same proof clearly applies to deformedWignermatrices. Themain simplification

compared to [11] is that due to the constant variance profile of Wigner matrices summations as the one in [11, Eq. (5.28a)]

9Star in bracketM(∗) indicates that the statement holds bothM and its adjointM∗
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can be directly performed, without introducing the block matricesE1, E2. The remainder of the proof apart from the

simplified resummation step verbatim applies to the present case. Using (5.8) in (5.7) and θ ≤ η−1, η . 1 it follows that

|〈G1G2A−M12A〉| ≺ 1

δ

( 1

Nη
+

θ

Nη
+

1

Nη2

(
η1/12 +

1

(Nη)1/2
+ (θη)1/4

))

.
1

δNη2

(
η1/12 +

1

(Nη)1/2
+ (θη)1/4

) (5.9)

and therefore

|〈G1G2A〉| ≺ θ′ :=
1

δ
+

1

δNη2

(
η1/12 +

1

(Nη)1/2
+ (θη)1/4

)
. (5.10)

By iterating (5.10) it follows that after finitely many steps starting from θ0 = 1/η we obtain

|〈G1G2A〉| ≺ θ∗, (5.11)

where θ∗ is the unique positive solution to the equation

θ∗ =
1

δ

(
1 +

1

Nη2

(
η1/12 +

1

(Nη)1/2

))
+

θ
1/4
∗

δNη7/4
. (5.12)

Asymptotically we have

θ∗ ∼ 1

δ

(
1 +

1

Nη2

(
η1/12 +

1

(Nη)1/2
+

1

(δNη)1/3

))
(5.13)

and using (5.9) once more with θ∗ concludes the proof. �

5.1. Proof of Propositions 4.4 and 4.9. Both proofs rely on Proposition 5.1 and proving that the lower bound on the

stability factor given in Lemma 5.2 withEr = γxr
ir

, r = 1, 2, is bounded from below byN−ǫ with some small ǫ. This
will be done separately for the two propositions.

For Proposition 4.4 we use that |E1 −E2| . |x1 − x2| ≤ c∗ with a small c∗ and that 〈Å2〉 & 1, hence

|1− 〈Mx1(γx1
i1

)Mx2(γx2
i2

)(∗)〉| & |x1 − x2|2〈Å2〉 & N−2ζ1 .

The relation |E1 − E2| . |x1 − x2| follows from
|E1 −E2| = |γx1

i1
− γx2

i2
| ≤ |γx1

i1
− γx2

i1
|+ |γx2

i1
− γx2

i2
| . |x1 − x2|+ |i1 − i2|/N

and the fact that |i1 − i2|/N . |x1−x2| from the conditions of Propositions 4.4. The estimate on |γx1
i1

− γx2
i1

| comes

from Lemma 3.4.

For Proposition 4.9 we have

|E1 − x1〈A〉 − E2 + x2〈A〉| ≥ |γx1
i1

− γx1
i2

| − |γx1
i2

− γx2
i2

− (x1 − x2)〈A〉| (5.14)

≥ c1|i1 − i2|/N − C|x1 − x2|
(
〈Å2〉1/2 + |x1 − x2|

)
.

In estimating the first term we used that γx1
i1

, γx1
i2

are in the bulk, while we used (3.12) for the second term. Notice that

C|x1 − x2|
(
〈Å2〉1/2 + |x1 − x2|

)
≤ c0‖A‖N−ζ1

by the bound 〈Å2〉1/2 ≤ c0|〈A〉| ≤ c0‖A‖. Choosing c0 sufficiently small, depending on c1 , and recalling that

|i1 − i2| ≥ N1−ζ1 , we can achieve that

C|x1 − x2|
(
〈Å2〉1/2 + |x1 − x2|

)
≤ 1

2
c1|i1 − i2|/N

in particular

|E1 − x1〈A〉 − E2 + x2〈A〉| ≥ 1

2
c1|i1 − i2|/N & N−ζ1 (5.15)

from (5.14). This shows the required lower bound for the leading (first) term in (5.2). The second term is non-negative.

The first error term is negligible, |x1 − x2|3 ≤ N−3ζ1 . For the second error term we have

|E1 − E2| ≤ |γx2
i1

− γx2
i2

|+ |γx1
i1

− γx2
i1

| . |i1 − i2|/N + |x1 − x2| . |i1 − i2|/N
using the upper bound on the density ρx2 in the first term and (3.12) in the second term. In the last step we used

|x1 − x2| . |i1 − i2|/N from the conditions of Proposition 4.9. This shows that the error term |E1 − E2|3 .
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(|i1 − i2|/N)3 is negligible compared with the main term A.4 of order at least (|i1 − i2|/N)2 since we also assumed

|i1 − i2|/N ≤ c∗ which is small.

This proves that

|1− 〈Mx1(γx1
i1

)Mx2(γx2
i2

)(∗)〉| & |E1 − x1〈A〉 −E2 + x2〈A〉|2 & N−2ζ1 .

in the setup of Proposition 4.9 as well.

6. Multi-gap quenched universality

The following results are the multi-gap versions of Theorems 2.4 and 2.7. The gaps will be tested by functions of k
variables, so we define the set

Fk = Fk,L,B :=
{
F : Rk → R

∣∣∣ supp(F ) ⊂ [0, L]k, ‖F‖C5 ≤ B
}

(6.1)

of k-times differentiable and compactly supported test functionsF with some large constantsL,B > 0. In the follow-
ing we will often use the notation i := (i1, . . . , ik) for a k-tuple of integer indices i1, . . . , ik . The gap distribution for
Hx will be compared with that of the GaussianWigner matrices, we therefore let {µi}i∈[N] denote the eigenvalues of

a GOE/GUEmatrix corresponding to the symmetry class ofH .

Theorem 6.1 (Quenched universality via eigenbasis rotation mechanism). Under the conditions of Theorem 2.4 for any
c1-bulk-index i0 we have the following multi-gap version of Wigner-Dyson universality. There exist ǫ = ǫ(a0, c0, c1) > 0
and an event Ωi0,A with PH(Ωc

i0,A
) ≤ N−ǫ such that for allH ∈ Ωi0,A the matrixHx = H + xA satisfies

max
‖i‖∞≤K

sup
F∈Fk

∣∣∣∣∣ExF

((
Nρx(γx

i0)δλ
x
i0+ij

)

j∈[k]

)
−EµF

((
Nρsc(0)δµN/2+ij

)
j∈[k]

) ∣∣∣∣∣ ≤ CN−c, (6.2)

for K := Nζ and some ζ = ζ(a0, c0, c1) > 0, and c = c(k) > 0. The constant C in (6.2) may depend on
k, L, B, a0, c0, c1 and all constants in Assumptions 2.2 and 2.3 at most polynomially, but it is independent ofN .

Theorem 6.2 (Quenched universality via spectral samplingmechanism). Under the conditions of Theorem 2.7 for any c1-
bulk-energy E we have the following multi-gap version of Wigner-Dyson universality. There exists ǫ = ǫ(a0, c0, c1) > 0
and an event ΩE,A with P(Ωc

E,A) ≤ N−ǫ such that for allH ∈ ΩE,A the matrixHx satisfies

max
‖i‖∞≤K

sup
F∈Fk

∣∣∣∣∣ExF

((
Nρx(E)δλx

i0(x,E)+ij

)

j∈[k]

)
−EµF

((
Nρsc(0)δµN/2+ij

)
j∈[k]

) ∣∣∣∣∣ ≤ CN−c, (6.3)

where K := Nζ , and some ζ = ζ(a0, c0, c1) > 0, c = c(k) > 0. The constant C in (6.3) may depend on
k, L, B, a0, c0, c1 and all constants in Assumptions 2.2 and 2.3 at most polynomially, but it is independent ofN .

First, to handle the supremum over the uncountable familyFk,L,B of test functions F we reduce the problem to a

finite set of test functions so that the union bound can be taken. Notice that for sufficiently smooth test functions F ,

which are compactly supported on some box [0, L]k of sizeL, we can expand F in partial Fourier series as (see e.g. [38,

Remark 3] and [12, Eq. (30)])

F (x1, . . . , xk) =
∑

|n1|,...,|nk|∈[Nζ∗ ]

CF (n1, . . . , nk)
k∏

j=1

einjxj/Lϕ(xj) +O
(
N−c(ζ∗)

)
,

∑

n1,...,nk

|CF (n1, . . . , nk)| . 1,

(6.4)

with integer n1, . . . , nk , where ϕ : R → R is a smooth cut-off function such that it is equal to one on [0, L] and it is
equal to zero on [−L/2, 3L/2]c . Here ζ∗ > 0 is a small fixed constant that will be chosen later. Introduce the notation

fn(x) := einx/Lϕ(x), n ∈ Z. (6.5)
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Proof of Theorem 6.1. By (6.4) we get that

sup
‖i‖∞≤Nζ

sup
F

∣∣∣∣∣ExF
((
Nρx(γx

i0)δλ
x
i0+ij

)
j∈[k]

)
−Eµ F

((
Nρsc(0)δµN/2+ij

)
j∈[k]

) ∣∣∣∣∣ (6.6)

. sup
‖i‖∞≤Nζ,

‖n‖∞≤Nζ∗

∣∣∣∣∣∣
Ex

∏

j∈[k]

fnj

(
Nρx(γx

i0)δλ
x
i0+ij

)
−Eµ

∏

j∈[k]

fnj

(
Nρsc(0)δµN/2+ij

)
∣∣∣∣∣∣
+O

(
N−c(ζ∗)

)
,

with fnj defined in (6.5) andn := (n1, . . . , nk).
Proceeding exactly as in the proof of Theorem 2.4 in Section 3.1, and using the fact that (3.3) holds for test functions

P1, P2 of k variables (see Remark 3.2), we conclude that for any fixed i1, . . . , ik andn1, . . . , nk there exists a probability

event Ωi0,i,n, withP(Ωc
i0,i,n

) ≤ N−κ , on which
∣∣∣∣∣∣
Ex

∏

j∈[k]

fnj

(
Nρx(γx

i0)δλ
x
i0+ij

)
−Eµ

∏

j∈[k]

fnj

(
Nρsc(0)δµN/2+ij

)
∣∣∣∣∣∣
. N−α

∏

j∈[k]

‖fnj ‖C5 . (6.7)

Then choosing ζ, ζ∗ ≤ κ(10k)−1 we define the event

Ωi0 :=
⋂

‖i‖≤Nζ

⋂

‖n‖≤Nζ∗

Ωi0,i,n, PH (Ωc
i0 ) . N−κNk(ζ+ζ∗) ≤ N−κ/2. (6.8)

Finally, by (6.7)–(6.8), for all H ∈ Ωi0 , choosing ζ∗ ≤ α(10k)−1 , the claim (6.2) follows with exponent c =
min{α− 5kζ∗, c(ζ∗)} using that ‖fnj ‖C5 ≤ N5ζ∗ , for any j ∈ [k], and where c(ζ∗) is from (6.4). �

Proof of Theorem 6.2. Given (6.6), the proof of Theorem 6.2, following Section 3.2 instead of Section 3.1 and using that

Proposition 3.3 holds for P1, P2 of k variables (see Remark 3.2), is completely analogous and so omitted. �

Appendix A. Bound for the stability operator

Proof of Lemma 5.2. Note that

|1− 〈M1M
∗
2 〉| ≥ ℜ[1− 〈M1M

∗
2 〉] =

1

2
〈(M1 −M2)(M1 −M2)

∗〉+O(η),

where we used that 〈MiM
∗
i 〉 = 1 + O(η), which follows taking the imaginary in the MDE (2.5). The using Taylor

expansion in the x2 and the E2 variables we get that

〈(M1 −M2)(M1 −M2)
∗〉

= 〈(∂x1M1(x2 − x1) + ∂E1M1(E2 − E1))(∂x1M1(x2 − x1) + ∂E1M1(E2 − E1))
∗〉

+O(|x1 − x2|3 + |E1 − E2|3).
(A.1)

To estimate the error term in (A.1) we used the following bounds for E = ℜz in the bulk of the spectrum for any

x ∈ [x1, x2] and E ∈ [E1, E2], a condition that is guaranteed by |x1 − x2| + |E1 − E2| ≤ c∗ is small. By [2,

Corollary 5.3, Lemma 5.7] we have
∥∥∥∂α

x ∂
β
EM

x(E + iη)
∥∥∥ ≤ Cα,β,

∥∥∥∥
1

1−Mx(z)〈·〉Mx(z)

∥∥∥∥
‖·‖→‖·‖

≤ C

ρx(z)[ρx(z) + |σx(z)|] , (A.2)

for any α, β ∈ N, for any fixed x, where |σx(z)| ≥ c unless ρx(z) has a near-cusp singularity and E = ℜz is

close to this cusp point. Recall that the norm ‖·‖ denotes the standard euclidean matrix norm on N × N matrices.

Here 1 − Mx(z)〈·〉Mx(z) is a linear operator acting on such matrices R as (1 − Mx(z)〈·〉Mx(z))[R] = R −
Mx(z)〈R〉Mx(z). Finally, the second formula in (A.2) involves the norm induced by the euclidean matrix norm.

Then differentiating the MDE in x andE we find that

∂x1M1 = − 1

1−M1〈·〉M1
[M1AM1], ∂E1M1 =

1

1−M1〈·〉M1
[M1M1].

Hence, by (
1

1−M1〈·〉M1

)(
1

1−M1〈·〉M1

)∗

≥ c, M1M
∗
1 ≥ c,



22 QUENCHED UNIVERSALITY FOR DEFORMED WIGNER MATRICES

we conclude

〈(∂x1M1(x2 − x1) + ∂E1M1(E2 − E1))(∂x1M1(x2 − x1) + ∂E1M1(E2 −E1))
∗〉

=

〈(
1

1−M1〈·〉M1
M1

[
− (x1 − x2)A+ (E1 − E2)

]
M1

)∗
1

1−M1〈·〉M1
M1

[
− (x1 − x2)A+ (E1 − E2)

]
M1

〉

& 〈[(E1 − E2)− (x1 − x2)A]
2〉 = |(E1 − x1〈A〉 − E2 + x2〈A〉|2 + |x1 − x2|2〈Å2〉,

where in the last equality we wroteA = 〈A〉+ Å. This concludes the proof of (5.2) in case when the adjoint is present.
The estimate of |1− 〈M1M2〉| is much easier, it follows directly from (A.2). �

Proof of Lemma 3.4. To make the presentation clearer we just consider the case x1 = x and x2 = 0, the general case is
analogous and so omitted.

For any fixed real parameters x, y consider the MDE

M−1 = z +B + x〈A〉+ yÅ+ 〈M〉, ℑMℑz > 0. (A.3)

Note that for y = 0 (A.3) is the MDE forH and for y = x (A.3) is the one forHx = H + xA. We denote the unique

solution of (A.3) byMx,y = Mx,y(z), the associated scDos by ρx,y and the corresponding quantiles by γx,y
i . We will

use that

γx1
i − γx2

i = γx
i − γ0

i =

∫ x

0

∂sγ
s,s
i ds =

∫ x

0

[
(∂xγ

x,s
i )
∣∣
x=s

+ (∂yγ
s,y
i

∣∣
y=s

)
]
ds. (A.4)

For the first term we use that that ∂xγ
x,s
i = 〈A〉, giving the leading term x〈A〉 in Lemma 3.4. To estimate ∂yγ

s,y
i , we

differentiate the defining equation of the quantiles
∫ γ

s,y
i

−∞

〈ℑMs,y(E)〉 dE =
i

N

with respect to y. We obtain

∂yγ
s,y
i 〈ℑMs,y(γs,y

i )〉+
∫ γ

s,y
i

−∞

∂y〈ℑMs,y(E)〉 dE = 0

for any s, y ∈ [0, x]. Then, using that in the bulk |〈ℑMs,y(γs,y
i )〉| ≥ c, we conclude

|∂yγs,y
i | .

∫ γ
s,y
i

−C

〈
1

1−Ms,y(E)〈·〉Ms,y(E)
Ms,y(E)ÅMs,y(E)

〉
dE . 〈Å2〉1/2, (A.5)

where we used Schwarz inequality and the bounds in (A.2). The important fact about the second bound in (A.2) is that

it is integrable inE since it has a |E−E0|−1/2 singularity near an edge pointE0 and a |E−E0|−2/3 singularity near

a cusp point E0. Here we also used that |x| = |x1 − x2| ≤ c∗ is sufficiently small so that γs,y
i is in the bulk not only

for s = y = x, but for all s, y ∈ [0, x]. From (A.4) and (A.5) we readily conclude (3.12).

�

Appendix B. Numerics

Here we present numerical evidence quantifying the speed of convergence of the single gap distribution to its the-

oretical limit for the monoparametric ensemble, c.f. Figure 3. This numerics was inspired by the observation made

in [23]10 on the slow convergence of the spectral form factor.
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