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Abstract. We consider the eigenvalues of a large dimensional real or complex Ginibre matrix in the

region of the complex plane where their real parts reach their maximum value. This maximum follows the

Gumbel distribution and that these extreme eigenvalues formaPoisson point process, asymptotically as the

dimension tends to infinity. In the complex case these facts have already been established byBender [10] and

in the real case by Akemann and Phillips [2] even for themore general elliptic ensemblewith a sophisticated

saddle point analysis. The purpose of this note is to give a very short direct proof in the Ginibre case with

an effective error term. Moreover, our estimates on the correlation kernel in this regime serve as a key

input for accurately locatingmax< Spec(X) for any largematrixX with i.i.d. entries in the companion

paper [15].

1. Introduction

TheGinibrematrix ensemble [21] is the simplest andmost commonly used prototype of non-Hermitian

random matrices. It consists of n × n matrices X with independent, identically distributed (i.i.d.)

Gaussian entries xij . We use the normalizationExij = 0,E|xij |2 = 1
n
, i.e.

√
nxij is a standard real

or complex normal random variable. Correspondingly, we talk about real or complex Ginibre matri-

ces. The empirical density of eigenvalues converges to the uniform distribution on the unit disk in the

complex plane, known as Girko’s circular law and proven in increasing generality even without Gauss-

ian assumption [22, 8, 35], while the spectral radius converges to 1 [20, 9, 11, 12] with an explicit speed of

convergence [7]. For the Gaussian case, the eigenvalues form a determinantal (or Pfaffian) point process

with an explicit correlation kernelKn(z, w) (see (7) and (50) later). This kernel was computed by Gini-

bre in the complex case [21] and later by Borodin and Sinclair for the more complicated real case [13, 14]

based upon earlier works on Pfaffian formulas [19, 32] (some special cases have been solved earlier [26, 17,

18, 33, 24] and see also [3] for a comprehensive summary of all known related kernels). While the eigen-

value distribution is rotationally symmetric in the complex case, the main complication in the real case

stems from the fact that the real axis plays a special role, in fact there are many real eigenvalues [18].

The explicit formula for the eigenvalue correlation function allows one, in principle, to compute

the distribution of any interesting statistics of the eigenvalues. In reality, these calculations may require

very precise asymptotic analysis of certain special functionswhere the complex and real casesmay differ

substantially. For example, the distribution of ρ(X) := max|Spec(X)|, the spectral radius ofX (i.e.
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the largest eigenvalue in modulus), can still be easily identified in the complex case by using Kostlan’s

observation [25] on the moduli of the complex Ginibre eigenvalues. The precise result, stated in this

form in [30], asserts that

ρ(X)
d

= 1 +

√
αn
4n

+
1√

4nαn
Gn, αn := logn− 2 log logn− log(2π), (1)

whereGn converges in distribution to a standard Gumbel random variable, i.e.

lim
n→∞

P(Gn ≤ t) = exp (−e−t)

for any fixed t ∈ R. On the other hand, lacking radial symmetry, which is key element of Kostlan’s

observation, the analogous result for the real Ginibre ensemble required a much more sophisticated

analysis by Rider and Sinclair in [31]. They showed that (1) also holds for real case with the same scaling

factorαn, butGn converges to a slightly rescaledGumbel lawwith distribution function exp (− 1
2
e−t).

The additional factor 1/2 stems from the fact that the spectrum of a real Ginibre matrix is symmetric

with respect to the real axis.

In the current paper we investigate a related quantity, the maximum real part of the spectrum ofX ,

where radial symmetry does not help even in the complex case. It turns out that a similar asymptotics

holds but with a new scaling factor:

max<Spec(X)
d

= 1+

√
γ

4n
+

1√
4nγ

Gn, γ = γn :=
logn− 5 log logn− log(2π4)

2
, (2)

withGn still converging to a Gumbel variable. More precisely:

Theorem 1 (Gumbel distribution). Let σ1, . . . , σn denote the eigenvalues of a real (β = 1) or complex
(β = 2) n× n Ginibre matrix. Then for any fixed 1 t ∈ R it holds that

P
(

max
i
<σi < 1 +

√
γ

4n
+

t√
4γn

)
= exp

(
−β

2
exp(−t)

)
+O

(
(log log n)2

logn

)
(3)

as n→∞.

In the complex case (3) as a limit statement was proven by Bender [10] and in the real case by Ake-

mann and Phillips in [2] even for the more involved elliptic Ginibre ensemble where the kernelKn is

expressed by a contour integral (later it was extended to the chiral two-matrix model with complex

entries [1]). Here we give a short alternative proof that also provides an effective estimate on the speed

of convergence.

In Theorem 1 we only considered the eigenvalue with the largest real part for simplicity, however

similar result holds for the largest eigenvalue in any chosen direction. More precisely, in the complex

case the distribution of maxi <(eiθσi) is independent of θ ∈ R by rotational symmetry. For real

Ginibre matrices and for any fixed θ 6= 0 independent of n, maxi <(eiθσi) still satisfies (3) but with
β = 2. Our proof can easily be extended to cover this more general case using that the local eigenvalue

correlation functions for real and complex Ginibre matrices practically coincide away from the real

axis.

As a motivation we remark that max<Spec(X) is the basic quantity determining the exponential

growth rate of the long time asymptotics of the solution of the linear system of differential equations

d

dt
u(t) = Xu(t).

Starting from the pioneering work of May [27] (see also the more recent review [6]), this equation is

frequently used in phenomenological models to describe the evolution of many interacting agents with

random couplings both in theoretical neuroscience [34, 29] and in mathematical ecology [4, 5].

The appearance of the universalGumbel distribution in (1)–(2) is typical for extreme value statistics of

independent random variables as one of the three main cases described in the Fisher-Tippet-Gnedenko

theorem. While nearby Ginibre eigenvalues inside the unit disk are strongly correlated, the extreme

eigenvalues are essentially independent which heuristically explains the Gumbel law. The key point is

that the correlation length of the eigenvalues is of order n−1/2
, as the scaling of the Ginibre kernel

Kn(z, w) indicates, but in the extreme regime the few eigenvalues that may contribute to ρ(X) or

max<Spec(X) are much farther away from each other than n−1/2
. In fact, the scaling factor γ =

γn is chosen in such a way that there are typically finitely many (independent of n) eigenvalues in an

elongated box of size (4γn)−1/2 × i(γn)−1/4
around 1 +

√
γ/4n (see Fig. 1). The height of this box,

1
Our estimates actually give a slightly weaker effective error for any |t| �

√
logn
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Gin(R) |z| = 1Gin(C)

(γ
n

) −
1
/
4

(γn)−1/2

√
γ/n

Figure 1. The figure shows the eigenvalues of real and complex Ginibre matrices.

The eigenvalues for the top figures have been computed for 50 independent Gini-

bre matrices of size 50×50, while for the bottom figure 100 independent matrices

of size 100×100 have been sampled. Note that the eigenvalues of the real Ginibre

matrix are symmetric with respect to the real axis, and that some (in fact ∼
√
n)

eigenvalues are on the axis itself. Furthermore, the top left figuremisleadingly hints

that the rightmost eigenvalue is real. This is a finite n effect (see [31] for a detailed

discussion of this so called “Saturn effect”); we actually prove (see (60) to (62)) that

in the large n limit the largest real eigenvalue is much smaller than the real part of

the rightmost complex eigenvalue.

which is essentially the square root of its width, is determined by the curvature of the boundary of the

circular law: above or below this box there are no eigenvalues since their modulus would be too large.

Given this heuristic picture, the typical distance between the eigenvalues in the relevant box is of order

n−1/4
modulo logarithmic factors, so they are well beyond the correlation scale hence independent.

As a second result, we also establish this independence rigorously; in fact we show that within this box

the eigenvalues form a Poisson point process in the n→∞ limit. Again, as a pure limit statement this

result has already been proven in [10] for the complex Ginibre ensemble and in [2] for the real case; our

contribution is to give an alternative direct proof with an effective error bound.

Theorem 2 (Poisson Point Process). Let σ1, . . . , σn denote the eigenvalues of a real or complex n × n
Ginibre matrix. Fix any t ∈ R and any function f : C → [0,∞) supported on [t,∞) × iR, which,
additionally, is assumed to be symmetric f(z) = f(z) in the real case2. Then we have

E e−
∑n

i=1 f(xi+iyi) = exp
(
−
∫
F

(1− e−f(x+iy))
e−x−y

2

√
π

dy dx
)

+O
(

(log log n)2

logn

)
, (4)

where we introduced the eigenvalue rescaling

σi = 1 +

√
γ

4n
+

xi√
4γn

+
iyi

(γn)1/4
(5)

2
This restriction is only for convenience, since by spectral symmetry σ(X) = σ(X), any non-symmetric function f can be

replaced by its symmetrization [f(z) + f(z)]/2



DIRECTIONAL EXTREMAL STATISTICS FOR GINIBRE EIGENVALUES 4

and we set F = H := {z ∈ C | =z ≥ 0} in the real and F = C in the complex case.

Both our main results follow from a precise asymptotics of the rescaled Ginibre kernelKn(z, w) in
the relevant box combined with the idea of the regularized Fredholm determinant also used in [31]. The

compact form of Kn in the Ginibre case makes the calculations considerably shorter than the saddle

point analysis for its contour integral representation used for the elliptic ensemble in [10, 2]. In par-

ticular, we obtain an effective bound on the speed of convergence unlike [10, 2] that rely on dominated

convergence. As a byproduct, we also obtain concentration result with an effective error term for the

linear statistics (in particular the number) of eigenvalues on a slightly larger box. This result is cru-

cially used in our companion paper [15] in which we accurately identify the size of max< Spec(X) for
matrices with general i.i.d. entries, going well beyond the explicitly solvable models.

We close this introduction with a remark about eigenvectors. For many Hermitian random matri-

ces or operators originating from disordered quantum systems, the general prediction is that Poisson

eigenvalue statistics entails localized eigenvectors (while strongly correlated eigenvalue statistics, e.g.

Wigner-Dyson, imply delocalized eigenvectors). This is not the case here: all eigenvectors, even those

corresponding to extreme eigenvalues in the Poisson regime are fully delocalized [7, Corollary 2.4].

Acknowledgement. We are grateful to G. Akemann for bringing the references [1, 2, 10, 3] to our at-

tention. Discussions with Guillaume Dubach on a preliminary version of this project are gratefully

acknowledged.

2. Complex Ginibre

We recall a few basic facts about the correlation functions. The joint probability density of the

eigenvalues of a complex Ginibre matrix is given by [30]

ρn(z) = ρn(z1, . . . , zn) :=
nn

πn1! · · ·n!
exp
(
−n
∑
i

|zi|2
)∏
i<j

(
n|zi − zj |2

)
. (6)

The product can be written as a product of Vandermonde determinants and we obtain

∏
i<j

(
n|zi − zj |2

)
= det

1
√
nz1 · · · (

√
nz1)n−1

.

.

.

.

.

.

.
.
.

.

.

.

1
√
nzn · · · (

√
nzn)n−1




1 · · · 1√
nz1 · · ·

√
nzn

.

.

.

.
.
.

.

.

.

(
√
nz1)n−1 · · · (

√
nzn)n−1


= 1! · · · (n− 1)! det

(
Kn(zi, zj)

)n
i,j=1

, Kn(z, w) :=

n−1∑
l=0

(nzw)l

l!
,

(7)

so that we conclude

ρn(z) =
nn

πnn!
e−n|z|

2

det
(
Kn(zi, zj)

)n
i,j=1

, (8)

i.e. the eigenvalues form a determinantal process. Note that Kn is the kernel of a positive operator of

rank n, in particular its off-diagonal terms are estimated by the diagonal ones via Cauchy-Schwarz

inequality:

|Kn(z, w)|2 ≤ Kn(z, z)Kn(w,w), (9)

which also follows directly from the formula forKn(z, w). In order to integrate out variables we rely

on the following well-known identities:

n

π

∫
C

e−n|z|
2

Kn(z, z) d2z = n, (10)

and for any fixed w1, w2 ∈ C

n

π

∫
C

e−n|z|
2

Kn(w1, z)Kn(z, w2) d2z = Kn(w1, w2). (11)

We recall that both claims follow directly from the identity

n

π

∫
C

e−n|z|
2

(
√
nz)a(

√
nz)b d2z = δaba! (12)

for any a, b ∈ N and the definition ofKn. As a consequence of these identities, an arbitrary number

of variables can be integrated out and we obtain the following standard formula for the correlation

functions:



DIRECTIONAL EXTREMAL STATISTICS FOR GINIBRE EIGENVALUES 5

Lemma 3 (k-point correlation function). For

ρkn(z1, . . . , zk) :=

∫
Cn−k

ρn(z) d2zk+1 · · ·d2zn (13)

it holds that

ρkn(z) =
nk(n− k)!

πnn!
e−n|z|

2

det
(
Kn(zi, zj)

)k
i,j=1

. (14)

Consider a function g : C→ [0, 1] and evaluate

E

n∏
i=1

(1− g(σi)) =

∫
Cn

ρn(z)

n∏
i=1

(1− g(zi)) d2z

=

n∑
k=0

(−1)k
(
n

k

)∫
Ck

ρkn(z)

k∏
i=1

g(zi) d2z

=

n∑
k=0

(−1)k

k!

nk

πk

∫
Cn

e−n|z|
2

det
(
Kn(zi, zj)

)n
i,j=1

k∏
i=1

g(zi) d2z

=

n∑
k=0

(−1)k

k!

∫
Ck

det
(√

g(zi)K̃n(zi, zj)
√
g(zj)

)k
i,j=1

d2z

= det(1−√gK̃n
√
g)

(15)

which we recognize as the Fredholm determinant of 1−√gK̃n
√
g (see Definition 4 below, and recall

that K̃n has rank n), where

K̃n(z, w) :=
n

π
e−n(|z|2+|w|2)/2Kn(z, w) =

n

π
e−n(|z|2+|w|2−2zw)/2 Γ(n, nzw)

Γ(n)
. (16)

Here Γ(·, ·) denotes the incomplete Gamma function defined as

Γ(s, z) :=

∫ ∞
z

ts−1e−t dt, (17)

where s ∈ N and the integration contour goes from z ∈ C to real infinity.

Definition 4 (Fredholm determinant). Let (Ω, µ) denote a measure space and let K(z, w) be a kernel
on Ω. Then the Fredholm determinant of 1−K is defined as

det(1−K) :=

∞∑
k=0

(−1)k

k!

∫
Ωk

det
(
K(zi, zj)

)k
i,j=1

dµ(z1) · · ·dµ(zk). (18)

2.1. Scaling limit for max<σi. We now consider the scaling limit for the part of the complex plane

in which the eigenvalue with the largest real part is located c.f. Fig. 1. We will show that the eigenvalue

with the largest real part lives on a scale (4γn)−1/2 × i(γn)−1/4
around 1 +

√
γ/4n.

The fact that outside the unit circle the kernel K̃n has small Hilbert-Schmidt norm prompts the

introduction of the regularised determinant [23, IV.(7.8)]

det2(1−K) := det
(

(1−K)eK
)

(19)

which for finite-rankK allows to write det(1−K) = det2(1−K) exp(−TrK). From [23, IV.(7.11)]

we thus conclude

|det(1−K)− exp(−TrK)| ≤ ‖K‖2e(‖K‖2+1)2/2−TrK
(20)

where

TrK =

∫
Ω

K(x, x) dµ(x), ‖K‖22 =

∫
Ω2

|K(x, y)|2 dµ(x) dµ(y). (21)

The regularized determinant as a technical tool was used in [31] in a very similar context for the spectral

radius of real Ginibre matrices.

Proposition 5. Let |t| ≤
√

logn/10 and define the set

A = A(t) :=

{
z ∈ C

∣∣∣∣ <z ≥ 1 +

√
γ

4n
+

t√
4γn

}
. (22)
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Then for g : C→ [0, 1] supported on supp g ⊂ A(t), and for n large enough so that γ > 0, it holds that

Tr
√
gK̃n
√
g =

∫ ∞
t

∫
R

g(z)
e−x−y

2

√
π

dy dx+O
(
e−t

(log log n)2 + |t|2

logn

)
,

z = 1 +

√
γ

4n
+

x√
4γn

+
iy

(γn)1/4

(23)

and
‖√gK̃n

√
g‖2 . e−

√
logn/32. (24)

The unspecified constants in . andO(·) are uniform in n and in |t| ≤
√

logn/10.

In particular, (15) and (20) combined with Proposition 5 for any fixed t gives

P
(

max
i
<σi < 1 +

√
γ

4n
+

t√
4γn

)
= P

(
σ1, . . . , σn ∈ A(t)c

)
= det(1− χA(t)K̃nχA(t))

n→∞−−−−→ e−e
−t

(25)

with χA denoting the characteristic function of the set A, completing the proof of Theorem 1 in the

complex case. Moreover, for any function f : C→ [0,∞) supported inA(t) we also have that

E exp
(
−

n∑
i=1

f(σi)
)

= det
(

1−
√

1− e−f K̃n

√
1− e−f

)
n→∞−−−−→ exp

(
−
∫ ∞
t

∫
R

(1− e−f(z))
e−x−y

2

√
π

dy dx
) (26)

with z as in (23), proving the complex case of Theorem 2 after change of variables. The error terms in (3)

and (4) can easily be obtained from (23)–(24).

Hence the remaining task is to prove Proposition 5 which will be an easy consequence of the fol-

lowing Lemma 6.

Lemma 6. Rescale the kernel variables as

z = 1 +

√
γ

4n
+

x1√
4γn

+
iy1

(γn)1/4
, w = 1 +

√
γ

4n
+

x2√
4γn

+
iy2

(γn)1/4
(27)

withx := (x1, x2), y := (y1, y2) real vectors. In the regime |x|+|y|2 ≤
√

logn/2 and for |y1−y2| <
n1/10n−1/4 we have the asymptotics

|K̃n(z, w)|2

4(γn)3/2
=

γe−x1−x2−y
2
1−y

2
2

π(γ +
√
n/γ(y1 − y2)2)

(
1 +O

(
log logn+ |x|2 + |y|4

logn

))
. (28)

On the other hand, for |x| + |y|2 ≤
√

logn/2 and |y1 − y2| ≥ Cn−1/4 for some C ≥ 1 we have the
estimate

|K̃n(z, w)|2

(γn)3/2
.

γe−x1−y
2
1−x2−y

2
2

γ +
√
n/γ(y1 − y2)2

(
1 +O

(√
γ

C2
+
|x|2 + |y|4

logn

))
. (29)

Finally, for x1 + y2
1 ≥ 0, x2 + y2

2 ≥ 0 we have the uniform bound

|K̃n(z, w)|2

(γn)3/2
. |z|2|w|2e−(x1+y21)/3e−(x2+y22)/3. (30)

Proof of Proposition 5. Set t0 := 4(log logn+ |t|) and estimate the trace in (23) as follows

Tr
√
gK̃n
√
g =

∫
A(t)

g(z)K̃n(z, z) d2z

=

(∫ t0

t

∫
y2<2t0

+

∫ t0

t

∫
y2≥2t0

+

∫ ∞
t0

∫
R

)
g(z)

K̃n(z, z)

2(γn)3/4
dy dx

=

∫ t0

t

∫
y2<t0

g(z)
e−x−y

2

√
π

dy dx
(

1 +O
(

(log log n)2 + |t|2

logn

))
+O

(
e−|t0|/4

)
=

∫ ∞
t

∫
R

g(z)
e−x−y

2

√
π

dy dx+O
(
e−t

(log log n)2 + |t|2

logn

)
,

(31)
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where we used (28) for the first integral and (30) for the remaining two integrals.

For the bound on (23) we estimate

Tr(
√
gK̃n
√
g)2 ≤

∫∫
A(t)

|K̃n(z, w)|2 d2z d2w, (32)

and after a change of variables from (z, w) to (x,y) using (27) we split the integral into two parts. First
estimate the part where |x|+ |y|2 >

√
logn/2 and obtain∫∫ ∞

t

∫∫
R

|K̃n(z, w)|2

4(γn)3/2
1
(
|x|+ |y|2 >

√
logn

2

)
dy dx

≤
∫ ∞
t

∫
R

∫∫
R

|K̃n(z, w)|2

4(γn)3/2
1
(
|x1|+ y2

1 >

√
logn

4

)
dy dx2 dx1

=

∫ ∞
t

∫
R

K̃n(z, z)

2(γn)3/4
1
(
|x1|+ y2

1 >

√
logn

4

)
dy1 dx1

.
∫ ∞
t

∫
R

e−(x+y2)/41
(
|x|+ y2 >

√
logn

4

)
dy dx . e−

√
logn/16

(33)

due to (11) in the second and (30) in the last step. In the remaining integral we use (28) whenever |y1 −
y2| ≤ n−1/6

and (29) otherwise to find∫∫ ∞
t

∫∫
R

|K̃n(z, w)|2

(γn)3/2
1
(
|x|+ |y|2 ≤

√
logn

2

)
dx dy

.
∫∫ ∞

t

∫∫
R

e−x1−x2−y
2
1−y

2
2

(
1(|y1 − y2| ≤ n−1/6) +

1(|y1 − y2| > n−1/6)

γ−3/2n1/6

)
dy dx

. e−2tn−1/6γ3/2,

(34)

concluding the proof. �

Proof of Lemma 6. For (30) by Cauchy-Schwarz it is sufficient to prove

K̃n(z, z)

(γn)3/4
. |z|2e−(x+y2)/3. (35)

For the proof of (35) we recall the asymptotics [31, Lemma 3.2] of the incomplete Γ function

Γ(n, nt)

Γ(n)
=
tµ(t) erfc(

√
nµ(t))√

2(t− 1)

(
1 +O

(
n−1/2

))
, µ(t) :=

√
t− log(t)− 1, (36)

which holds uniformly in t > 1, and note that

|z|2 = 1 +

√
γ + (x+ y2)/

√
γ

√
n

+
(γ + x)2

4γn
≥ 1 +

√
γ + (x+ y2)/

√
γ

√
n

. (37)

Then, for (35) we use erfc(x) . e−x
2

/x to estimate

1

(γn)3/4
K̃n(z, z) .

n1/4

γ5/4
|z|2e−nµ(|z|2)2 ≤ n1/4

γ5/4
|z|2e−γ(1−

√
γ/n)/2e−(x+y2)/3

(38)

using the elementary bound t− log t− 1 ≥ δ(1− δ)(t− 1)/2 for t ≥ 1 + δ and δ ∈ [0, 1) implying

µ(|z|2)2 = |z|2 − 2 log|z| − 1 ≥ γ + x+ y2

2n

(
1−

√
γ

n

)
≥ γ

2n

(
1−

√
γ

n

)
+
x+ y2

3n
(39)

due to γ/n� 1 in the last step. Now (35) follows from

e−γ/2 = exp
(
−1

4
log

n

2π4(logn)5

)
=

21/4π(logn)5/4

n1/4
=

23/2πγ5/4

n1/4

(
1 +O

(
log log n

logn

))
.

(40)

For (29) we first note

zw = 1 +

√
γ +

(
x1+x2

2
+ y1y2

)
/
√
γ

√
n

+ i
y1 − y2

(γn)1/4
+ i

y1(γ + x2/γ)− y2(γ + x1/γ)

(γn)3/4
, (41)

and hence |1− zw| & (|y1 − y2|(n/γ)1/4 +
√
γ)/
√
n. Now we use the asymptotics [31, Lemma 3.4]

Γ(n, nzw)

Γ(n)
= e−nzw

en(zw)n√
2πn(1− zw)

(
1 +O

(
1

n|1− zw|2

))
(42)
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to estimate ∣∣K̃n(z, w)
∣∣

(nγ)3/4
.
n1/4en(1−|z|2/2−|w|2/2+log|zw|)

γ3/4(|y1 − y2|(n/γ)1/4 +
√
γ)

(
1 +O

(√
γ

C2

))
. (43)

In the exponent we use

1− |z|2/2− |w|2/2 + log|z|+ log|w| = − (|z|2 − 1)2

4
− (|w|2 − 1)2

4
+O

(
(γ/n)3/2

)
= −γ + x1 + y2

2 + x2 + y2
2

2n
+O

(
1 + |x|2 + |y|4

nγ

)
(44)

to conclude∣∣K̃n(z, w)
∣∣

(nγ)3/4
.
√
γe−(x1+y21)/2e−(x2+y22)/2

|y1 − y2|(n/γ)1/4 +
√
γ

(
1 +O

(√
γ

C2
+

log logn+ x2 + y4

logn

))
. (45)

It remains to consider (28) where we use [31, Lemma 3.3] in the form

Γ(n, nzw)

Γ(n)
=
zwµ(zw) erfc(

√
nµ(zw))√

2(zw − 1)

(
1 +O

(
1

n|1− zw|

))
, µ(z) :=

√
z − log(z)− 1.

(46)

We use the Taylor expansionµ(1+z) = z/
√

2+O(|z|2) (for small enough |z|) and the asymptotics [16,

Eq. (7.12.1)] of the error function erfc(z) = e−z
2

/(
√
πz)(1+O

(
|z|−2

)
) for |arg z| < 3π/4 to obtain

Γ(n, nzw)

Γ(n)
=

e−n(zw−1)2/2

√
2π
√
n(zw − 1)

(
1 +O

(
|zw − 1|+ n|zw − 1|3 +

1

n|zw − 1|2

))
(47)

and thereby∣∣K̃n(z, w)
∣∣2

4(nγ)3/2
=

n1/2

γ3/2(2π)3

e−γ−x1−x2−y
2
1−y

2
2

γ +
√
n/γ(y1 − y2)2

(
1 +O

(
1 + |x|2 + |y|4

γ

))

=
γe−x1−x2−y

2
1−y

2
2

π(γ +
√
n/γ(y1 − y2)2)

(
1 +O

(
log logn+ |x|2 + |y|4

logn

))
.

(48)

Here we also used the upper bound on |y1 − y2| ≤ n1/10n−1/4
in order to estimate

√
γ/n . |1 −

zw| . n−1/2(
√
γ + n1/10/γ1/4). �

3. Real Ginibre

We now consider the real case. The analogue of (15) for test functions g : C→ [0, 1] invariant under
complex conjugation, g(z) = g(z), and vanishing on the real line, g(x) = 0, x ∈ R, is given by [31]

E

n∏
i=1

(1− g(σi)) =
[
det(1−√gKC,C

n

√
g)
]1/2

, (49)

where

KC,C
n (z, w) :=

(
Sn(z, w) −iSn(z, w)
−iSn(z, w) Sn(w, z)

)
(50)

with

Sn(z, w) :=
ine−n(z−w)2/2

√
2π

√
n(w − z)

√
erfc(
√

2n|=z|) erfc(
√

2n|=w|)e−nzwKn(z, w)

= Φn(z, w)K̃n(z, w)

Φn(z, w) := en(|z|2+|w|2−2zw)/2 i
√
πe−n(z−w)2/2

√
2

√
n(w − z)

√
erfc(
√

2n|=z|) erfc(
√

2n|=w|).

(51)

The analogue to Proposition 5 is the following result.
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Proposition 7. Let |t| ≤
√

logn/10, let A(t) be as in (22) and recall γ = γn from (2). Consider any
function g : C→ [0, 1] supported on supp g ⊂ A(t) that is symmetric in the sense g(z) = g(z), and let
n be large enough such that γ > 0. Then we have

Tr
√
gKC,C

n

√
g = 2

∫ ∞
t

∫ ∞
0

g(z)
e−x−y

2

√
π

dy dx+O
(
e−t

(log log n)2 + |t|2

logn

)
,

z = 1 +

√
γ

4n
+

x√
4γn

+
iy

(γn)1/4

(52)

and
‖√gKC,C

n

√
g‖2 . e−

√
logn/32. (53)

The unspecified constants in . andO(·) are uniform in n and in |t| ≤
√

logn/10.

Proof. We estimate

Φn(z, z) =
√
πe2n(=z)2√2n=z erfc(

√
2n|=z|) = 1 +O

(
min

{
1,

1

n(=z)2

})
, (54)

where we used the asymptotic erfc(x) = e−x
2

/(
√
πx)(1 + O

(
x−2

)
) and the bound erfc(x) ≤

e−x
2

/(
√
πx). Thus the tracial computation essentially reduces to the complex case (31) and we obtain

Tr
√
gKC,C

n (z, z)
√
g = 2

∫
A(t)+

g(z)Sn(z, z) d2z

= 2

∫
A(t)+

g(z)K̃n(z, z)1(=z > n−5/12) d2z
(

1 +O
(
n−5/12

))
+O

(∫
A(t)+

K̃n(z, z)1(=z ≤ n−5/12) d2z

)

= 2

∫ ∞
t

∫ ∞
0

e−x−y
2

√
π

g(z) dy dx+O
(
e−t

(log log n)2 + |t|2

logn

)
,

(55)

whereA(t)+ := A(t) ∩H, we parametrized z with x, y as in (23), and we used (28) and (30).

For the Hilbert-Schmidt norm we estimate, analogously to (33)

‖√gKC,C
n

√
g‖2 =

∫∫
g(z)g(w) TrKC,C

n (z, w)KC,C
n (w, z) d2z d2w

≤
∫∫
<≥t

TrKC,C
n (z, w)KC,C

n (w, z)1(|x|+ |y|2 ≤
√

logn

2
) d2z d2w

+

∫
TrKC,C

n (z, z)1(|x|+ y2 >

√
logn

4
) d2z

.
∫∫
<≥t
|Sn(z, w)|21(|x|+ |y|2 ≤

√
logn

2
) d2z d2w + e−

√
logn/16,

(56)

where we used that the integrals of |Sn(z, w)|2 and |Sn(z, w)|2 are equal by symmetry of the inte-

gration region, and < ≥ t indicates the integration region {<z ≥ t} ∩ {<w ≥ t}. Now we use (28)

and (29) together with the elementary bound

|Φn(z, w)|2 . n|z − w|2

(1 ∨
√
n=z)(1 ∨

√
n=w)

.
(x1 − x2)2/

√
γ +
√
n(y1 + y2)2

(γ1/4 ∨ n1/4y1)(γ1/4 ∨ n1/4y2)
(57)

to estimate

|Sn(z, w)|2

(γn)3/2
.

γe−x1−x2−y
2
1−y

2
2

γ +
√
n/γ(y1 − y2)2

(x1 − x2)2/
√
γ +
√
n(y1 + y2)2

(γ1/4 ∨ n1/4y1)(γ1/4 ∨ n1/4y2)
(58)

and conclude, similarly to (34), that∫∫
<≥t
|Sn(z, w)|21(|x|+ |y|2 ≤

√
logn

2
) d2z d2w . e−2tn−1/6γ3/2. (59)

�
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As a consequence of (20) and (49) and Proposition 7 and we obtain that for any fixed t it holds that

P
(

max
i : σi 6∈R

<σi < 1 +

√
γ

4n
+

t√
4γn

)
= P

(
σ1, . . . , σn ∈ R ∪ [C \ (A(t) ∪R)]

)
=
[
det(1− χA(t)K

C,C
n χA(t))

]1/2 n→∞−−−−→ e−e
−t/2

(60)

withχA denoting the characteristic function of the setA, using that
∫∞

0
e−y

2

dy =
√
π/2. Moreover,

for any symmetric function f : C→ [0,∞) supported inA(t) we also have that

E exp
(
−

∑
i : σi 6∈R

f(σi)
)

= det
(

1−
√

1− e−fKC,C
n

√
1− e−f

)1/2

n→∞−−−−→ exp
(
−
∫ ∞
t

∫ ∞
0

(1− e−f(z))
e−x−y

2

√
π

dy dx
)
.

(61)

In order to complete the proof of Theorems 1 and 2 it remains to estimate the real eigenvalues.

However, the real eigenvalues affect neither of these results since the largest real eigenvalue lives on a

smaller scale, 1 + O(1/
√
n), than the largest real part of complex eigenvalues, 1 + O(

√
logn/n).

Indeed, the main result of [28] is that for large t

lim
n→∞

P
(

max
i : σi∈R

σi ≤ 1 +
t√
n

)
= 1− 1

4
erfc(t) +O

(
e−2t2

)
. (62)

Together with (60) and (61) this concludes the proof of Theorems 1 and 2 also in the real case.
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