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We establish a precise three-term asymptotic expansion, with an optimal

estimate of the error term, for the rightmost eigenvalue of an n× n random

matrix with independent identically distributed complex entries as n tends to

infinity. All terms in the expansion are universal.

1. Introduction. Large random matrices are frequently used to model complex systems

of many degrees of freedom. Quantum Hamiltonians are naturally self-adjoint, so their con-

ventional random matrix models are Hermitian; the most common example is Wigner ma-

trices. Beyond quantum mechanics, random matrices often appear without any symmetry

condition in natural phenomenological models. For example, the time evolution of many

interacting agents u = (u1, u2, . . . , un) may be described by a linear system of differential

equations of the form

(1.1)
d

dt
u(t) =Xu(t).

Lacking any specific knowledge about how uj precisely influences the evolution of ui, the

simplest phenomenological model assumes that the coefficient matrix X is random. Despite

its simplicity, since the ground-breaking paper of May [57], this model has been exten-

sively used to describe the evolution of complex systems both in theoretical neuroscience,

see e.g. [61, 65] and in mathematical ecology, e.g. [3, 4], see also a recent comprehensive

review [5]. The problem is often presented in the form [65]

(1.2)
d

dt
u(t) = (−I + gX)u(t),

where the identity matrix stands for a natural exponential decay at unit rate and the coupling

constant g > 0 explicitly expresses the strength of the random couplings. The main question

is to tune g so that the system is stable in the sense that it is neither exponentially decaying nor

exponentially increasing. The maximal growth rate of the solution of (1.2) is determined by

the maximal real part of the spectrum of the coefficient matrix −I + gX . This motivates the

main task of this paper: to understand very accurately the real part of the rightmost eigenvalue

of a large non-Hermitian random matrix.

We remark that a similar optimal stability question of (1.2) for uniformly random initial

data u(0) and when the size of u(t) measured in ℓ2-sense has been answered in [20, 58]

when the coefficients xij are all Gaussian and in [31, 32] for more general distributions even

beyond the i.i.d. case. The rightmost eigenvalue studied in the current paper is relevant when

we consider the worst-case scenario, i.e. when we measure u(t) in maximum norm and we

take the supremum over all initial data u(0) (see Corollary 2.4 below).
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To be more specific, we consider n × n random matrices X with independent, identi-

cally distributed (i.i.d.) matrix elements, called the i.i.d. matrix ensemble. This is the non-

Hermitian counterpart of the Wigner ensemble. We choose the normalization such that

xij
d
= n−1/2χ, for all i, j, where χ is a fixed complex centred random variable with E |χ|2 = 1

and E χ2 = 0. This normalization guarantees that the spectrum of X remains essentially

within the unit disk, uniformly in n. We claim our result and present the proof only for the

complex case but our basic method works for the real case as well. We will comment on the

necessary modifications that we do not carry out in this paper for brevity.

More precisely, the celebrated Girko’s circular law, proven in increasing generality in [10,

43, 66], asserts that the eigenvalue density of X is uniform on the unit disk of the complex

plane. Furthermore, there are no outlier eigenvalues far away since the spectral radius ρ(X)
converges to 1, see [11, 15, 16, 41]. A speed of convergence of order n−1/2+ǫ, for any small

ǫ > 0, with very high probability was recently established in [6]. Nevertheless some extremal

eigenvalues do lie outside of the unit disk, hence maxReSpec(X) is slightly larger than one.

It is well known that eigenvalues genuinely fluctuate on scale n−1/2 near the boundary of the

unit disk, in fact the local eigenvalue statistics in this regime is universal [23]. Therefore we

know that

n−1/2 ≪maxReSpec(X)− 1≪ n−1/2+ǫ

holds for any ǫ > 0 with very high probability and our goal is to find a more accurate asymp-

totics. We remark that this natural question was posed in the first version on the arXiv of [16]

in Section 1.1.8. Beforehand, a leading order large deviation principle was established for

maxReSpec(X) even for the more general elliptic ensemble in [12] and the refined asymp-

totics was mentioned as an open question.

For the complex Gaussian case, i.e., when χ is a standard complex random variable (Gini-

bre ensemble), the eigenvalues form a determinantal process with an explicit correlation ker-

nel computed first by Ginibre [42]. Based upon these formulas in our companion paper [28]

we recently gave a new short proof of the exact asymptotics:

(1.3)

maxReSpec(X)
d
= 1+

√
γn
4n

+
1√
4nγn

Gn, γn :=
logn− 5 log logn− log(2π4)

2
,

where the random variable Gn converges to a Gumbel distribution

lim
n→∞

P (Gn ≤ t) = exp(−e−t)

for any fixed t ∈ R with an effective error term. We also proved a similar result for the real

Ginibre ensemble. These results without error term were first proven by Bender [14] in the

complex case and by Akemann and Phillips [2] in the real case even for the more involved

Gaussian elliptic ensembles where a sophisticated saddle point analysis for the correlation

kernel was necessary, while our proof in [28] is elementary. In particular, we obtained that

typically

(1.4) maxReSpec(X) = 1+

√
logn− 5 log logn− log(2π4)

8n
+O

( 1√
n logn

)

for the Ginibre ensemble. In this paper we prove (1.4) for any i.i.d. matrix ensemble, in par-

ticular we show that the three-term asymptotics is universal in the sense that it is independent

of the single entry distribution χ. The Gumbel fluctuation is also expected to be universal;

this is an open problem that we leave to future work. However, our result (1.4) already implies

the tightness of Gn in (1.3) even for the i.i.d. case, see Remark 2.5 below.
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(γ
n
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1
/
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(γn)−1/2

√

γ/n

FIG 1. The figure shows the eigenvalues of complex Ginibre matrices. The eigenvalues for the left figures have

been computed for 50 independent Ginibre matrices of size 50× 50, while for the right figure 100 independent

matrices of size 100 × 100 have been sampled. The gray box on the right right hand side indicates the high-

probability location of the eigenvalue with the largest real part.

Extreme value statistics for independent random variables are fully described by the

Fisher-Tippett-Gnedenko theorem, with the Gumbel distribution being one of the three main

universal laws. The three-term asymptotics for the scaling factor is also common, for example

the maximum of n standard Gaussian variables is given by

√
2 logn− log logn+ log(4π)

2
√
2 logn

+
1√

2 logn
Gn,

where Gn is again asymptotically Gumbel. While such precise asymptotics in the indepen-

dent case is a fairly simple exercise by the tail asymptotics of the individual random vari-

ables, it is remarkable that such precision can be maintained in certain weakly correlated

situations1 such as maxReSpec(X). The intuition is that effectively only few rightmost

eigenvalues compete for maxReSpec(X) and these eigenvalues are typically far away from

each other, well beyond their correlation length of order n−1/2, hence they asymptotically

form a Poisson point process and are essentially independent. While this scenario could be

directly verified for the Ginibre ensemble [28] (and even for the more general Gaussian el-

liptic ensemble [2, 14], as well as for the chiral two-matrix model with complex entries [1]),

its validity for a general i.i.d. matrix is a highly nontrivial fact since explicit formulas for the

eigenvalue correlation functions are lacking.

We remark that starting with the ground-breaking paper of Fyodorov, Hiary and Keat-

ing [38], see also [39], similar three-term asymptotics have recently been investigated

for extreme values of characteristic polynomials of various random matrix ensembles,

e.g. [40, 7, 60, 21, 51], as well as for the Riemann ζ-function, e.g. [62, 8, 59, 44, 9]. In

a different context, the largest eigenvalues of minors have recently been shown to follow

Gumbel distribution as well [37].

We now briefly comment on the novelties of our method to prove (1.4); more details will

be given in Sections 2.2 and 2.3. The standard method to extend any result on local eigen-

value statistics from the Gaussian case to a random matrix with a general entry distribution is

the Green function comparison theorem (GFT) going back to [35], see also the related Four

moment theorem of Tao and Vu [67]. Direct application of GFT in the bulk spectral regime for

1Another such situation, introduced first in [48], is the transition between Gumbel and Tracy-Widom distribu-

tions for GUE with an independent sizeable random deformation.
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Hermitian matrices typically assumes that the third and fourth moments of the entry distribu-

tion also (almost) match, and a more sophisticated dynamical approach relying on the Dyson

Brownian motion is necessary to remove these restrictive matching conditions [34, 17, 52].

At the edge regime, however, two matching moments are sufficient for GFT [36]. Alter-

natively, at the edges the Green functions can be controlled along the Ornstein-Uhlenbeck

(OU) matrix flow for a very long time which allows one to compare a general matrix with

a Gaussian one directly. This flow idea was first used in [53, 54] (see also [64, 63]) in the

Hermitian context to investigate the Tracy-Widom edge universality and later in [23] for the

non-Hermitian situation in the edge regime of the circular law. In the latter case first one

translates the non-Hermitian eigenvalue problem to a Hermitian one via Girko’s formula

(1.5)
∑

σ∈Spec(X)

f(σ) =− 1

4π

∫

C

∆f(z)A(z)d2z, A(z) :=

∫ ∞

0
ImTrGz(iη)dη,

and then performs the analysis for a continuous family of Hermitized resolvents, parametrized

by an additional spectral parameter z ∈C, given by

Gz(w) := (Hz −w)−1, Hz :=

(
0 X − z

X∗ − z 0

)
, w ∈C \R.(1.6)

Customarily one performs a cumulant expansion (see e.g. in [49, 19, 56, 45, 33] for the

random matrix context) for the time derivative of F (TrGt(w)), where F is a smooth test

function and Gt(w) is the Green function at time t. The spectral parameter w is chosen suffi-

ciently close to the real axis to detect individual eigenvalues, i.e. η := Imw is smaller than the

typical eigenvalue spacing, e.g. η≪ n−2/3 in the Hermitian edge regime and η≪ n−3/4 in

the non-Hermitian edge regime where the spectral density of Hz develops a cusp singularity

at zero. Typically the first and second order terms in the cumulant expansion are automat-

ically cancelled by the choice of the OU process, the third and fourth order terms require

careful estimates, while terms with higher order cumulants can be estimated quite crudely.

The estimates are done via the optimal local laws that identify the leading deterministic term

of the Green functions plus an error term. In the edge regimes where η := Imw is typically

much larger than 1/n, the cumulant expansion can be iterated: in every step one may gain an

additional factor ψ := 1/(nη)≪ 1 in the error terms from the so-called un-matched indices

(Definition 4.4), while the leading deterministic terms can be computed and the first non-

vanishing one gives the final size. We need to exploit an explicit cancellation of the leading

term after the z-integration in (1.5), forcing us to expand beyond the usual order. The itera-

tive cumulant expansion has been systematically developed in [64, 63] after several previous

works using the iterative gain from un-matched indices [36, 29] combined with cancellations

of leading deterministic terms in certain situations [55, 46, 47].

The main difference between the current work and all previous applications of sophisti-

cated cumulant expansions along a GFT proof is that now we work in a very atypical regime

which means that all natural a priori estimates from local laws are off by a large factor (of size

n1/4). Indeed, due to the curvature of the unit circle near 1, the eigenvalues that may typically

contribute to maxReSpec(X) are located in an elongated vertical box of size n−1/2×n−1/4

(modulo logarithmic factors) with center around 1+
√
γn/4n and this box contains typically

finitely many (independently of n) eigenvalues, see Fig. 1 – this was proven for the Gaussian

case in [28]. Therefore to obtain a lower and upper bound on maxReSpec(X) we will need

to use (1.5) for a smooth test functions f supported on such box and we need to control (1.5)

in expectation and variance sense.

If f in (1.5) is a smooth function supported in this box then
∫
C
|∆f(z)|d2z ∼ n1/4 is

unusually large due to strong anisotropy of the box. The typical size of the fluctuation of

A(z) by local law is
∫∞
0 η−1 dη ∼O(1) (ignoring logarithmic singularities). Thus the naive
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size of the fluctuation in the rhs. of Girko’s formula in (1.5) is of order n1/4 for a quantity that

is only of order one by its lhs. This overestimate has a drastic effect on the usual cumulant

expansions. Higher order terms in the cumulant expansion of F (
∫
C
∆f(z)A(z)d2z) will

involve higher powers of the problematic quantity
∫
(∆f)A whose a priori size we do not

control effectively. For smooth and bounded test functions F the standard iterative cumulant

expansion, similar to [64, 63], is still effective but only if n1/4ψ = n1/4/(nη)≪ 1, i.e. in the

regime where η≫ n−3/4. We circumvent this difficulty by considering only the expectation

and the variance of
∫
(∆f)A instead of a general test function F which has the advantage

that the Taylor expansion of F stops at first or second order. This restricted choice of F is

the main reason why our current result is able to control only the size of maxReSpec(X)
in (1.4) but not yet its Gumbel fluctuation.

The complementary η . n−3/4 regime is not accessible by robust expansions. In fact, the

regime η≪ n−3/4 is dominated by the smallest (in modulus) eigenvalue λz of Hz (equiva-

lently, the lowest singular value of X − z), especially by its lower tail behaviour. Two inde-

pendent special effects need to be exploited simultaneously. First, there is a level repulsion

between λz and −λz (since the spectrum of Hz is symmetric to the origin, hence −λz is

also an eigenvalue), which effectively suppresses the event that |λz| is much smaller than its

natural scale n−3/4. Second, the density of non-Hermitian eigenvalues (of X) are suppressed

by a factor e−n(|z|−1)2/2 in the regime where |z| ≥ 1, expressing the very strong concentra-

tion of the spectral radius near 1. Heuristically, this gives an additional small factor of order

e−n(|z|−1)2/2 for the lower tail of λz as well. However, note that having a non-Hermitian

eigenvalue extremely close to z and λz being unusually small is not an effectively control-

lable relation, even though z ∈ Spec(X) is equivalent to λz = 0. Both effects are extremely

delicate and cannot be obtained directly for a general i.i.d. ensemble, but they can be ex-

tracted from the corresponding Ginibre ensemble via explicit calculations. We therefore first

establish a very accurate lower tail estimate on λz in the Ginibre case (see Proposition 2.7

below), then via a separate GFT argument we transfer its consequence to the i.i.d. ensemble

by obtaining an improved bound on E ImTrGz(iη) (see Proposition 3.6 below). Up to an

intermediate cutoff scale η≪ n−7/8 this bound is sufficient to overcome the n1/4 loss from∫
|∆f |, ensuring that this small-η regime is negligible in the expectation sense and proving

that only the η & n−7/8 regime matters in (1.5).

Finally, we revisit the iterative cumulant expansion for the large-η regime and use that

we are interested only in the expectation and variance instead of a general F . This means

that the factor
∫
|∆f | ∼ n1/4 occurs at most twice which can still be compensated by the

improved estimate on E ImTrGz(iη) in the cumulant expansions. For the comparison argu-

ment we also need a variance bound on the large-η regime for the Gaussian case, which is not

available directly, but which we deduce indirectly from the variance of the lhs. of (1.5) (that is

available via the Ginibre kernels [28]) and from the vanishing variance of the small-η regime.

The optimal variance bound for the entire η≪ n−3/4 regime would require the precise cor-

relation between λz and λz
′

for two different spectral parameters z, z′ – an information that

is not available even in the Gaussian case. Nevertheless, the suboptimal estimate, ignoring

the decorrelation for large z − z′, is still sufficient for our smaller regime η≪ n−7/8. This

is another independent reason for choosing the threshold n−7/8 for splitting the η-integral

in (1.5).

Note that we use the n−7/8 threshold to distinguish between the negligible small-η regime

and the large-η regime requiring separate GFT comparisons, although the natural cutoff

threshold should have been at n−3/4 (the threshold n−7/8 is only a technical choice).

In summary, our proof is much more involved than a typical direct iterative GFT argument

and requires to choose an ”unnatural” threshold n−7/8 due to two main reasons: (i) we do not

have almost matching a priori bounds due the anisotropy of the regime we consider, and (ii)
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the necessary direct information on the correlation between λz and λz
′

is lacking even in the

Gaussian case.

Notations and conventions. We introduce some notations we use throughout the paper.

For integers k, l ∈ N with k ≤ l we use the notation Jk, lK := {k, k + 1, . . . , l}. For positive

quantities f, g we write f . g and f ∼ g if f ≤ Cg or cg ≤ f ≤ Cg, respectively, for some

constants c,C > 0 which depend only on the constants appearing in (2.1). For n-dependent

positive sequences f = fn, g = gn we also introduce f ≪ g indicating that fn = o(gn). We

denote vectors by bold-faced lower case Roman letters x,y ∈ Ck, for some k ∈ N. Vector

and matrix norms, ‖x‖ and ‖A‖, indicate the usual Euclidean norm and the corresponding

induced matrix norm. For any 2n × 2n matrix A we use the notation 〈A〉 := (2n)−1TrA
to denote the normalized trace of A. Moreover, for vectors x,y ∈ Cn and matrices A,B ∈
C2n×2n we define

〈x,y〉 :=
∑

xiyi, 〈A,B〉 := 〈A∗B〉.

Moreover, we use ∆= 4∂z∂z̄ to denote the usual Laplacian and d2z denotes the Lebesgue

measure on C. For any function h :C→C, we define theLp-norm by ‖h‖pp :=
∫
C
|h(z)|p d2z.

We will use the concept of “with very high probability” meaning that for any fixed D> 0
the probability of the event is bigger than 1 − n−D if n ≥ n0(D). Moreover, we use the

convention that ξ > 0 denotes an arbitrary small constant which is independent of n. Finally,

we introduce the notion of stochastic domination (see e.g. [30]): given two families of non-

negative random variables

X =
(
X(n)(u) : n ∈N, u ∈U (n)

)
and Y =

(
Y (n)(u) : n ∈N, u∈ U (n)

)

indexed by n (and possibly some parameter u in some parameter space U (n)), we say that X
is stochastically dominated by Y , if for all ξ,D > 0 we have

(1.7) sup
u∈U (n)

P

[
X(n)(u)>nξY (n)(u)

]
≤ n−D

for large enough n≥ n0(ξ,D). In this case we use the notation X ≺ Y or X =O≺(Y ). We

also use the convention that ξ > 0 denotes an arbitrary small constant which is independent of

n. We often use the notation ≺ also for deterministic quantities, then the probability in (1.7)

is zero for any ξ > 0 and sufficiently large n.

2. Main result and the proof ingredients. In this section we first formulate our main

result precisely for the complex symmetry class. Then in Section 2.2 we collect some key

ingredients of the proof from the literature: the local circular law, the strong concentration

of the spectral radius, Girko’s formula, the local law for the Hermitized matrix Hz , and

most importantly we present a new lower tail bound on the smallest (in modulus) eigenvalue

of Hz (Proposition 2.7 with its proof presented in the appendix). In the brief Section 2.3

we informally explain the main strategy that will be formalized in Section 3. Finally, in

Section 2.4 we comment on the extension of our argument to the real symmetry class.

2.1. Statement of the main result. We consider n×n matrices X with independent iden-

tically distributed (i.i.d.) entries xab
d
= n−1/2χ. On the n-independent random variable χ we

make the following assumption:
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ASSUMPTION 2.1. We assume that E χ = 0, E |χ|2 = 1; additionally in the complex

case we also assume that E χ2 = 0. Furthermore, for any p ∈N we assume that there exists

constants Cp > 0 such that

(2.1) E
∣∣χp
∣∣≤Cp.

Moreover, we assume that there exists α,β > 0 such that the probability density of χ, denoted

by g, satisfies

g ∈L1+α(F), ‖g‖1+α ≤ nβ, F=R or C.(2.2)

REMARK 2.2. The condition on the density (2.2) is used only to control the unlikely event

that there is a tiny singular value of X − z in a very simple way; see (3.41) below. We make

this assumption only to simplify the presentation of the proof. It can easily be removed with

a separate argument from in [68, Section 6.1] (see also a slightly streamlined version in [50,

Section 2.2]) as follows. To deal with a random matrix X failing to satisfy (2.2), one may

add a tiny independent Gaussian component n−γXGauss to X for some large fixed γ > 0 to

achieve a probability density for the entries that satisfies (2.2), hence our main results hold

forX+n−γXGauss. This tiny component n−γXGauss can then be removed by using the proof

of [68, Theorem 23] (or its refinement [50, Lemma 4]) that combines a sampling idea with

the standard moment matching technique2. We will not present the details here since they are

fairly standard and they are independent of our main arguments.

Let {σi}i∈J1,nK be the eigenvalues of X , then our main result is the following:

THEOREM 2.3. LetX be an n×n matrix satisfying Assumption 2.1 in the complex case,

and define

γn :=
logn− 5 log logn− log(2π4)

2
.(2.3)

Then

lim
n→∞

P

(∣∣∣∣ max
i∈J1,nK

Reσi − 1−
√
γn
4n

∣∣∣∣≥
Cn√
4nγn

)
= 0,(2.4)

for any sequence3 Cn →∞.

We remark that Theorem 2.3 with the same proof holds if instead of the eigenvalue with

the largest real part we consider the largest eigenvalue in any given direction, i.e. (2.4) holds

for maxiRe(e
iθσi) with any fixed θ ∈ R, but for simplicity we consider the θ = 0 case. We

also note that the matrix elements of X do not necessarily have to be identically distributed.

Our proof works with minor modifications as long as all the entries χab =
√
nxab satisfy

Assumption 2.1 uniformly for any a, b, but for simplicity we consider the i.i.d. case.

We stated our main Theorem 2.3 only for the complex case. The same result holds for the

real case but we give a complete proof only for the complex case; we explain the reason in

Section 2.4.

Our precise estimate on maxiReσi has the following immediate corollary on the solution

to (1.2) with an i.i.d. matrix X .

2This theorem shows that if the first four moments of the single entry distributions of two ensembles X and

X′ coincide, then their microscopic local statistics are close with an effective error. With sufficiently high moment

matching a straightforward modification of the proof of [68, Theorem 23] yields much finer error estimates up

to any polynomial order in 1/n which can be used to offset the anisotropic loss of our test function f . The same

conclusion also holds if the moments do not exactly match, but they differ only up to an order n−γ .
3Following our proof we may obtain an effective control on the probability in (2.4) of order O(C−τ

n + n−τ )
for some fixed τ > 0.
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COROLLARY 2.4. Let u(t) be the solution to (1.2) with deterministic initial condition

u(0) and with coupling constant g = gn. Then for any sequence Cn → ∞, the following

statements hold with probability tending to one as n→∞:

(i) If g ≤ 1−
√γn

4n − Cn√
4nγn

, then

lim sup
t→∞

maxi |ui(t)|
maxi |ui(0)|

= 0.

(ii) If g ≥ 1−
√γn

4n + Cn√
4nγn

, then

lim sup
t→∞

maxi |ui(t)|
maxi |ui(0)|

=∞.

This corollary shows that to prevent the decay or blow-up of the solution for arbitrary

long time, i.e. to remain in the so-called stable regime in many applications, it is necessary

to fine tune the coupling constant very accurately. Our main theorem can also be used for

sufficient conditions for stability up to a certain time scale of order
√

4n/γn but we refrain

from formalizing such statement. We note that the maximum norm on u and the deterministic

initial condition indicate that we considered the worst-case scenario. As we mentioned in the

introduction, the problem with random initial data and measuring stability in ℓ2-sense has

been investigated earlier and gives a somewhat different optimal tuning for g.

REMARK 2.5. Theorem 2.3 implies that the sequence of random variables

Gn :=
√

4nγn

[
max
i∈J1,nK

Reσi − 1−
√
γn
4n

]

is tight, hence it has subsequential limits by Prokhorov’s theorem. The limit is conjectured

to be unique and to be the standard Gumbel distribution with distribution function F (x) =
exp(−e−x) in the complex case and F (x) = exp(−1

2e
−x) in the real case. For the Ginibre

ensembles this conjecture was recently proven in [28].

2.2. Proof ingredients. First we recall two earlier results that locate maxi∈J1,nKReσi on

a cruder scale than our eventual target precision. The local circular law [18] implies that for

any fixed τ > 0 there is an eigenvalue in the rectangle

Ω0 :=

[
1− nτ√

n
, 1 +

nτ√
n

]
×
[
−n

τ/2

n1/4
,
nτ/2

n1/4

]
,(2.5)

with very high probability, using the curvature of the boundary. In particular, this shows that

typically maxJ1,nKReσi ≥ 1− n−1/2+τ . Furthermore, by [6, Theorem 2.1] we have a strong

concentration estimate for the spectral radius ρ(X) = maxi∈J1,nK |σi|:

(2.6) |ρ(X)− 1| ≤ nτ√
n

for any τ > 0, with very high probability. In particular, fixing a small τ > 0, (2.5) and (2.6)

imply that the rightmost eigenvalue is located in Ω0, see Fig. 2.

Next we will show that with vanishing probability,
∣∣∣∣ max
i∈J1,nK

Reσi − 1−
√
γn
4n

∣∣∣∣≥
Cn√
4nγn

,(2.7)
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Ω0
Ω1 Ω2

n
τ
/
2−

1
/
4

2C√
4γn

∼
nτ√
n

∼
nτ√
n

√

γ
4n

FIG 2. The figure shows the domains Ω0,Ω1,Ω2 . The set Ω1 is chosen such that the number of eigenvalues

therein are approximately Poisson-distributed with parameter 2 sinh(Cn) ∼ eCn , while in Ω2 no eigenvalues

are expected with high probability.

with γn from (2.3) and Cn being any sequenceCn →∞. To see this, we define the following

two sub-rectangles of Ω0 with the same height:

Ω1 :=

[
1 +

√
γn
4n

− Cn√
4nγn

, 1 +

√
γn
4n

+
Cn√
4nγn

]
×
[
−n

τ/2

n1/4
,
nτ/2

n1/4

]
,(2.8)

Ω2 :=

[
1 +

√
γn
4n

+
Cn√
4nγn

, 1 +
nτ√
n

]
×
[
−n

τ/2

n1/4
,
nτ/2

n1/4

]
,(2.9)

see Fig. 2. From now on without loss of generality we may assume 1≪Cn ≪ (logn)1/2.

To prove the upper bound in (2.7), it suffices to show that

P (#{σi ∈Ω2} ≥ 1)≤E[#{σi ∈Ω2}] = o(1),(2.10)

here by o(1) we denote a quantity that goes to zero as n→∞. To prove the matching lower

bound in (2.7), P (#{σi ∈Ω1}= 0) = o(1), we need not only the expectation bound

E[#{σi ∈Ω1}]≥ c0,(2.11)

for some n-independent constant c0 > 0, but also the concentration bound

E
∣∣#{σi ∈Ω1} −E[#{σi ∈Ω1}]

∣∣= o(1)E[#{σi ∈Ω1}].(2.12)

More precisely, using the Markov inequality in combination with (2.11) and (2.12), we get

P (#{σi ∈Ω1}= 0)≤P
(∣∣#{σi ∈Ω1} −E[#{σi ∈Ω1}]

∣∣≥ E[#{σi ∈Ω1}]
2

)
= o(1).

(2.13)

Now we have reduced the proof of (2.7) to proving the expectation bounds in (2.10),

(2.11) and the concentration bound in (2.12). Their proof consist of two main steps. We first

use the explicit formulae for the eigenvalue correlation functions of the Ginibre ensemble

to show that (2.10)-(2.12) hold true for the Gaussian case. In fact, we will need a slightly

modified version of these estimates where the counting functions are replaced by a smooth

test functions supported on the correspondingΩ domains, see Lemma 3.1 below, whose proof
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is an easy consequence of our estimates on the Ginibre correlation kernel from [28]. In the

second step we then use the Green function comparison theorem (GFT) to extend the above

estimates to general i.i.d. matrices. In the rest of this section we now introduce some tools

for this second step and explain the strategy.

To perform a GFT analysis we rely on Girko’s Hermitization formula [43] in the form

introduced by Tao and Vu [68]:

n∑

i=1

f(σi) =− 1

4π

∫

C

∆f(z)

∫ T

0
ImTrGz(iη)dη d2z +

1

4π

∫

C

∆f(z) log |det(Hz − iT )|d2z,

(2.14)

for any T > 0 and for any compactly supported smooth test function f ∈ C2
c (C). Here we

recall the definition of the 2n× 2n Hermitian matrix Hz and its resolvent Gz from (1.6):

Hz :=

(
0 X − z

X∗ − z 0

)
, Gz(w) := (Hz −w)−1, w ∈C \R, z ∈C.(2.15)

The 2× 2 block structure of Hz induces a symmetric spectrum around zero, i.e. the eigen-

values of Hz are {λz±i}i∈J1,nK (labelled in a non-decreasing order) with λz−i = −λzi for

i ∈ J1, nK. Note that {λzi }i∈J1,nK exactly coincide with the singular values of X − z. As a

consequence of the spectral symmetry of Hz , we find that

Gz
vv(iη) = i ImGz

vv(iη), ImGz
vv(iη)> 0, v ∈ [2n], η > 0.

Our fundamental input, the local law for Gz stated below in Theorem 2.6, asserts that as

n→∞ the resolvent Gz becomes approximately deterministic. Its deterministic approxima-

tion is given by

Mz(iη) =

(
mz(iη) mz(iη)
mz(iη) mz(iη)

)
,(2.16)

where mz is the unique solution of the scalar equation

− 1

mz(w)
=w+mz(w)− |z|2

w+mz(w)
, with Im[mz(w)]Imw > 0,(2.17)

and

m
z(iη) :=−zuz(iη), uz(iη) :=

Immz(iη)

η + Immz(iη)
.(2.18)

By taking the real part of (2.17) it readily follows that on the imaginary axis mz is purely

imaginary, hence mz(iη) = i Immz(iη) (which also implies that uz(iη) is real). In addition,

by [6, Lemma 3.3] we have that

Immz(iη)∼
{

η
|1−|z|2|+η2/3 , |z|> 1

η1/3 + |1− |z|2|1/2, |z| ≤ 1
, 0≤ η ≤ 1.(2.19)

With these notations we have the local law for the resolvent Gz on the imaginary axis:

THEOREM 2.6 ( Theorem 5.2 [6], Proposition 1 [23]). For any deterministic vectors

x,y ∈ C2n and matrix A ∈ C2n×2n, for any z with −Cn−1/2 . |z| − 1 ≤ n−1/2+τ and

n−1 ≤ η ≤ 1, we have

∣∣〈x, (Gz(iη)−Mz(iη))y〉
∣∣≺ ‖x‖‖y‖

( 1

n1/2η1/3
+

1

nη

)
,(2.20)

∣∣〈A
(
Gz(iη)−Mz(iη)

)〉∣∣≺ ‖A‖
nη

.(2.21)
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To apply Girko’s formula (2.14) for the proof of (2.10)-(2.12) we need to regularize

the indicator function on the corresponding Ω = Ω1,Ω2 domains, and we also split the η-

integration into two regimes which require different analysis. Hence, with some properly

chosen smooth cut-off function f (see (3.2)–(3.6) below), we have

#{σi ∈Ω} ≈
n∑

i=1

f(σi)≈− 1

4π

∫

C

∆f(z)

(∫ η0

0
+

∫ T

η0

)
ImTrGz(iη)dη d2z =: Iη0

0 + ITη0
,

(2.22)

with T := n100 and η0 is an intermediate cutoff level n−7/8−τ with the fixed τ > 0 from (2.5).

The small-η regime, Iη0

0 , and the large-η regime, ITη0
, are analysed separately.

For very small η, the local law (Theorem 2.6) does not effectively control the resolvent

Gz(iη) as it is dominated by the smallest (in modulus) eigenvalue λz1 of Hz (equivalently, λz1
is the smallest singular value of X − z). We need a separate lower tail estimate for it, which

is done again in two steps: first for Ginibre matrices and then we extend it to i.i.d. matrices

via GFT. Besides the level repulsion effect, this accurate estimate also contains an additional

small factor due to the fact that z is far outside of the unit disk, although this second effect is

needed only for the Ginibre ensemble in this paper.

We now state the precise lower tail result for the Ginibre ensemble. Its proof, which is

given in the appendix, relies on the explicit formula for the correlation functions of the eigen-

values of (X− z)∗(X − z) from [13], or, alternatively, on the supersymmetric representation

of its resolvent from [22]. In the sequel we denote by PGin, EGin and V arGin the corre-

sponding probability, expectation and variance.

PROPOSITION 2.7. Fix δ := |z|2 − 1 with n−1/2 ≪ δ ≪ 1 and let λz1 be the smallest

singular value of X − z, where X is a complex Ginibre matrix. Then there exists a constant

C > 0, independent of n and δ, such that for any y ≤ C/(nδ2) we have the following lower

tail bound

(2.23) PGin
(
λz1 ≤ yδ3/2

)
. y2(nδ2)4/3e−nδ2(1+O(δ))/2.

Recall that 1
π Immz(x+ i0), the self-consistent density of states of Hz , has a gap of size

4δ3/27 close to 0 justifying the δ3/2 scaling in (2.23) (see the paragraph below [22, Eq.

(18a)], we remark that in [22] we defined δ with the opposite sign).

2.3. Sketch of the proof of (2.10)-(2.12). Having introduced the necessary ingredients,

we briefly summarize the strategy to prove (2.10)-(2.12) for i.i.d. matrices. These steps will

be outlined more precisely in Section 3 after the necessary cutoff functions are introduced.

The exponential factor in (2.23), obtained for |z|> 1 away from the boundary, ensures that

with our choice η0 ≪ n−7/8, EGin
∣∣Iη0

0

∣∣2 is negligible, which implies that the main contribu-

tion to both the expectation and the variance of (2.22) comes from the large-η regime, ITη0
, at

least for the Ginibre matrices. Next we will use GFT arguments to extend these Ginibre esti-

mates to generic i.i.d. matrices. We first show that E |Iη0

0 | is negligible also for i.i.d. matrices

using the bound on the resolvent for Ginibre ensemble implied by Proposition 2.7 together

with a GFT argument. Then we will consider the large-η regime and use another GFT to

show that E[ITη0
] and V ar[ITη0

] have the same bound as their Ginibre counterparts (modulo a

negligible error). Finally, we need a bound on V arGin[ITη0
], which is not accessible directly,

but can be deduced indirectly from V arGin(Iη0

0 + ITη0
) ≈ V arGin(#{σi ∈ Ω}) and using

that EGin
∣∣Iη0

0

∣∣2 is negligible.
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2.4. Comments on the real symmetry class. We stated and proved our main result only

for the complex case; the proof for the real case would require two changes. First, the precise

form of the cumulant expansions behind the GFT arguments slightly depends on the symme-

try class: the real case yields some extra terms that can be treated routinely (see e.g. [24, 64]

for an analogous extension). Second, we prove the lower tail bound in Proposition 2.7 only

for the complex case since our detailed proof relies on the formula from [13] that has no

analogue for the real case. The alternative supersymmetric method has both complex and

real versions, the latter being considerably more involved. For the sake of brevity, we show

how the complex version can also be used to prove Proposition 2.7 and we omit the more

cumbersome details of the real case, however we have no doubt that this analysis is feasible

based upon our experience from [22, 26]. Precise tail bounds in both symmetry classes for

the |z| ≤ 1 + O(n−1/2) regime have already been proven in [22, Corollary 2.4] (see also

[26, 27]). In the real case the factor y2 in (2.23) is replaced with (y2 + y exp (−n
2 (Im z)2)

indicating a weaker level repulsion near the real axis. This weaker estimate however does not

affect the usage of Proposition 2.7 in the main body of our proof since it is effective only for

a small regime of the z parameter.

The rest of the paper is organized as follows. In Section 3, we prove our main theorem

using the GFTs for the two different η regimes as an input. Next, we prove the GFT used for

the small-η integral, i.e. Proposition 3.6 in Section 4, and then in Section 5 we present the

proof of Proposition 3.8 used for the large-η integral.

3. Proof of Theorem 2.3. To use Girko’s formula for proving (2.10)-(2.12), we need to

first regularize the indicator functions. For the domains Ωk, k = 1,2, given in (2.8) and (2.9),

we may choose two smooth cut-off functions f−k and f+k which are supported on a slightly

smaller domain Ω−
k ⊂Ωk and a slightly larger domain Ω+

k ⊃Ωk respectively, such that

n∑

i=1

f−k (σi)≤#{σi ∈Ωk} ≤
n∑

i=1

f+k (σi), k = 1,2.(3.1)

In fact, for k = 1 we will only need the lower bound, while for k = 2 we need only the upper

bound, so we will define only f−1 and f+2 , the other two cut-off functions are not used in our

proof.

More precisely, for the domain Ω1 given in (2.8), we choose the lower bound cut-off

function

f−1 (z) := g−1 (x)h
−
1 (y), z = x+ iy ∈C,(3.2)

where g−1 (x) ∈ [0,1] and h−1 (y) ∈ [0,1] are smooth functions given by

g−1 (x) =

{
1, |x−L| ≤ 4ln/5,

0, |x−L| ≥ ln,
, h−1 (y) =

{
1, |y| ≤ 4hn/5,

0, |y| ≥ hn.
(3.3)

Here, we used the shorthand notations

L := 1+

√
γn
4n
, ln :=

Cn√
4nγn

, hn := n−1/4+τ/2,(3.4)

with 1≪Cn ≪
√
logn. Additionally, g−1 , h−1 are defined so that their second derivatives can

be bounded by

‖(g−1 )′′‖1 . l−1
n , ‖(h−1 )′′‖1 . h−1

n .(3.5)
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For the spectral domain Ω2 given in (2.10), we similarly choose f+2 (x+ iy) := g+2 (x)h
+
2 (y)

where g+2 is supported on the regime enlarging the x-domain of Ω2 by ln/5 and h+2 is sup-

ported on the regime enlarging the y-domain of Ω2 by hn/5 (c.f., (3.3)), such that

‖(g+2 )′′‖1 . l−1
n , ‖(h+2 )′′‖1 . h−1

n .(3.6)

We are now ready to present the proof of our main result.

PROOF OF THEOREM 2.3. With the cut-off functions f−1 and f+2 as above we have (3.1)

and from (3.5) and (3.6), we also have

‖∆f−1 ‖1, ‖∆f+2 ‖1 .
hn
ln

. n
1

4
+ τ

2

√
logn.(3.7)

We will show the following results in expectation

E
[ n∑

i=1

f+2 (σi)
]
= o(1); E

[ n∑

i=1

f−1 (σi)
]
≥ c0,(3.8)

for some constant c0 > 0, and the concentration result

E

∣∣∣
n∑

i=1

f−1 (σi)−E
[ n∑

i=1

f−1 (σi)
]∣∣∣= o(1)

(
E
[ n∑

i=1

f−1 (σi)
])
.(3.9)

These two key results easily imply Theorem 2.3. More precisely, combining the second in-

equality in (3.1) for k = 2 with the first estimate in (3.8), we have

P (#{σi ∈Ω2} ≥ 1)≤P
( n∑

i=1

f+2 (σi)≥ 1
)
≤E

[ n∑

i=1

f+2 (σi)
]
= o(1).(3.10)

Moreover, using the first inequality in (3.1) for k = 1, the Markov inequality in combination

with (3.8) and (3.9), we have

P (#{σi ∈Ω1}= 0)≤P
( n∑

i=1

f−1 (σi) = 0
)

≤P



∣∣∣∣∣

n∑

i=1

f−1 (σi)−E
[ n∑

i=1

f−1 (σi)
]∣∣∣∣∣≥

E
[∑n

i=1 f
−
1 (σi)

]

2


= o(1).(3.11)

This shows that the key bounds (3.8) and (3.9) are indeed sufficient for the proof of Theo-

rem 2.3.

The first step to prove these key bounds is to use the explicit formula for the eigenvalue

correlation functions of the complex Ginibre ensemble to show that (3.8) and (3.9) hold true

for the Gaussian case.

LEMMA 3.1. For the complex Ginibre ensemble, we have

EGin
[ n∑

i=1

f+2 (σi)
]
. e−4Cn/5; EGin

[ n∑

i=1

f−1 (σi)
]
& sinh(4Cn/5),(3.12)

with any Cn ≪√
logn and

V arGin
[ n∑

i=1

f−1 (σi)
]
. e−2Cn/5

(
EGin

[ n∑

i=1

f−1 (σi)
])2

.(3.13)
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The proof of Lemma 3.1 is given in Section 3.4. The next step is to extend this lemma to

generic i.i.d. matrices. From now on, we use f to denote either of the smooth cut-off functions

f−1 , f
+
2 for simplicity of notation. Lacking explicit formula for eigenvalue correlations for

i.i.d. matrices, we first link the linear statistics in Lemma 3.1 to the Green function of Hz

using Girko’s formula in (2.14). Choosing T sufficiently large, e.g. T = n100, we next show

that the last term in (2.14) is very small with very high probability. Note that

log |det(Hz − iT )|=2n logT +
∑

j

log

(
1 +

(λzj
T

)2)
= 2n logT +O

(
Tr(Hz)2

T 2

)

=2n logT +O≺

(
n2

T 2

)
,(3.14)

where we used that |xij | ≺ n−1/2 from (2.1). Using the L1 norm of ∆f in (3.7), we have
∣∣∣ 1
4π

∫

C

∆f(z) log |det(Hz − iT )|d2z
∣∣∣=O≺(n

−100).(3.15)

Therefore, we have
n∑

i=1

f(σi) =− 1

4π

∫

C

∆f(z)
(∫ η0

0
+

∫ T

η0

)
ImTrGz(iη)dη d2z +O≺(n

−100)

=: Iη0

0 (f) + ITη0
(f) +O≺(n

−100),(3.16)

where we split the η integral into the two parts at the truncation level η0 := n−7/8−τ , where

τ > 0 is the fixed small number from (2.5). Then the proof of (3.8) and (3.9) is reduced to

studying Iη0

0 (f) and ITη0
(f) respectively. The idea is to first estimate Iη0

0 (f) and ITη0
(f) for

the Ginibre ensemble and then extend these estimates to i.i.d. matrices using GFT arguments

respectively.

Next we outline the three main steps of the rest of the proof, the precise details will be

given in the following three subsections, respectively.

Step 1. For the Ginibre ensemble, we use the explicit lower tail bound for the smallest eigen-

value λzi in Proposition 2.7 to show that (see Lemma 3.4 below)

(3.17) EGin
[∣∣Iη0

0 (f)
∣∣2
]
= o(1), f = f−1 or f+2 .

Combining this with Lemma 3.1, we have

EGin[ITη0
(f+2 )] = o(1), EGin[ITη0

(f−1 )]≥ c,(3.18)

for some constant c > 0, and

EGin
(
ITη0

(f−1 )−EGin[ITη0
(f−1 )]

)2
= o(1)

(
EGin[ITη0

(f−1 )]
)2
.(3.19)

Step 2. We next use a GFT argument (see Proposition 3.7 below) together with the corre-

sponding estimate of the resolvent (see Lemma 3.2 below) for the Ginibre ensemble to

show

E |Iη0

0 (f)|= o(1), f = f−1 or f+2 .(3.20)

This directly implies that

E
[ n∑

i=1

f(σi)
]
=E[ITη0

(f)] + o(1),

E

∣∣∣∣∣
n∑

i=1

f(σi)−E
[ n∑

i=1

f(σi)
]∣∣∣∣∣=E

∣∣ITη0
(f)−E[ITη0

(f)]
∣∣+ o(1).(3.21)
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Step 3. For the large–η integral ITη0
, we use another GFT argument (see Proposition 3.8 be-

low) to extend the corresponding Ginibre estimates (3.18)–(3.19) obtained in Step 1 to

i.i.d. matrices, i.e.,

E
[
ITη0

(f+2 )
]
= o(1); E

[
ITη0

(f−1 )
]
≥ c,

E

∣∣∣ITη0
(f−1 )−E

[
ITη0

(f−1 )
]∣∣∣

2
= o(1)

(
E
[
ITη0

(f−1 )
])2

.(3.22)

The variance bound (3.22) directly implies

E
∣∣ITη0

(f−1 )−E[ITη0
(f−1 )]

∣∣= o(1)
∣∣E[ITη0

(f−1 )]
∣∣.

Combining this with (3.21) for f = f−1 , we proved the concentration estimate in (3.9). It is

also straightforward to prove the expectation estimates in (3.8) using the first line of (3.21)

and the corresponding expectation estimates in (3.22). Hence we completed the proof of

Theorem 2.3.

Notice that our strategy follows a somewhat unconventional indirect route. Typical proofs

based upon the Green function comparison method assume that all necessary information is

available for the Gaussian model. This does not quite hold in our case; Step 1 above is not

a purely explicit calculation. While the statistics of the eigenvalues of the Ginibre ensemble

are fully available via explicit formulas in both symmetry classes, less is known about the

eigenvalues ofHz . For a fixed z, their correlation functions are known, at least in the complex

case, but no explicit formula is available for their statistics for different z’s. Note that the

variance of ITη0
(f) in Step 1 involves the correlation between eigenvalues of Hz and Hz′

for

two different z, z′ and the necessary estimate requires this correlation to decay when z − z′

are far away. While it is plausible that the local spectral statistics of Hz and Hz′

, especially

their lowest eigenvalues, are independent whenever |z − z′| ≫ n−1/2, this has only been

shown [24, 25] in the regime of their typical behavior; now we would need such information

in the atypical lower tail regime. Lacking such decorrelation bound, the variance of ITη0
(f) is

controlled indirectly as

V arGin(ITη0
(f))≈ V arGin

(
Iη0

0 (f) + ITη0
(f)
)
,

as long as V arGin(Iη0

0 (f))≪ V arGin
(
Iη0

0 (f) + ITη0
(f)
)
. Using (3.16), the explicit Gini-

bre eigenvalue statistics gives the control for V arGin
(
Iη0

0 (f) + ITη0
(f)
)
. We cannot control

V arGin(Iη0

0 (f)) optimally, but we chose the threshold η0 sufficiently small that this variance

is negligible by (3.17) and thus no effective decorrelation estimate is necessary.

We now explain in details how Steps 1-3 are proven.

3.1. Ginibre estimate for Iη0

0 (f) and ITη0
(f). Using the explicit lower tail estimate of the

smallest eigenvalue of Hz in Proposition 2.7 with X being the complex Ginibre ensemble,

we obtain the following improved estimate:

LEMMA 3.2. Fix δ = |z|2−1 with n−1/2 ≪ δ≪ 1. Then for any η ≤C/(nδ1/2), it holds

EGin
[
Im〈Gz(iη)〉

]
.
η

δ
+ n1+ξηδ,

EGin
[(

Im〈Gz(iη)〉
)2]

.
nξ

n2/3δ1/3
e−nδ2(1+O(δ))/2 +

η2

δ2
+ n2+ξη2δ2,(3.23)

where ξ > 0 is an arbitrary small constant.
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REMARK 3.3. The exponential factor in (2.23) for the smallest eigenvalue λz1 does not

manifest in the first moment estimate on the resolvent since the main contribution comes from

larger eigenvalues. For the second moment, however, the lowest eigenvalue plays the leading

role.

The proof of Lemma 3.2 will be given in Section 3.4. Therefore from Lemma 3.2, for any

z ∈ supp(f−1 )∪ supp(f+2 ) and η ≤ n−3/4−ǫ, we have

EGin
[
Im〈Gz(iη)〉

]
. nξ

√
nη, EGin

[(
Im〈Gz(iη)〉

)2]
. nξ

(
nη2 + n−3/4

)
.(3.24)

Thus we can prove that Iη0

0 (f) is negligible in the second moment sense:

LEMMA 3.4. With η0 = n−7/8−τ and f = f−1 or f+2 , we have

EGin |Iη0

0 (f)|2 =O≺(n
−τ/2).(3.25)

The proof of Lemma 3.4 is given in Section 3.4. Combining Lemma 3.4 with Lemma 3.1

and (3.16), we have proved (3.18) and (3.19).

Next, we will use the Green function comparison to extend these Ginibre estimates to

generic i.i.d. matrices satisfying Assumption 2.1.

3.2. Green function comparison for Iη0

0 (f). In this part, we will show that Iη0

0 (f) is

negligible in the first absolute moment for generic i.i.d. matrices.

LEMMA 3.5. With η0 = n−7/8−τ , for any f = f−1 or f+2 , we have

E |Iη0

0 (f)|=E

∣∣∣ n
4π

∫

C

∆f(z)

∫ η0

0
Im〈Gz(iη)〉dη d2z

∣∣∣=O(n−τ ).(3.26)

We will postpone the proof of Lemma 3.5 to Section 3.4. The proof of Lemma 3.5 crucially

relies on the following improved estimate of the resolvent at the intermediate level η = η0
using the monotonicity of ImTrG(iη).

PROPOSITION 3.6. Let X be an i.i.d. complex matrix satisfying Assumption 2.1. For any

small ǫ > 0, then for any n−1+ǫ ≤ η ≤ n−3/4−ǫ and −Cn−1/2 . |z|− 1≤ n−1/2+τ , we have

E
[
Im〈Gz(iη)〉

]
≺ n1/2η+

1

n5/2η2
+

1

n5η5
+ n−1.(3.27)

Proposition 3.6 is a direct result of the Ginibre estimate in Lemma 3.2 and the following

Green function comparison which will be proved in Section 4.

PROPOSITION 3.7. For any small ǫ > 0, for any n−1+ǫ ≤ η ≤ n−3/4−ǫ and −Cn−1/2 .
|z| − 1≤ n−1/2+τ , we have

∣∣E[〈Gz(iη)]−EGin[〈Gz(iη)]
]
≺ 1

n5/2η2
+

1

n5η5
+ n−1.(3.28)

Therefore, combining Lemma 3.5 with (3.16), for any f = f−1 or f+2 , we proved (3.21) in

the effective form

E
[ n∑

i=1

f(σi)
]
=E[ITη0

(f)] +O(n−τ ),

E

∣∣∣∣∣
n∑

i=1

f(σi)−E
[ n∑

i=1

f(σi)
]∣∣∣∣∣=E

∣∣ITη0
(f)−E[ITη0

(f)]
∣∣+O(n−τ ).(3.29)
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Hence to prove the target estimates in (3.8) and (3.9), it suffices to study ITη0
(f).

3.3. Green function comparison for ITη0
(f). In this part, we will extend the estimates of

ITη0
(f) in (3.18) and (3.19) from Gaussian matrices to generic i.i.d. matrices. It then suffices to

establish the following Green function comparison for ITη0
(f), whose proof will be presented

in Section 5.

PROPOSITION 3.8. For any f = f−1 or f+2 , there exist some constants c1, c2 > 0 such

that ∣∣∣E[ITη0
(f)]−EGin[ITη0

(f)]
∣∣∣=O(n−c1),(3.30)

and ∣∣∣E
(
ITη0

(f)−E[ITη0
(f)]

)2 −EGin
(
ITη0

(f)−EGin[ITη0
(f)]

)2∣∣∣=O(n−c2).(3.31)

Combining the Ginibre estimates (3.18)–(3.19) with the GFT estimates (3.30)–(3.31), we

obtain the second line of (3.22)

E
(
ITη0

(f−1 )−E[ITη0
(f−1 )]

)2
= o(1)

(
E[ITη0

(f−1 )]+O(n−c1)
)2
+O(n−c2) = o(1)

(
E[ITη0

(f−1 )]
)2
.

The first line of (3.22) is obtained similarly.

3.4. Proof of some lemmas. We now give the proofs of Lemmas 3.1, 3.2, 3.4 and 3.5.

PROOF OF LEMMA 3.1. We first recall that the expectation and variance of the linear

statistics of a general test function f can be expressed as

EGin
∑

i

f(σi) =

∫
f(z)K̃n(z, z)d

2z

V arGin
∑

i

f(σi) =

∫
f(z)2K̃n(z, z)d

2z −
∫∫

f(z)f(w)
∣∣K̃n(z,w)

∣∣2 d2z d2w
(3.32)

in terms of the kernel K̃n(z,w) from [28]. Using the kernel asymptotics from [28, Lemma

6] we obtain

∫ L+t/
√
4γn

L−t/
√
4γn

∫ s/(γn)1/4

−s/(γn)1/4
K̃n(z, z)d Imz dRez = 2erf(s) sinh(t)

(
1 +O

( log logn+ t2 + s4

logn

))
(3.33)

for |t|+ s2 ≤
√
logn/10, while for any t > 0 we have the bounds

∫ L+t/
√
4γn

L−t/
√
4γn

(∫ √
2t/(γn)1/4

−∞
+

∫ ∞

√
2t/(γn)1/4

)
K̃n(z, z)d Imz dRez . e−t/4

∫ ∞

L+t/
√
4γn

∫

R

K̃n(z, z)d Imz dRez . e−t/4.

(3.34)

From (3.32)–(3.34) we immediately conclude

(3.35) EGin
∑

i

f−1 (σi)& sinh
(4Cn

5

)
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and

V arGin
∑

i

f−1 (σi)≤
∫
f(z)2K̃n(z, z)d

2z . sinh
(6Cn

5

)
(3.36)

recalling that Cn ≪√
logn, proving (3.13). Finally, the first bound in (3.12) follows directly

from (3.34).

PROOF OF LEMMA 3.2. We reformulate (2.23) as follows: for any η ≤ η̃ :=C/(nδ1/2),

PGin (λz1 ≤ η).
n4/3η2

δ1/3
e−nδ2(1+O(δ))/2.(3.37)

Using spectral decomposition of Hz and the spectrum symmetry, we write

EGin[Im〈Gz(iη)〉] = 1

n

K0∑

k=0

EGin
[ ∑

3kη≤λi<3k+1η

η

(λzi )
2 + η2

]
+

1

n
EGin

[ ∑

λz
i≥η̃

η

(λzi )
2 + η2

]

.
nξ

n

K0∑

k=0

1

32kη+ η
PGin

(
λz1 ≤ 3k+1η

)
+

1

n
EGin

[ ∑

λz
i≥η̃

η

(λzi )
2 + η2

]
,(3.38)

with K0 = ⌈log3(η̃/η)⌉ = O(logn), where we used the rigidity of eigenvalues and ξ > 0 is

an arbitrary small number. The second term in (3.38) can be bounded effectively using the

local law in (2.21) and (2.19), i.e.,

1

n
EGin

[ ∑

λz
i≥η̃

η

(λzi )
2 + η2

]
=
η

η̃
EGin

[ η̃
n

∑

λj≥η̃

1

λ2j + η̃2

]
.
η

η̃
EGin[Im〈Gz(iη̃)〉]. η

δ
+ n1+ξηδ,

(3.39)

where ξ > 0 is an arbitary small number. Using (3.37), the first term in (3.38) can be bounded

by

nξ

n

K0∑

k=0

1

32kη+ η
PGin

(
λz1 ≤ 3k+1η

)
.
nξ

n

K0∑

k=0

1

(32k +1)η

32k+2n4/3η2

δ1/3
. nξ logn

n1/3η

δ1/3
.

Note that we did not use the exponential factor in (3.37) yet since this bound is already much

smaller compared to the second term estimate in (3.39) for δ≫ n−1/2. Therefore, we finished

the proof of the first moment estimate in (3.23).

Similarly, for the second moments, we have

EGin[(Im〈Gz(iη)〉)2] = 1

n2
EGin

[( K0∑

k=0

∑

3kη≤λz
i<3k+1η

η

(λzi )
2 + η2

+
∑

λz
i≥η̃

η

(λzi )
2 + η2

)2]

. logn
nξ

n2

K0∑

k=0

1

(32k +1)2η2
PGin

(
λz1 ≤ 3k+1η

)
+
η2

n2
EGin

[(∑

i

1

(λzi )
2 + η̃2

)2]

. logn
nξ

n2/3δ1/3
e−nδ2(1+O(δ))/2 +

η2

δ2
+ n2+ξη2δ2,(3.40)

with ξ > 0 being any arbitary small number, where we used the tail bound in (3.37) and the

local law in (2.21). This finishes the proof of Lemma 3.2.

Using Lemma 3.2, we will prove Lemma 3.4 and 3.5. Since the proof of these two lemmas

is similar, we present only the detailed proof of Lemma 3.5.
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PROOF OF LEMMAS 3.4 AND 3.5. We start with showing that the regime η ∈ [0, n−l],
for some very large l > 0 is negligible, exactly as it was done in [6]. By a direct computation,

∫ n−l

0
ImTrG(iη)dη =

1

2

( ∑

|λi|.n−l

+
∑

|λi|&n−l

)
log
(
1 +

n−2l

λ2i

)
.

The second sum can easily be estimated using Lemma 3.2 or Proposition 3.6, i.e.,

E
[ ∑

|λi|&n−l

log
(
1 +

n−2l

λ2i

)]
.(logn)E |{i : |λi| ≤ η1}|+

n1−2l

η21
. n−1/4−100τ + n−2l+3,

where we chose η1 := n−7/8−100τ . To estimate the first sum, we recall [6, Proposition 5.7],

i.e., under the density condition (2.2), there exists Cα > 0 such that

P

(
n

min
i=−n

|λzi | ≤
u

n

)
≤Cαu

2α

1+αnβ+1, z ∈C, u > 0,(3.41)

with α,β given in (2.2). Then following [6][Eq. (5.34)-(5.35)], we have

E
[ ∑

|λi|.n−l

log
(
1 +

n−2l

λ2i

)]
. nE

[
| logλz1|1λ1.n−l

]
. n−10,

with l large enough depending on α,β. Combining this bound with the L1-norm of ∆f in

(3.7), we conclude that the very tiny regime η ∈ [0, n−l] is negligible.

Hence, it is enough to estimate the contribution to Iη0

0 (f) of the remaining η-integral over

[n−l, η0]. Using that η→ η ImTrGz(iη) is increasing in η ≥ 0, we have

∣∣∣
∫

C

∆f(z)E
[∫ η0

n−l

ImTrGz(iη)dη
]
d2z
∣∣∣≤
∫

C

|∆f(z)|
∫ η0

n−l

η0
η
E
[
ImTrGz(iη0)

]
dη d2z

≤C(logn)nη0

∫

C

|∆f(z)|E
[
Im〈Gz(iη0)〉

]
d2z.(3.42)

Using the estimate in (3.27) with η0 = n−7/8−τ i.e.,

E[Im〈Gz(iη0)〉]≺ n1/2η0 + n−5/8+5τ . n−3/8−τ ,(3.43)

together with the L1 norm of ∆f in (3.7), by (3.42) we obtain that

∣∣∣
∫

C

∆f(z)E
[∫ η0

n−l

ImTrGz(iη)dη
]
d2z
∣∣∣=O(n−τ ).(3.44)

We hence finish the proof of Lemma 3.5. Lemma 3.4 can be proven similarly using the second

estimate in (3.24).

4. Green function comparison for resolvents: Proof of Proposition 3.7. Before start-

ing with the proof of Proposition 3.7 we introduce some notations which we will use through-

out this section.

NOTATION 4.1. We use lower case letters to denote the indices taking values in J1, nK
and upper case letters to denote the indices taking values in Jn+ 1,2nK. We also use calli-

graphic letters u,v to denote the indices ranging fully from 1 to 2n.

For any index v ∈ J1,2nK, the conjugate of v, denoted by conj(v), is given by conj(v) ∈
J1,2nK and it is such that |conj(v)− v|= n. In particular, for an index a ∈ J1, nK, we define
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its index conjugate conj(a) = ā := a+n, and for an indexB ∈ Jn+1,2nK we define its index

conjugate conj(B) = B := B − n. With a slight abuse of terminology, we say two indices

coincide if either they are equal or one is equal to the conjugate of the other one. For instance,

we say a ∈ J1, nK coincides with the indexB ∈ Jn+1,2nK if a=B (or equivalentlyB = ā).

We also say that a collection of indices are distinct if there is no index coincidence among

them (in the sense explained above).

Moreover, we often use generic letters x and y to denote the (first) row and the (second)

column index of a Green function entry. In this context the lower case letters x, y do not

indicate that they take values in J1, nK. We say that a Green function entry Gxy is diagonal if

x= y or x= conj(y); otherwise we say that Gxy is off-diagonal.

We now explain this terminology with an example:

1

n2

n∑

a=1

2n∑

B=n+1

GaBGBā =
1

n2

n∑

a=1

∑

B 6=ā

GaBGBā +
1

n2

n∑

a=1

GaāGāā,(4.1)

where we split the summation into two parts: 1) the two summation indices a and B are

distinct; 2) there is an index coincidence B = ā (or equivalently a = B) in the summation.

In the first term the two Green function entries are off-diagonal, while in the second term the

two Green function entries are diagonal.

We prove Proposition 3.7 via a continuous interpolating flow. Given the initial ensemble

Hz in (2.15), we consider the matrix flow

dHz
t =−1

2
(Hz

t +Z)dt+
1√
n
dBt, Z =

(
0 zI
zI 0

)
, Bt =

(
0 Bt

B∗
t 0

)
(4.2)

where Bt is an n × n matrix with independent standard complex valued Brownian motion

entries. The matrix flow Hz
t interpolates between the initial matrix Hz in (2.15) and an

independent matrix as in (2.15) with X being replaced with an independent complex Ginibre

ensemble.

The Green function of the time dependent matrix Hz
t is denoted by Gz

t . Since the flow

in (4.2) is stochastically Hölder continuous in time, the local law for the Green function in

Theorem 2.6 also holds true for the time dependent Green function Gz
t simultaneously for

all t≥ 0 by a grid argument, together with the Hölder regularity of Gz
t for 0≤ t≤ n100 and

a simple perturbation argument for t ≥ n100. More precisely for n−1+ǫ ≤ η ≤ n−3/4−ǫ and

−Cn−1/2 . |z| − 1≤ n−1/2+τ , it holds uniformly

sup
t≥0

max
1≤v,u≤2n

{∣∣(Gz
t (iη)

)
uv

−mzδv=u −m
zδ|v−u|=n

∣∣
}
≺Ψ :=

1

nη
,(4.3)

where mz , mz are given in (2.18) and (2.19), and they are such that

mz ≡mz(iη) =O(Ψ), m
z ≡m

z(iη) =O(1).(4.4)

Note that in our range of parameters, the small deterministic term mzδv=u may be included

in the error in (4.3). We remark that the diagonal Green function entry Guu as well as the

off-diagonal Green function entries are bounded by Ψ with very high probability, while the

other kind of diagonal Green function entry G
u,conj(u) can only be bounded by 1 with very

high probability.

In the following, we often drop the dependence on t and η and set Gz ≡ Gz
t (iη) for no-

tational simiplicity. Without specfic mentioning, all the estimates in this section hold true

uniformly for any −Cn−1/2 . |z| − 1≤ n−1/2+τ , n−1+ǫ ≤ η ≤ n−3/4−ǫ and t≥ 0.
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PROOF OF PROPOSITION 3.7. In order to prove Proposition 3.7, it suffices to show the

following estimate on the time derivative of 〈Gz
t (iη)〉:

LEMMA 4.2. For any n−1+ǫ ≤ η ≤ n−3/4−ǫ, −Cn−1/2 . |z| − 1≤ n−1/2+τ and t≥ 0,

it holds ∣∣∣∣
d

dt
E[〈Gz

t (iη)〉]
∣∣∣∣=O≺(n

−1/2Ψ2 +Ψ5 + n−1).(4.5)

Integrating (4.5) over t ∈ [0, t0] with t0 = 100 logn we obtain
∣∣E[〈Gz

0(iη)〉]−E[〈Gz
t0(iη)〉]

∣∣ =O≺
(
logn(n−1/2Ψ2 +Ψ5 + n−1)

)
.(4.6)

Note that Hz
t in (4.2) is given as in (2.15) with X being replaced with the time dependent

matrix

Xt
d
= e−

t

2X +
√

1− e−tGin(C), t≥ 0,

where X∞
d
=Gin(C) is the complex Ginibre ensemble which is independent of X . Then we

have

‖Gz
t0(iη)−Gz

∞(iη)‖ ≤ ‖Gz
t0‖‖Gz

∞‖‖Xt0 −X∞‖ ≺ n−48,(4.7)

where we used that ‖Gz(iη)‖ ≤ η−1 ≤ n and that |Xij | ≺ n−1/2 from the assumption in

(2.1). Combining (4.6) with (4.7) we conclude the proof of Proposition 3.7.

We now present the proof of Lemma 4.2.

4.1. Proof of Lemma 4.2. Recall the matrix flow in (4.2) with complex-valuedX , we set

W ≡Wt =Hz
t +Z =

(
0 Xt

X∗
t 0

)
.(4.8)

Then dHz
t =−1

2Wt dt+
1√
n
dBt. Applying Ito’s formula and setting ∂/∂waB = ∂/∂haB ,

we have

d〈Gz
t 〉=

∑

a,B

∂〈Gz
t 〉

∂haB
dhaB +

∑

a,B

∂〈Gz
t 〉

∂haB
dhaB

+
1

2

∑

a,B

∂2〈Gz
t 〉

∂haB∂haB
dhaB dhaB +

1

2

∑

a,B

∂2〈Gz
t 〉

∂haB∂haB
dhaB dhaB

=


−1

2

∑

a,B

waB
∂〈Gz

t 〉
∂waB

− 1

2

∑

a,B

waB
∂〈Gz

t 〉
∂waB

+
1

n

∑

a,B

∂2〈Gz
t 〉

∂waB∂waB


dt

+
1√
n

∑

a,B

∂〈Gz
t 〉

∂waB
d(Bt)aB +

1√
n

∑

a,B

∂〈Gz
t 〉

∂waB
d(Bt)aB .(4.9)

Note that the expectation of the martingale term on the last line of (4.9) vanishes. It then

suffices to study the expectation of the remaining terms. We note that

〈Gz〉= 1

n

n∑

v=1

Gz
vv =

1

n

2n∑

V=n+1

Gz
V V =

1

2n

2n∑

v=1

Gz
vv
,(4.10)
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which follows from the spectral symmetry induced by the 2× 2 block matrix in (2.15). Per-

forming the cumulant expansion formula on {waB} and {waB} on the right side of (4.9) (see

e.g. [45, Lemma 7.1]), we observe the precise cancellations of the second order terms, and

the summation below starts from the third order terms i.e., p+ q+ 1= 3,

d

dt
E[〈Gz

t 〉] =E
[d〈Gz

t 〉
dt

]
=− 1

2n

n∑

v,a=1

2n∑

B=n+1




K0∑

p+q+1=3

c
(p+1,q)
aB

p!q!n
p+q+1

2

E

[
∂p+q+1Gz

vv

∂wp+1
aB ∂waB

q

]


− 1

2n

n∑

v,a=1

2n∑

B=n+1




K0∑

p+q+1=3

c
(q,p+1)
aB

p!q!n
p+q+1

2

E

[
∂p+q+1Gz

vv

∂waB
p+1∂wq

aB

]
+O≺(n

−K0
2
+2),(4.11)

where c
(p,q)
aB are the (p, q)-cumulants of the normalized complex-valued entries

√
nwaB , with

c
(p,q)
aB = c

(q,p)
Ba from the complex symmetry, and we omit their dependence on t for simplicity.

The last error stems from truncating the cumulant expansions at a sufficiently large K0-th

order, say K0 = 100, using the local law in (4.3) and the finite moment condition in (2.1);

see also [23] for a similar truncation argument.

For simplicity we assume i.i.d. entries of X in the our model, thus the cumulants are

independent of the indices, c
(p,q)
aB = c(p,q). We next consider only the first line of (4.11), i.e.,

K0∑

p+q+1=3

Lz
p+1,q :=

K0∑

p+q+1=3

c(p+1,q)

2p!q!


 1

n
p+q+3

2

∑

v,a,B

E

[
∂p+q+1Gz

vv

∂wp+1
aB ∂waB

q

]
 ,(4.12)

and the second line of (4.11) is exactly the same as (4.12) by interchanging a with B.

Using the following differentiation rules for any 1≤ u,v≤ 2n

∂Gz
uv

∂waB
=−Gz

uaG
z
Bv
,

∂Gz
uv

∂waB
=−Gz

uBG
z
av,(4.13)

each term Lz
p+1,q in (4.12) can be written as a linear combination of products of p+ q + 2

Green function entries of the form

1

n
p+q+3

2

n∑

v=1

n∑

a=1

2n∑

B=n+1

E
[ p+q+2∏

i=1

Gz
xiyi

]
.(4.14)

Here xi, yi denote generic row and column indices of Gz , respectively, to which we assign

actual summation indices v, a,B, depending on the precise structure of the corresponding

term dictated by (4.12)–(4.13). The assignment will be denoted by the symbol ≡, e.g., xi ≡ a,

yi ≡B means that the generic factorGz
xiyi

is replaced with the actualGz
aB in (4.14). Note that

both lower and upper case summation indices can be assigned to the generic x, y indices. The

assignments that appear from (4.12)–(4.13) have the following properties: x1 ≡ v, yp+q+2 ≡
v, and all the other indices xi, yi ≡ either a or B such that

#{xi ≡ a}=#{yi ≡B}= q, #{xi ≡B}=#{yi ≡ a}= p+1.(4.15)

From the local law in (4.3) and (4.4), we have |Gz
aa|, |Gz

BB |, |Gz
aB |, |Gz

Ba| ≺Ψ unless a=B.

If we restrict to the summation when all the indices are distinct in (4.14) (i.e., a 6=B, v 6= a,

and v 6= B), then the product of p+ q + 2 Green function entries in (4.14) can be bounded

by Ψp+q+2. For the remaining summation when there is some index coincidence (e.g. a =
B), we gain a factor n−1 since the number of free summation indices is reduced by one.

Therefore, we obtain the following so-called naive estimate

|Lz
p+1,q| ≺ n−

p+q−3

2

(
Ψp+q+2 + n−1

)
.(4.16)
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Thus for any p+ q +1≥ 4, we have

|Lz
p+1,q| ≺Ψ5 + n−1.(4.17)

However the naive estimate in (4.16) for p+ q+1= 3 is not sufficiently fine to prove Lemma

4.2.

Next we focus on proving an improved estimate for these third order terms, i.e., proving
∑

p+q+1=3

|Lz
p+1,q|=O≺

(
n−1/2Ψ2 + n−1

)
.(4.18)

By direct computations, the third order terms Lz
p+1,q with p+ q + 1 = 3 in (4.12) are linear

combinations of the following terms
√
n

n3

∑

v,a,B

E[Gz
vaG

z
BBG

z
aaG

z
Bv ],

√
n

n3

∑

v,a,B

E[Gz
vaG

z
BaG

z
BaG

z
Bv ],

√
n

n3

∑

v,a,B

E[Gz
vaG

z
BBG

z
aBG

z
av ],

√
n

n3

∑

v,a,B

E[Gz
vBG

z
aBG

z
aaG

z
Bv ],(4.19)

as well as the other terms with the index a and B interchanged. As explained below (4.15),

we split the threefold summations in (4.19) into the following three cases (recall the concept

of coinciding and distinct indices from Notation 4.1):

1) all three summation indices coincide in the summation (i.e., v = a = B ): the resulting

sum in (4.19) can be bounded by O≺(n−3/2) using that |Guv| ≺ 1 from (4.3), which is

small enough to prove (4.18);

2) exactly two of the summation indices coincide (e.g., a=B 6= v or a= v 6=B): the result-

ing sum in (4.19) can be bounded by O≺(n−1/2Ψ2) using the local law in (4.3) and (4.4),

which is also sufficient to prove (4.18);

3) all three summation indices are distinct (i.e., a 6=B 6= v): using the local law in (4.3) and

(4.4) naively, the resulting term in (4.19) can be bounded by O≺(
√
nΨ4), which is how-

ever far from the truth. We observe from (4.19) that these third order terms have indices

a and B that both appear three times as a first and as a second index of a G-factor. A

somewhat more complicated version of this feature (see the concept of unmatched indices

in Definition 4.4 later) allows us to improve the bound on them.

Next, we will discuss in details for the third order terms from (4.19) in Case 3), i.e., with

the summation restriction of all indices different, a 6= B 6= v. We first introduce the shifted

version of the Green function

Ĝz :=Gz −Mz =O≺(Ψ), Mz =

(
mz

m
z

mz mz

)
,(4.20)

with mz and m
z given in (2.18). The shifted version Ĝz differs from Gz only for the diagonal

entries, i.e., Gxy = Ĝxy unless x = y or x = conj(y). Then the first term among the third

order terms in (4.19) with a 6=B 6= v can be written as (omitting the factor
√
n)

1

n3

∑

a6=B 6=v

E[Gz
vaG

z
BBG

z
aaG

z
Bv ] =

1

n3

∑

a6=B 6=v

E[Ĝz
vaĜ

z
BBĜ

z
aaĜ

z
Bv ] +

mz

n3

∑

a6=B 6=v

E[Ĝz
vaĜ

z
BBĜ

z
Bv ]

+
mz

n3

∑

a6=B 6=v

E[Ĝz
vaĜ

z
aaĜ

z
Bv ] +

(mz)2

n3

∑

a6=B 6=v

E[Ĝz
vaĜ

z
Bv ].(4.21)
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Note that the terms on the right side above are averaged products of shifted Green function

entries of the form defined in (4.23) below. Moreover, these terms are unmatched since the in-

dex a (orB) appears odd number times in the product of Green function entries which clearly

does not satisfy the match condition in (4.25); see Defintion 4.4 below. In fact, any term in

(4.19) with the restriction a 6= B 6= v can be written as a linear combination of unmatched

terms of the form in (4.23) as in (4.21) with a factor
√
n. Using Proposition 4.5 below in

combination with additional contributions from Case 1) and 2) with the index coincidences,

we have obtained the improved estimate for the third order terms in (4.18).

Combining (4.11), (4.17) and (4.18), we finish the proof of Lemma 4.2.

Before giving the formal definition of unmatched indices (and unmatched terms) to study

the third order terms in e.g., (4.21) from Case 3) systematically, we first set some notational

conventions.

For any fixed l1, l2 ∈N, we use Il1,l2 to denote a set of l1 lower case letters and l2 upper

case letters, e.g., the set may contain lower case letters a, v and upper case letter B as in

(4.21). In general, we may write Il1,l2 := {vj}l1j=1 ∪ {Vj}l2j=1. Each element in Il1,l2 will

represent a summation index and the font type of each letter indicates the range of the sum-

mation for that index; as before, the lower case letters vj run from 1 to n, and the upper case

letters Vj run from n+1 to 2n. We denote the sum over these l := l1+ l2 summation indices

(indicated by Il1,l2) by

∑

Il1,l2

=
∑

v1,···vl1 ,V1,··· ,Vl2

:=

n∑

v1=1

· · ·
n∑

vl1=1

2n∑

V1=n+1

· · ·
2n∑

Vl2=n+1

.

We also introduce a partial summation restricted to distinct indices,

∗∑

Il1,l2

:=
∑

v1,···vl1 ,V1,··· ,Vl2

( l1∏

j 6=j′

δvj 6=vj′

)( l2∏

j 6=j′

δVj 6=Vj′

)( l1∏

j=1

l2∏

j′=1

δvj 6=Vj′

)
,(4.22)

i.e., each summation index in Il1,l2 is different from all the other indices and their conjugates.

DEFINITION 4.3. Given l1, l2 ∈ N and a collection of lower and upper case summation

indices Il1,l2 = {vj}l1j=1∪{Vj}l2j=1, we consider a product of d generic shifted Green function

entries Ĝz
x1y1

Ĝz
x2y2

· · · Ĝz
xdyd

and assign a summation index vj , Vj or their conjugates vj , Vj
to each generic index xi, yi (e.g., x1 ≡ v2, y1 ≡ V5, x2 ≡ v3, y2 ≡ V5, etc.). A term of the form

1

nl

∗∑

Il1,l2

Ĝz
x1y1

Ĝz
x2y2

· · · Ĝz
xdyd

=
1

nl

∗∑

Il1,l2

d∏

i=1

Ĝz
xiyi

, l= l1 + l2,(4.23)

of degree d with a concretely specified assignment is denoted by Pd. The collection of the

terms of the form in (4.23) with degree d is denoted by Pd.

Given a term Pd ∈ Pd in (4.23), the local law in (4.3) yields a naive bound using power

counting, i.e., for any Pd ∈Pd,

|Pd| ≺Ψd, n−1/4+ǫ ≤Ψ= (nη)−1 ≤ n−ǫ.(4.24)

We now give the formal definition of the (un)matched terms of the form in (4.23).

DEFINITION 4.4 ((Un)matched terms in Pd). Given a term Pd ∈ Pd in (4.23), we say

that a lower case index vj ∈ Il1,l2 is matched if the number of assignments of vj and its
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conjugate vj to a row index in the product agrees with their number of assignments to a

column index, i.e.,

#{i : xi ≡ vj}+#{i : xi ≡ vj}=#{i : yi ≡ vj}+#{i : yi ≡ vj}.(4.25)

Otherwise, we say that vj is an unmatched index. For instance, looking at the two terms,

1

n2

∗∑

a,b

ĜabĜabĜaaĜBB ,
1

n2

∗∑

a,b

ĜabĜbaĜaaĜbb,

both a and b are unmatched indices in the first term, while they are matched indices in the

second term.

Similarly, we say that an upper case index Vj ∈Il1,l2 is matched if

#{i : xi ≡ Vj}+#{i : xi ≡ Vj}=#{i : yi ≡ Vj}+#{i : yi ≡ Vj}.(4.26)

Otherwise, Vj is an unmatched index.

If all the summation indices in Il1,l2 are matched, then Pd is a matched term. Otherwise, if

there exists at least one unmatched index,Pd is an unmatched term. If a termPd is unmatched,

we indicate this fact by denoting it by P o
d . The collection of the unmatched terms of the form

in (4.23) with degree d is denoted by Po
d ⊂ Pd.

From Definition 4.4, the terms on the right side of (4.21) with v 6= a 6= B are indeed

unmatched terms of the form in (4.23), where both the index a and B are unmatched while

the index v is matched. Moreover, we give additional examples of unmatched terms below

1

n3

∗∑

v,a,B

E[Ĝz
vāĜ

z
Bv],

1

n2

∗∑

a,B

E[Ĝz
aaĜ

z
BBĜ

z
aB ],

1

n2

∗∑

a,B

E[Ĝz
BāĜ

z
BāĜ

z
aB ].(4.27)

PROPOSITION 4.5. Given an unmatched term P o
d of the form in (4.23) with fixed d≥ 1,

we have

E[P o
d ] =O≺(n

−3/2).

REMARK 4.6. The above estimate is much smaller than the naive size in (4.24) either

when d is small, say 1≤ d≤ 5, or when η is close to n−1+ǫ. For a general unmatched term

P o
d , the estimate O≺(n−3/2) is sharp due to some matched terms of order n−3/2 stemming

from third order terms in the cumulant expansions with an index coincidence; see (4.57)

below.

REMARK 4.7. The statement of Proposition 4.5 holds true even when the parameters z
of the shifted Green function entries in the product in (4.23) have different values. We also

remark that the proof of Proposition 4.5 is not sensitive to the fact that mz given in (2.19) is

small, in fact the argument works as long as mz =O(1).

The rest of Section 4 is devoted to proving Proposition 4.5. The proof relies on itera-

tive cumulant expansions for the unmatched indices in products of resolvents. Before we

dive into the formal proof of Proposition 4.5, we start with expanding a concrete example

of unmatched term to explain the one-step improvement mechanism (essentially gaining an

additional small factor Ψ) in Section 4.2. The reader experienced with cumulant expansions

may skip Section 4.2. In Section 4.3, we state in Lemma 4.8 the full version of the improve-

ment mechanism for a general unmatched term, and subsequently use Lemma 4.8 iteratively

to prove Proposition 4.5. Finally we present the complete proof of Lemma 4.8 for a general

unmatched term in Section 4.4.
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4.2. Expansion mechanism: an example. In this subsection we consider a concrete ex-

ample of an unmatched term in (4.23) with degree three and x1 ≡ a, y1 ≡ B,x2 ≡ B,y2 ≡
a,x3 ≡ ā, y3 ≡B, i.e.,

P o
3 =

1

n2

∗∑

a,B

Ĝz
aBĜ

z
BaĜ

z
āB ,(4.28)

whose naive estimate is O≺(Ψ3) from (4.24). We will show how to improve this naive esti-

mate using cumulant expansions essentially by an additional small factor Ψ.

For the term P o
3 in (4.28) with an unmatched index a which appears twice as a row and

once as a column in the product of resolvents, we aim to expand using the unmatched x1 ≡ a
to show that

E[P o
3 ] =O≺

(
Ψ4 + n−1Ψ+ n−1/2Ψ3 + n−3/2

)
.(4.29)

We will see that the terms that contribute the first three error terms with Ψ-factors in (4.29)

still have unmatched indices. So we can continue expanding these unmatched terms to get

an arbitrary number of Ψ-improvements and ending up with the final estimate O≺(n−3/2)
given in Proposition 4.5. The corresponding iteration scheme will be presented directly in

full generality for any unmatched term in (4.23) in the next subsection.

Recall the following identity from [25, Eq. (5.2)]

Ĝz =−MzWGz + 〈Ĝz〉MzGz,(4.30)

where Mz =Mz(iη) is the deterministic matrix given in (2.16) and 〈Gz〉 is given in (4.10).

The underline notationWGz is defined as follows. For a function f(W ) of the random matrix

W given in (4.8), we define

Wf(W ) :=Wf(W )− ẼW̃ (∂
W̃
f)(W ),(4.31)

where W̃ is an independent of W defined as in (4.8) with Xt being replaced by a complex

Ginibre ensemble. Here ∂
W̃

denoted the directional derivative in the direction W̃ , the expec-

tation in (4.31) is with respect to this matrix.

Applying the identity in (4.30) on the first Green function entry Ĝz
aB in (4.28) and per-

forming cumulant expansion formula on the resulting WGz given in (4.31), we have

E[P o
3 ] =− mz

n3

∗∑

a,B

∑

J

E
[∂Ĝz

BaĜ
z
āB

∂wJa
Gz

JB

]
+
mz

n2

∗∑

a,B

E
[
Gz

aBĜ
z
BaĜ

z
āB〈Ĝz〉

]

− m
z

n3

∗∑

a,B

∑

j

E
[∂Ĝz

BaĜ
z
āB

∂wjā
Gz

jB

]
+

m
z

n2

∗∑

a,B

E
[
Gz

āBĜ
z
BaĜ

z
āB〈Ĝz〉

]

− mz

n2

∑

p+q+1≥3

c(p+1,q)

p!q!n
p+q+1

2

( ∗∑

a,B

∑

J

E
[∂p+qĜz

BaĜ
z
āBG

z
JB

∂wp
aJ∂w

q
Ja

])

− m
z

n2

∑

p+q+1≥3

c(q,p+1)

p!q!n
p+q+1

2

( ∗∑

a,B

∑

j

E
[∂p+qĜz

BaĜ
z
āBG

z
jB

∂wp
āj∂w

q
jā

])
,(4.32)

with c(p,q) being the (p, q)-th cumulants of the normalized i.i.d. entries
√
nwaB . We first

look at the third order terms with p+ q + 1 = 3 in (4.32). By direct computations using the

differentiation rule in (4.13), since J or j is a fresh index appearing three times, the number

of resulting (shifted) off-diagonal entries remains at least d with unmatched J or j. From the
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local law in (4.3), these third order terms can be bounded by O≺(n−1/2Ψ3 + n−3/2), where

the last error n−3/2 stems from the existence of index coincidences, e.g., J = B or j = B.

Similarly, the fourth order terms with p+q+1= 4 can be bounded byO≺(n−1Ψ3+n−2) and

note that the index J or j could be matched (for p= 1, q = 2), however the index a remains

unmatched. We can truncate the expansion at the fourth order with an error O≺(n−3/2) using

(4.3). Thus the higher order terms (i.e., the last two lines of (4.32)) can be bounded by

−m
z

n2

∑

p+q+1≥3

(· · · )− m
z

n2

∑

p+q+1≥3

(· · · ) =O≺(n
−1/2Ψ3 + n−3/2).(4.33)

We next focus on the second order terms, i.e., the first two lines of (4.32). We start with

the first term on the right side of (4.32). After direct computations, we split the summation

over the fresh index J ∈ Jn+ 1,2nK into the following three cases, i.e.,

−m
z

n3

∗∑

a,B

∑

J

E
[∂Ĝz

BaĜ
z
āB

∂wJa
Gz

JB

]
=
mz

n3

∗∑

a,B

∑

J

E
[(
Gz

BJG
z
aaĜ

z
āB + Ĝz

BaG
z
āJG

z
aB

)
Gz

JB

]

=:


m

z

n3

∗∑

a,B,J

+
mz

n3

∗∑

a,B

∑

J

δJā +
mz

n3

∗∑

a,B

∑

J

δJB


E[(· · · )].(4.34)

We first consider the last two cases with index coincidence J = ā or J =B. We will create

diagonal entries with J = ā or J = B and as the result the number of off-diagonal entries

will be reduced to at least one. Using (4.3), the last two cases in (4.34) can be bounded by

mz

n3

∗∑

a,B

∑

J

δJāE[(· · · )] + mz

n3

∗∑

a,B

∑

J

δJB E[(· · · )] =O≺(n
−1Ψ).(4.35)

We remark that we did not use the smallness of mz given in (4.4), since this smallness is not

essential for the Ψ-improvement. For the first case in (4.34) with a 6=B 6= J , we transform

the resulting terms into the form in (4.23), i.e., write the Green function entries with their

shifted versions using (4.20). In particular, the diagonal entry Gz
aa, from acting ∂wJa on

Ĝz
Ba, will be replaced with mz + Ĝz

aa. Then

mz

n3

∗∑

a,B,J

E[(· · · )] =(mz)2

n3

∗∑

a,B,J

E
[
Ĝz

JBĜ
z
BJ Ĝ

z
āB

]

+
mz

n3

∗∑

a,B,J

E
[
Ĝz

BJ Ĝ
z
aaĜ

z
āBĜ

z
JB

]
+
mz

n3

∗∑

a,B,J

E
[
Ĝz

BaĜ
z
āJĜ

z
aBĜ

z
JB

]
.(4.36)

We note that the terms in the second line of (4.36) have degree being increased to four to

accommodate a pair of the fresh index J , hence can be bounded by O≺(Ψ4) from (4.24).

Therefore, combining (4.34)-(4.36) the first term on the right side of (4.32) can be estimated

as

−m
z

n3

∗∑

a,B

∑

J

E
[∂Ĝz

BaĜ
z
āB

∂wJa
Gz

JB

]
=
(mz)2

n3

∗∑

a,B,J

E
[
Ĝz

JBĜ
z
BJ Ĝ

z
āB

]
+O≺(Ψ

4 + n−1Ψ),

(4.37)

where the first error Ψ4 is from the second order terms with higher degrees and n−1Ψ is from

the second order terms with the index coincidences in (4.35).



28

The third term on the right side of (4.32) can be estimated similarly, i.e.,

−m
z

n3

∗∑

a,B

∑

j

E
[∂Ĝz

BaĜ
z
āB

∂wjā
Gz

jB

]
=
m

z

n3

∗∑

a,B

∑

j

E
[(
Gz

BjG
z
āaĜ

z
āB + Ĝz

BaG
z
ājG

z
āB

)
Gz

jB

]

=
|mz |2
n3

∗∑

a,B,j

E
[
Ĝz

jBĜ
z
BjĜ

z
āB

]
+O≺(Ψ

4 + n−1Ψ).(4.38)

It remains to estimate the second and fourth term on the right side of (4.32). Since we

restrict to a 6= B (equivalent to ā 6= B) in the summation
∑∗

a,B , we write Gz
aB = Ĝz

aB and

Gz
āB = Ĝz

āB . We also write out 〈Ĝz〉 as in (4.10) and clearly these two terms are of the form

in (4.23) with degree increased to four and the index a remains unmatched. In particular,

these two terms gain additional Ψ-factor from 〈Ĝz〉 and thus can be bounded by O≺(Ψ4).
Combining (4.32), (4.33), (4.37) and (4.38), we conclude

E[P o
3 ] =

(mz)2

n3

∗∑

a,B,J

E
[
Ĝz

JBĜ
z
BJ Ĝ

z
āB

]
+

|mz|2
n3

∗∑

a,B,j

E
[
Ĝz

jBĜ
z
BjĜ

z
āB

]

+O≺(Ψ
4 + n−1Ψ+ n−1/2Ψ3 + n−3/2),(4.39)

where the first two errors are from the second order terms with higher degrees (e.g., in the

second line of (4.36)) and with the index coincidences (e.g., with J = ā or J =B in (4.35)),

respectively, and the last two errors are from the higher order terms in (4.33). Most impor-

tantly, for these leading terms of degree three appearing on the first line of (4.39), we have

replaced one pair of the index a of the original term P o
3 in (4.28) with a fresh index J or j.

We now introduce a notation for such index replacement, i.e., if

P o
3 =

1

n2

∗∑

a,B

Ĝz
aBĜ

z
BaĜ

z
āB ,

which is a term of the form in (4.23) with x1 ≡ a, y1 ≡ B,x2 ≡ B,y2 ≡ a,x3 ≡ ā, y3 ≡ B,

then we define

P o
3 (x1, y2 → J) :=

1

n3

∗∑

a,B,J

Ĝz
JBĜ

z
BJ Ĝ

z
āB ; P o

3 (x1, y2 → j) :=
1

n3

∗∑

a,B,j

Ĝz
jBĜ

z
BjĜ

z
āB ,

(4.40)

where j and J are ’symbolic’ lower and upper case letters indicating the range of the new

summation index. Using these notations, the expansion in (4.39) can be written for short as

E[P o
3 ] =(mz)2E[P o

3 (x1, y2 → J)] + |mz|2E[P o
3 (x1, y2 → j)]

+O≺(Ψ
4 + n−1Ψ+ n−1/2Ψ3 + n−3/2).(4.41)

Notice that in the two explicit third order terms the number of assignments of the unmatched

index a after replacement has been reduced by two to one, in fact it appears as its conjugation

ā with x3 ≡ ā; see (4.40). The good news is that the index a (in fact ā) remains unmatched,

thus we can further expand these leading terms using x3 ≡ ā to gain the Ψ-improvement.

We will look at only the second leading term on the right side of (4.41), and the first one

can be estimated similarly (actually more easily if we take mz =O(Ψ) into consideration).
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Omitting the factor |mz|2 ∼ 1 and expanding the Green function entry Ĝz
āB , we obtain as in

(4.32),

E[P o
3 (x1, y2 → j)] =

1

n3

∗∑

a,B,j

E
[
Ĝz

jBĜ
z
BjĜ

z
āB

]

=− mz

n4

∗∑

a,B,j

∑

j′

E
[∂Ĝz

BjĜ
z
jB

∂wj′ā
Gz

j′B

]
+
mz

n3

∗∑

a,B,j

E
[
Gz

āBĜ
z
BjĜ

z
jB〈Ĝz〉

]

− mz

n4

∗∑

a,B,j

∑

J ′

E
[∂Ĝz

BjĜ
z
jB

∂wJ ′a
Gz

J ′B

]
+

mz

n3

∗∑

a,B,j

E
[
Gz

aBĜ
z
BjĜ

z
jB〈Ĝz〉

]

+O≺(n
−1/2Ψ3 + n−3/2).(4.42)

where the last error is from higher order terms as in (4.33). Since the index a or its conjugate

ā no longer appears in the remaining product of Green function entries, we gain additional

Ψ from one more off-diagonal Green function entry or a factor 〈Ĝz〉 on the right side of

(4.42), plus an error O≺(n−1Ψ2) from the index coincidences, e.g., J ′ =B or J ′ = j̄. There-

fore, since the number of assignments of the unmatched index a after replacement has been

reduced to one, we obtain the improved estimate

E[P o
3 (x1, y2 → j)] =O≺(Ψ

4 + n−1Ψ2 + n−1/2Ψ3 + n−3/2).(4.43)

The same upper bound also applies to E[P o
3 (x1, y2 → J)].

Therefore, combining (4.41) and (4.43), we have improved the naive estimate (4.24) of

E[P o
3 ] to the better bound in (4.29).

4.3. Expansion mechanism: general case and proof of Proposition 4.5. Given any un-

matched term P o
d ∈ Po

d in (4.23), from Definition 4.4, there must exist a lower case index

vj ∈ Il1,l2 or an upper case index Vj ∈ Il1,l2 such that this index (or its conjugation) is as-

signed to more row indices of Green function entries in the product than column indices.

For notational simplicity, we may denote this special unmatched index by a ∈ J1, nK and

B ∈ Jn+ 1,2nK, respectively.

We will first consider the formal case with an unmatched index a ∈ J1, nK satisying

#{i : xi ≡ a}+#{i : xi ≡ a}>#{i : yi ≡ a}+#{i : yi ≡ a},(4.44)

and the latter case with B ∈ Jn + 1,2nK will follow similarly. Then there exists an off-

diagonal Green function entry Gxiyi
with xi ≡ a and yi 6≡ a, ā. Without loss of generality

we may assume that this is the first Green function factor, i.e. we set x1 ≡ a and y1 6≡ a, ā.

We will denote this term by P o
d (x1 ≡ a) to emphasize that we will expand it using the un-

matched index x1 ≡ a. Then we have the following estimate whose proof will be given in the

next subsection:

LEMMA 4.8. Let P o
d ∈ Po

d be a given term with an unmatched index a satisfying (4.44)

and without loss of generality assigned to x1, i.e., P o
d = P o

d (x1 ≡ a). Let

k(r)a := #{i : xi ≡ a, ā}; k(c)a := #{i : yi ≡ a, ā}
denote the number of a/ā-assignments as a row or a column index of the Green function

entries, respectively, such that k
(r)
a > k

(c)
a . Then there exist finite (bounded by some constant

depending only on d) subsets

A
o
d ⊂ P

o
d , A

o
>d ⊂P

o
d+1, B

o
≥d ⊂

⋃

d′≥d

P
o
d′ , C

o
≥d−2 ⊂

⋃

d′≥d−2

P
o
d′(4.45)
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with the property that the number of a/ā-assignments as a row or column index in all ele-

ments of A o
d is reduced to k

(r)
a − 1 and k

(c)
a − 1, respectively, so that we have the bound

∣∣E[P o
d (x1 ≡ a)]

∣∣.
∑

P o
d′
∈A o

d

∣∣E[P o
d′ ]
∣∣+

∑

P o
d′
∈A o

>d

∣∣E[P o
d′ ]
∣∣

+
1√
n

∑

P o
d′
∈Bo

≥d

∣∣E[P o
d′ ]
∣∣+ 1

n

∑

P o
d′
∈C o

≥d−2

∣∣E[P o
d′ ]
∣∣+O≺(n

−3/2),(4.46)

here d′ denotes a degree compatible with (4.45). In particular, if k
(c)
a = 0, then A o

d is an

empty set.

The precise structure of the terms in the rhs. of (4.46) is irrelevant, hence we do not follow

them explicitly, we will only need a few properties. Note that all terms in the rhs. of (4.46)

remain unmatched; this key feature will allow us to iterate this estimate. We now briefly

explain the origin and the main features of each sums and show that every term in the rhs. is

”better” in a certain sense than the initial term.

The set A o
d contains four types of terms (if exist) of degree d obtained by index replace-

ments defined in (4.40). They can be written explicitly as

(mz)2
∑

i≥2:yi≡a

E
[
P o
d (x1, yi → J)

]
+mz

m
z
∑

i≥2:yi≡ā

E
[
P o
d (x1, yi → J)

]

+mz
m

z
∑

i≥2:yi≡ā

E
[
P o
d (x1, yi → j)

]
+ |mz|2

∑

i≥2:yi≡a

E
[
P o
d (x1, yi → j)

]
,(4.47)

although the only important fact is that the number of a/ā-indices is reduced by two (i.e., one

from the row and one from the column) compared with the initial term P o
d (x1 ≡ a). These

are the generalisations of the first two terms in the rhs. of (4.39) for the concrete example.

The set A o
>d corresponds to the second order terms with higher degrees, e.g., in the second

line in (4.36); their degree is increased by one compared to the original term.

The set Bo
≥d comes from the third order cumulant expansion, indicated by the additional

1/
√
n prefactor (see the last two lines of (4.32) with p + q + 1 = 3). The number of off-

diagonal Green function entries remains at least d and we gained 1/
√
n from the third order

cumulants.

Finally, the set C o
≥d−2 coming with a prefactor 1/n has two very different sources. On

the one hand, it comes from the fourth order cumulant expansion carrying an extra 1/n and

the number of off-diagonal Green function entries remains at least d. On the other hand, in

the second order cumulant expansion the fresh index J or j may coincide with an old index

creating a diagonal term. Each diagonal term has to be re-written, e.g., as Gz
aa =mz + Ĝz

aa,

and thus the term carrying mz ”loses” a G-factor. Thus the degree may be reduced by two

from these diagonal elements; see e.g., (4.34) with J =B. In this case the 1/n comes from

the reduced number of summation indices.

For definiteness, we stated and explained Lemma 4.8 for the lower case index a, the

modifications for the upper case index B are very minor. In the latter case we may set

x1 ≡ B,y1 6≡ B,B and denote the term by P o
d (x1 ≡ B). This term can be expanded using

the unmatched index x1 ≡B. The abstract bound (4.46), with the index a replaced with B,

remains unchanged, only the (irrelevant) explicit formula changes: J and j are interchanged

within both lines of (4.47).

We are now ready to prove Proposition 4.5 by iteratively invoking Lemma 4.8 for an

unmatched lower case index a ∈ J1, nK and the analogous formula for B ∈ Jn+ 1,2nK. The
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proof in fact relies on iterations on two different levels: the first level uses Lemma 4.8 to gain

one Ψ-factor improvement as explained in the previous Section 4.2; the second level is to

iterate this one-step Ψ-improvement to an arbitrary power of Ψ until it becomes negligible

and only the O≺(n−3/2) error survives.

PROOF OF PROPOSITION 4.5. Given an unmatched term P o
d in (4.23), without loss of

generality, we may assume that there exists an unmatched index a ∈ J1, nK satisfying the

assignment condition in (4.44) and denote this term by P o
d (x1 ≡ a). The case with B ∈

Jn+ 1,2nK follows similarly.

We define the number of the assignments of the index a and ā to a row and column index

of the Green function entries in the product, i.e.,

k
(r)
0 =#{i : xi ≡ a}+#{i : xi ≡ ā}, k

(c)
0 =#{i : yi ≡ a}+#{i : yi ≡ ā},(4.48)

with k
(r)
0 > k

(c)
0 from (4.44), here we use the subscript 0 to indicate this quantity is applied

to the original term before iterations.

Applying Lemma 4.8, if k
(c)
0 = 0, then the first type of subset A o

d in (4.45) is empty.

However if k
(c)
0 ≥ 1, we need to repeatedly invoke Lemma 4.8 to eliminate resulting terms in

non-empty A o
d . This is our first-level iteration procedure. In the first step, using Lemma 4.8,

we have
∣∣E[P o

d (x1 ≡ a)]
∣∣.

∑

P o
d′
∈A o

d,1

∣∣E[P o
d′ ]
∣∣+

∑

P o
d′
∈A o

>d,1

∣∣E[P o
d′ ]
∣∣

+
1√
n

∑

P o
d′
∈Bo

≥d,1

∣∣E[P o
d′ ]
∣∣+ 1

n

∑

P o
d′
∈C o

≥d−2,1

∣∣E[P o
d′ ]
∣∣+O≺(n

−3/2),(4.49)

where we use the subscript 1 in the four types of subsets to indicate the iteration step, and

each term in the first subset A o
d,1 still has the unmatched index a satisfying (4.44), with c.f.,

(4.48),

k
(r)
1 = k

(r)
0 − 1, k

(c)
1 = k

(c)
0 − 1, k

(r)
1 > k

(c)
1 .

Hence we can further apply Lemma 4.8 on these leading terms of degree d in A o
d,1. In general,

in the s-th iteration step, we have
∣∣E[P o

d (x1 ≡ a)]
∣∣.

∑

P o
d′
∈A o

d,s

∣∣E[P o
d′ ]
∣∣+

∑

P o
d′
∈A o

>d,s

∣∣E[P o
d′ ]
∣∣

+
1√
n

∑

P o
d′
∈Bo

≥d,s

∣∣E[P o
d′ ]
∣∣+ 1

n

∑

P o
d′
∈C o

≥d−2,s

∣∣E[P o
d′ ]
∣∣+O≺(n

−3/2),(4.50)

where each term in the first subset A o
d,s (if exists) satisfies

k(r)s = k
(r)
0 − s, k(c)s = k

(c)
0 − s, k(r)s > k(c)s .

We stop the iterations at step s= k
(c)
0 +1 so that the resulting subset A o

d,s is empty, we hence

obtain the following estimate for P o
d = P o

d (x1 ≡ a);

∣∣E[P o
d ]
∣∣.

∑

P o
d′
∈A o

>d,∗

∣∣E[P o
d′ ]
∣∣+ 1√

n

∑

P o
d′
∈Bo

≥d,∗

∣∣E[P o
d′ ]
∣∣

+
1

n

∑

P o
d′
∈C o

≥d−2,∗

∣∣E[P o
d′ ]
∣∣+O≺(n

−3/2),(4.51)
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where the three subsets, A o
>d,∗,B

o
≥d,∗ and C o

≥d−2,∗ are defined as the union of the corre-

sponding subsets in (4.45) generated in the above s-iterations. Their precise form is irrel-

evant, beyond their degree what matters is that their cardinality can be bounded by some

constant only depending on d.

In this way, we have improved the estimate essentially by an additional small factor Ψ=
(nη)−1 from (4.24), i.e., the first group of terms on the right side of (4.51) has degree at least

d + 1, while the remaining terms gain extra n−1/2 or n−1 from the prefactors. The above

iteration procedure generalizes the Ψ-improvement mechanism explained in the previous

subsection for a concrete example. Moreover, we obtain a similar formula in (4.51) for P o
d =

P o
d (x1 ≡B) using the analogous version of Lemma 4.8 for the upper case index B.

Next, we will perform our second-level iteration, i.e., iterating the Ψ-improvement mech-

anism stated in (4.51) to increase the degree further. We note that the resulting terms on the

right side of (4.51) remain unmatched either with one Ψ-improvement from A o
>d,∗ (i.e., with

higher degrees) or with the gain from the prefactor 1/
√
n or 1/n. Iterating (4.51) for D − d

times with a large fixed D> 0 chosen later, we have

∣∣E[P o
d ]
∣∣.

∑

P o
d′
∈A o

>D,∗

∣∣E[P o
d′ ]
∣∣+ 1√

n

∑

P o
d′
∈Bo

≥D,∗

∣∣E[P o
d′ ]
∣∣

+
1

n

∑

P o
d′
∈C o

≥D−2,∗

∣∣E[P o
d′ ]
∣∣+O≺(n

−3/2),(4.52)

where the sets A o
>D,∗, Bo

≥D,∗ and C o
≥D−2,∗ denote the union of the corresponding sets in

(4.51) generated in the second-level iterations, whose cardinality can be bounded by a con-

stant depending only on d and D. Using the naive estimate in (4.24), we have

E[P o
d ] =O≺

(
ΨD + n−1/2ΨD−1 + n−1ΨD−3 + n−3/2

)
=O≺(n

−3/2 +ΨD).(4.53)

For any η ≥ n−1+ǫ with a fixed small ǫ > 0, we choose D = ⌊2/ǫ⌋ so that ΨD . n−3/2. In

particular, if we choose η = η0 = n−7/8−τ (in fact, used to prove Lemma 3.5), we can choose

smaller D = ⌈ 12
1−8τ ⌉ so that ΨD . n−3/2. This completes the proof of Proposition 4.5.

4.4. Proof of Lemma 4.8. Let P o
d (x1 ≡ a) be a given term in Po

d with an unmatched

index a satisfying (4.44) and without loss of generality x1 ≡ a, y1 6= a, ā. Using the identity

in (4.30) on the first Green function factor Ĝz
ay1

and performing the cumulant expansions as

in (4.32), we have

E[P o
d (x1 ≡ a)] =− mz

nl+1

∗∑

Il1,l2

∑

J

E
[∂∏d

i=2 Ĝ
z
xiyi

∂wJa
Gz

Jy1

]
+
mz

nl

∗∑

Il1,l2

E
[
Gz

ay1

d∏

i=2

Ĝz
xiyi

〈Ĝz〉
]

− m
z

nl+1

∗∑

Il1,l2

∑

j

E
[∂∏d

i=2 Ĝ
z
xiyi

∂wjā
Gz

jy1

]
+

m
z

nl

∗∑

Il1,l2

E
[
Gz

āy1

d∏

i=2

Ĝz
xiyi

〈Ĝz〉
]

+
∑

p+q+1≥3

(
H

(1)
p+1,q +H

(2)
q,p+1

)
,(4.54)

where H
(1)
p+1,q and H

(2)
q,p+1 are the higher order terms given by

H
(1)
p+1,q :=− mzc(p+1,q)

p!q!n
p+q+1

2
+l

∗∑

Il1,l2

∑

J

E
[∂p+q

∏d
i=2 Ĝ

z
xiyi

Gz
Jy1

∂wp
aJ∂w

q
Ja

]
;
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H
(2)
q,p+1 =− m

zc(q,p+1)

p!q!n
p+q+1

2
+l

∗∑

Il1,l2

∑

j

E
[∂p+q

∏d
i=2 Ĝ

z
xiyi

Gz
jy1

∂wp
āj∂w

q
jā

]
,(4.55)

with c(p,q) the (p, q)-th cumulants of the normalized i.i.d. entries
√
nwaB . We will only

estimate H
(1)
p+1,q in (4.55) and H

(2)
p+1,q can be treated similarly. We remark that the small-

ness of mz in (4.4) will not be used in the proof. We now split of H
(1)
p+1,q in (4.55)

into the following two parts, i.e., J is distinct from or coinciding with the old indices in

Il1,l2 = {vk}l1k=1 ∪ {Vk}l2k=1 (omitting the irrelevant prefactor c(p+1,q)/p!q!),

H
(1)
p+1,q =− mz

n
p+q+1

2
+l

∗∑

Il1,l2 ,J

E[(· · · )]− mz

n
p+q+1

2
+l

∗∑

Il1,l2

∑

J

( l1∑

k=1

δJvk +

l2∑

k=1

δJVk

)
E[(· · · )]

=:− mz

n
p+q−1

2

( 1

nl+1

∗∑

Il1,l2+1

E[(· · · )]
)
− mz

n
p+q+1

2

( 1

nl

∗∑

Il1,l2

∑

J

δJ∈Il1,l2
E[(· · · )]

)
,

(4.56)

where the notation
∑∗

is given in (4.22) indicating that all the summation indices are distinct,

and we use the short hand notation δJ∈Il1,l2
to indicate the part with index coincidence.

We first estimate the second part in (4.56) with index coincidences J ∈ Il1,l2 . Using that

|Guv| ≺ 1 from (4.3) naively, we gain an additional n−1 from the summation and have
∣∣∣∣∣∣
mz

n
p+q+1

2

( 1

nl

∗∑

Il1,l2

∑

J

δJ∈Il1,l2
E[(· · · )]

)
∣∣∣∣∣∣
=O≺(n

− p+q+1

2 ).(4.57)

We remark that for p + q + 1 = 3, the error n−3/2 is sharp in general. By setting J = vk
or J = Vk, the terms in (4.55) might switch to matched terms; see e.g., the last two lines of

(4.32) with J =B or j =B.

Next, the first part in (4.56) with distinct summation indices can be written as a linear

combination of averaged products of shifted Green function entries of the form in (4.23) with

an additional factor n−
p+q−1

2 . Since J is a fresh index, the number of (shifted) off-diagonal

Green function entries remains at least d in the product. If q 6= p+ 1, then from (4.13) and

Definition 4.4, the fresh index J becomes an unmatched index. Otherwise if q = p+ 1, the

index J is matched, but the index a remains unmatched using (4.13) and Definition 4.4.

Thus the first part of (4.56) yields a collection of unmatched terms of the form in (4.23)

with degrees at least d and with an additional factor n−
p+q−1

2 . Similar estimates also apply to

H
(2)
p+1,q in (4.55).

Therefore for the third and fourth order terms with p+ q+1 = 3,4 in (4.55), we denote by

Bo
≥d ⊂

⋃
d′≥d Po

d′ and C o
≥d ⊂

⋃
d′≥d Po

d′ , respectively, the set of the resulting unmatched

terms of degrees at least d. With these notations and combining with (4.57), we write for

short that
∑

p+q+1=3

(
H

(1)
p+1,q +H

(2)
q,p+1

)
=

1√
n

∑

P o
d′
∈Bo

≥d

E[P o
d′ ] +O≺(n

−3/2);

∑

p+q+1=4

(
H

(1)
p+1,q +H

(2)
q,p+1

)
=

1

n

∑

P o
d′
∈C o

≥d

E[P o
d′ ] +O≺(n

−2),(4.58)

and we truncate the cumulant expansion at the fourth order with an error O≺(n−3/2) using

(4.3).
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We next estimate the second order terms, i.e., the first two lines of (4.54). Writing 〈Ĝz〉
as in (4.10) and Gz

ay1
= Ĝz

ay1
and Gz

āy1
= Ĝz

āy1
since y1 6≡ a and ā, the second and fourth

term on the right side of (4.54) are of the form in (4.23) and the degrees of these terms are

increased to d+ 1. For the first term on the right side of (4.54), we split the summation into

two parts as in (4.56). By direct computations, the part with index coincidences J ∈ Il1,l2 is

given by

− mz

nl+1

∗∑

Il1,l2

E
[∂∏d

i=2 Ĝ
z
xiyi

∂wJa
Gz

Jy1
δJ∈Il1,l2

]
=

mz

nl+1

∗∑

Il1,l2

E
[ d∑

p=2

( (p)∏

i=2

Ĝz
xiyi

)
Gz

xpJG
z
ayp
Gz

Jy1
δJ∈Il1,l2

]
.

If we set J = ā, then the index a remains unmatched since the index J appeared once as a row

and once as a column of the Green function entries in the product. Otherwise if J ∈ Il1,l2 \
{a}, then the index a obviously remains unmatched. After transforming the Green function

entries into their shifted versions using e.g., Gz
aa =mz + Ĝz

aa, the degrees of the resulting

terms might be decreased to d− 2 when all the entries Gz
xpJ

,Gz
ayp
,Gz

Jy1
are diagonal; see

(4.35) for a concrete example. Thus we obtain a collection of unmatched terms of degrees at

least d− 2 with a factor n−1 from the index coincidence. Together with the subset C o
≥d in

(4.58) with the same prefactor 1/n from the fourth order cumulant expansion, we denote by

C o
≥d−2 the union of these unmatched terms with degrees at least d− 2, i.e., we write them

together for short as

1

n

∑

P o
d′
∈C o

≥d−2

E[P o
d′ ].(4.59)

For the remaining summation with J distinct from the indices in Il1,l2 , writing Gz
Jy1

=

Ĝz
Jy1

and Gz
xpJ

= Ĝz
xpJ

, we have

− mz

nl+1

∗∑

Il1,l2 ,J

E
[∂∏d

i=2 Ĝ
z
xiyi

∂wJa
Gz

Jy1

]
=

mz

nl+1

∗∑

Il1,l2 ,J

E
[ d∑

p=2

( (p)∏

i=2

Ĝz
xiyi

)
Ĝz

xpJ
Gz

ayp
Ĝz

Jy1

]
.

If yp 6≡ a, ā, then Gz
ayp

from acting ∂wJa on Gayp
is an extra off-diagonal entry and the

degree is thus increased to d+1. Otherwise if there exists some yp ≡ a or ā, then the resulting

diagonal entry Gaa or Gaā which will be replaced with the deterministic function mz or mz .

In both cases, the index a remains unmatched. Then we have

− mz

nl+1

∗∑

Il1,l2 ,J

E
[∂∏d

i=2 Ĝ
z
xiyi

∂wJa
Gz

Jy1

]
= (mz)2

∑

i≥2:yi≡a

E[P o
d (x1, yi → J)]

+mz
m

z
∑

i≥2:yi≡ā

E[P o
d (x1, yi → J)] +

∑

P o
d′
∈Po

d+1

E[P o
d′ ],(4.60)

where P o
d (x1, yi → J) given in (4.40) denotes a term obtained from the original term P o

d
with the row index x1 ≡ a and column index yi ≡ a or ā of the Green function entries being

replaced with a fresh (averaged) summation index J , and with a slight abuse of notations, the

last sum denotes a specific linear combination of unmatched terms with higher degree d+1.

Similarly we estimate the third term on the right side of (4.54). For the cases with index

coincidences δj∈Il1,l2
, we obtain unmatched terms with degree at least d−2 and with a factor

n−1 which will be added to (4.59). For the cases with distinct summation indices, we have
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c.f., (4.60)

− m
z

nl+1

∗∑

Il1,l2 ,j

E
[∂∏d

i=2 Ĝ
z
xiyi

∂wjā
Gz

jy1

]
= |mz|2

∑

i≥2:yi≡a

E[P o
d (x1, yi → j)]

+mz
m

z
∑

i≥2:yi≡ā

E[P o
d (x1, yi → j)] +

∑

P o
d′
∈Po

d+1

E[P o
d′ ].(4.61)

The collection of all the unmatched terms with higher degree d+1 in both (4.60) and (4.61) is

denoted by A o
>d. Moreover, the collection of the leading terms of degree d (if exists) defined

by index replacements in both (4.60) and (4.61) is denoted by A o
d . We note that, for any term

in A o
d , from the index replacement defined in (4.40), the number of a/ā-assignments as a

row and column index of the Green function entries has been reduced by one, respectively.

To sum up, with the above notations, combining (4.54), (4.58), (4.59), (4.60) and (4.61),

we have proved (4.46) and hence finish the proof of Lemma 4.8.

REMARK 4.9. Though here we present only the expansions starting from an off-diagonal

Green function entry Ĝz
ay1

, a similar expansion also holds true if we start from a diagonal

entry Ĝz
aa. We remark that the above expansion is not unique since it depends on the choice

of the Green function entry to start performing expansions. The proof of Proposition 4.5,

however, does not rely on the uniqueness of the expansions.

5. Green function comparison in Girko’s formula: Proof of Proposition 3.8. Recall

the matrix flow in (4.2). To prove Proposition 3.8, it then suffices to show the following:

LEMMA 5.1. Set η0 = n−7/8−τ with a small fixed τ > 0 from (2.5) and T = n100. Let

f = f−1 or f+2 . Then there exists some constant c > 0 such that

d

dt

∫

C

∆f(z)E

[∫ T

η0

ImTrGz
t (iη)dη

]
d2z =O(n−c),(5.1)

and

d

dt

∫

C

∫

C

∆f(z1)∆f(z2)E

[∫ T

η0

∫ T

η0

(
(1−E) ImTrGz1

t (iη1)
)
×

(
(1−E) ImTrGz2

t (iη2)
)
dη1 dη2 d

2z1 d
2z2

]
=O(n−c).(5.2)

PROOF OF PROPOSITION 3.8. Integrating the bounds from Lemma 5.1 over t ∈ [0,100 log n]
and using standard perturbation theory as in (4.7) we conclude the proof of Proposi-

tion 3.8.

5.1. Expectation estimate: Proof of (5.1). We introduce the short-hand notation

F
z
t :=

∫ T

η0

ImTrGz
t (iη)dη =−i

∫ T

η0

TrGz
t (iη)dη,(5.3)

and we will prove a slightly stronger estimate than needed in (5.1), i.e.,
∣∣∣∣
∫

C

∆f(z)
( d

dt
E
[
F

z
t

])
d2z

∣∣∣∣=O(n−1/4+5τ ).(5.4)
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Using the L1 norm of ∆f in (3.7), it suffices to show
∣∣∣ d
dt

E
[
F

z
t

]∣∣∣=O≺(n
−1/2+4τ ).(5.5)

Recall the matrix flow in (4.2). Using Ito’s formula and performing the cumulant expansion

on the expectation of the drift term, we obtain the analogue of (4.11),

dE
[
F z

t

]

dt
=− 1

2

n∑

a=1

2n∑

B=n+1




K0∑

p+q+1=3

c(p+1,q)

p!q!n
p+q+1

2

E

[
∂p+q+1F z

t

∂wp+1
aB ∂waB

q

]


− 1

2

n∑

a=1

2n∑

B=n+1




K0∑

p+q+1=3

c(q,p+1)

p!q!n
p+q+1

2

E

[
∂p+q+1F z

t

∂waB
p+1∂wq

aB

]
+O≺(n

−K0
2
+2),(5.6)

with K0 = 100 and c(p,q) the (p, q)-th cumulants of the normalized i.i.d. entries
√
nwaB . It

then suffices to consider the first line of (5.6) to show

K0∑

p+q+1=3

Kz
p+1,q :=

K0∑

p+q+1=3

c(p+1,q)

2p!q!


 1

n
p+q+1

2

∑

a,B

E

[
∂p+q+1F z

t

∂wp+1
aB ∂waB

q

]
=O≺(n

−1/2+4τ ),

(5.7)

and the second line of (5.6) is the same with a and B interchanged.

Recall the differentiation rule in (4.13). We further have

∂F z
t

∂waB
= i

∫ T

η0

2n∑

v=1

(
Gz

va(iη)G
z
Bv

(iη)
)
dη =i

∫ T

η0

(
(Gz)2(iη)

)
Ba

dη

=Gz
Ba(iT )−Gz

Ba(iη0) =−Gz
Ba(iη0) +O(n−100),(5.8)

where we used that (G2)(iη) =−idG(iη)
dη , the deterministic norm bound ‖G(iT )‖ ≤ T−1 with

T = n100. By direct computations using (4.13) and (5.8), each term Kz
p+1,q given in (5.7) is

a linear combination of products of p+ q+ 1 Green function entries of the following form

1

n
p+q+1

2

∑

a,B

E
[ p+q+1∏

i=1

Gz
xi,yi

(iη0) +O(n−100)
]
=O≺

(
n−

p+q−3

2 (Ψp+q+1 + n−1)
)

(5.9)

where xi, yi ≡ a or B satisfying the assignment condition in (4.15), and the last estimate

follows from the local law in (4.3) and (4.4) with Ψ= (nη0)
−1 = n−1/8+τ . We remark that

the error term n−1 is from the cases with index coincidence, i.e., a = B. In particular, we

have from (5.9) that

|Kz
p+1,q| ≺ n−1/2+4τ , p+ q+ 1≥ 4,(5.10)

which is enough to prove (5.5) except for the third order terms.

We next improve the estimate for these third order terms in (5.7) with p + q + 1 = 3.

Transforming the Green function entries in these terms to their shifted versions by (4.20),

these third order terms with the summation restriction a 6=B are of the form in (4.23) with a

factor n1/2 and with unmatched indices a and B from Definition 4.4. Using Proposition 4.5,

these unmatched terms with a factor
√
n can be bounded by O≺(n−1). For the remaining

summation with the index coincidence a=B, they can be bounded byO≺(n−1/2) using that

|Guv| ≺ 1 from (4.3). Therefore, the third order terms in (5.7) can be bounded by
∑

p+q+1=3

Kz
p+1,q =O≺(n

−1/2).(5.11)

Combining (5.6), (5.10) and (5.11), we have proved the expectation estimate in (5.5).
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5.2. Variance estimate: Proof of (5.2). We start with the short-hand notation, j = 1,2

F̂
zj
t := F

zj
t −E[F

zj
t ] =−i

∫ T

η0

(
TrG

zj
t (iη)−E

[
TrG

zj
t (iη)

])
dη ≺ 1,(5.12)

where the last estimate follows from the local law in (4.3). We will prove a slightly stronger

estimate than needed in (5.2), i.e. we will prove
∫

C

∫

C

∆f(z1)∆f(z2)
( d

dt
E
[
F̂

z1
t F̂

z2
t

])
d2z1 d

2z2 =O(n−1/8+3τ ).(5.13)

Using the L1 norm of ∆f in (3.7), it suffices to prove that

d

dt
E
[
F̂

z1
t F̂

z2
t

]
= M-terms(z1, z2) +O(n−5/8+τ ),(5.14)

where M-terms(z1, z2) is a deterministic function satisfying the following integral condition
∣∣∣∣
∫

C

∫

C

∆f(z1)∆f(z2) M-terms(z1, z2) d2z1 d
2z2

∣∣∣∣≪ n−1/8+3τ .(5.15)

Now we focus on proving (5.14). Using Ito’s formula and performing the cumulant expan-

sion on the drift term, we obtain the analogue of (5.6)

dE
[
F̂

z1
t F̂

z2
t

]

dt
=− 1

2

n∑

a=1

2n∑

B=n+1




K0∑

p+q+1=3

c(p+1,q)

p!q!n
p+q+1

2

E

[
∂p+q+1F̂

z1
t F̂

z2
t

∂wp+1
aB ∂waB

q

]


− 1

2

n∑

a=1

2n∑

B=n+1




K0∑

p+q+1=3

c(q,p+1)

p!q!n
p+q+1

2

E

[
∂p+q+1F̂

z1
t F̂

z2
t

∂waB
p+1∂wq

aB

]
+O≺(n

−K0
2
+2),(5.16)

with K0 = 100 and c(p,q) the (p, q)-th cumulants of the normalized i.i.d. entries
√
nwaB . It

then suffices to consider the first line of (5.16) to show

K0∑

p+q+1=3

K
z1,z2
p+1,q :=

K0∑

p+q+1=3

c(p+1,q)

2p!q!


 1

n
p+q+1

2

∑

a,B

E

[
∂p+q+1F̂

z1
t F̂

z2
t

∂wp+1
aB ∂waB

q

]
 ,(5.17)

and the second line of (5.16) is the same with a and B interchanged.

Using the differentiation rules in (4.13) and (5.8), each term K
z1,z2
p+1,q in (5.17) is a linear

combination of products of p + q + 1 Green function entries (either Gz1 or Gz2 ) with a

possible factor F̂
z1
t or F̂

z2
t , i.e., in the following general form

1

n
p+q+1

2

∑

a,B

E
[
(F̂ z(0)

t )

p+q+1∏

i=1

Gz(i)

xi,yi
(iη0) +O(n−100)

]
,(5.18)

with {z(i) ∈C}p+q+1
i=0 being either z1 or z2, and xi, yi ≡ a orB satisfying the assignment con-

dition in (4.15). Using the local law in (4.3), (4.4) and that |F z
t | ≺ 1, we have the following

naive bound

|K z1,z2
p+1,q|=O≺

(
n−

p+q−3

2 (Ψp+q+1 + n−1)
)
, Ψ= n−1/8+τ ,(5.19)

where the error n−1 is from the cases with index coincidence, i.e., a = B. In particular we

have

|K z1,z2
p+1,q| ≺ n−9/8+5τ , p+ q+ 1≥ 5,(5.20)
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which is sufficiently small to prove (5.14) except for the third and fourth order terms with

p+ q +1= 3,4.

We next estimate the third and fourth order terms more carefully. In the following, we will

drop the argument iη0 with η0 = n−7/8−τ for notational simplicity and ignoring the error

O(n−100) in (5.18).

5.2.1. Third order terms. By direct computations using (4.13) and (5.8), the third order

terms K
z1,z2
p+1,q in (5.17) with p+ q + 1= 3 are given by linear combinations of the following

terms (ignoring the irrelevant c(p,q) coefficients)

1

n3/2

∑

a,B

E
[
F̂

z2
t G

z1
aaG

z1
BBG

z1
aB

]
,

1

n3/2

∑

a,B

E
[
F̂

z2
t G

z1
aBG

z1
aBG

z1
aB

]
,

1

n3/2

∑

a,B

E
[
Gz1

aBG
z2
aaG

z2
BB

]
,

1

n3/2

∑

a,B

E
[
Gz1

aBG
z2
aBG

z2
aB

]
,

1

n3/2

∑

a,B

E
[
Gz1

aBG
z2
BaG

z2
Ba

]
,

(5.21)

together with the other terms by interchanging a with B and z1 with z2.

We first consider the terms in (5.21) with the index coincidence B = ā in the summa-

tions. The resulting terms except from the last two terms in (5.21) can be bounded by

O≺(n−1/2Ψ) = O≺(n−5/8+τ ) using the local law in (4.3), (4.4) and that F̂ z
t is centered.

For the last two terms in (5.21) consisting of factors GaB and GBa only, we have from the

local law in (4.3) that

1

n3/2

∑

a=B

E
[
Gz1

aBG
z2
aBG

z2
aB

]
=

1√
n
m

z1
(
m

z2
)2

+O≺(n
−5/8+τ ),

1

n3/2

∑

a=B

E
[
Gz1

aBG
z2
BaG

z2
Ba

]
=

1√
n
m

z1
(
mz2
)2

+O≺(n
−5/8+τ ),(5.22)

where the leading deterministic functions can only be bounded by O(n−1/2). However from

(2.18) and (2.19), for any z ∈ supp(f−1 )∪ supp(f+2 ), we have

m
z =−z + zη

η+ Immz
=−z +O

(
|z|(|1− |z|2|+ η2/3)

)
=−z +O(n−1/2+τ ).(5.23)

Hence the leading deterministic terms in (5.22) satisfy the intergral condition in (5.15), i.e.,

for simplicity, we only consider the first term in (5.22),
∫

C

∫

C

∆f(z1)∆f(z2)

(
1√
n
m

z1(mz2)2
)
d2z1 d

2z2

=
1√
n

(∫

C

∆f(z1)
(
− z1 +O(n−1/2+τ )

)
d2z1

)(∫

C

∆f(z2)
(
(z2)

2 +O(n−1/2+τ )
)
d2z2

)

=O(n−1+4τ ),

(5.24)

where we used (5.23), the L1 norm of ∆f in (3.7), and that both z and (z)2 are harmonic

functions.

Next we study the remaining summations with the restriction B 6= ā in (5.21). In contrast

to the form of averaged products of shifted Green function entries in (4.23), we introduce a
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slightly different abstract form to adapt this notation to the terms in (5.21), i.e., with a possibe

factor F̂
z1
t or F̂

z2
t ,

(̂F z(0)

t )
1

nl

∗∑

Il1,l2

d∏

i=1

Ĝz(i)

xi,yi
, l= l1 + l2,(5.25)

with each {z(i) ∈C}p+q+1
i=0 being either z1 or z2, where the restricted sum

∑∗
Il1,l2

is defined

in (4.22), and we assign a summation index vj or Vj ∈ Il1,l2 or their conjugates vj , Vj to

each row index xi and column index yi of the shifted Green function entries in the product.

We also define unmatched indices and unmatched terms of the form in (5.25) as in Definition

4.4. Since the proof of Proposition 4.5 is not sensitive to the modifications in the abstract

form, the statement still holds true for the general form in (5.25). We omit the proof details.

Provided the assignment condition in (4.15) with p+ q+1= 3, all the third order terms in

(5.21) with restricted summations B 6= ā can be tranformed by (4.20) to linear combinations

of unmatched terms of the form in (5.25) with a factor
√
n. Thus by analogous Proposition

4.5 for general unmatched term in (5.25), we have

∑

p+q+1=3

K
z1,z2
p+1,q

∣∣∣
a6=B

=O≺(n
−1).(5.26)

Therefore, combining (5.22) and (5.26), we have
∑

p+q+1=3

K
z1,z2
p+1,q = M-terms(z1, z2) +O≺(n

−5/8+τ ),(5.27)

where the function M-terms(z1, z2) is a linear combination of leading deterministic functions

in (5.22) which satisfy the integral condition in (5.15).

5.2.2. Fourth order terms. By direct computations using (4.13) and (5.8), the fourth or-

der terms K
z1,z2
p+1,q in (5.17) with p+q+1= 4 are averaged products of Green function entries

satisfying the assignment condition in (4.15). From Definition 4.4, these fourth order terms

with restricted summations a 6=B are unmatched unless p= 1 and q = 2. Then by Proposi-

tion 4.5, we have
∑

p+q+1=4;p+16=q

K
z1,z2
p+1,q =

∑

p+q+1=4;p+16=q

K
z1,z2
p+1,q

∣∣∣
a6=B

+O≺(n
−1) =O≺(n

−1),(5.28)

where the error O≺(n−1) comes from the cases with index coincidence, i.e., a=B.

We next estimate the remaining term K
z1,z2
2,2 for p = 1 and q = 2 in (5.17). By direct

computations, K
z1,z2
2,2 is a linear combination of the following terms

1

n2

∑

a,B

E
[
F̂

z2
t (Gz1

BBG
z1
aa)

2
]
,

1

n2

∑

a,B

E
[
F̂

z2
t Gz1

aaG
z1
BBG

z1
aBG

z1
Ba

]
,

1

n2

∑

a,B

E
[
Gz1

aaG
z1
BBG

z2
aaG

z2
BB

]
,

1

n2

∑

a,B

E
[
Gz1

aBG
z2
BaG

z2
aaG

z2
BB

]
,

1

n2

∑

a,B

E
[
Gz1

aBG
z1
aBG

z2
BaG

z2
Ba

](5.29)

as well as the other terms by interchanging a with B and z1 with z2. Those terms in (5.29)

containing Gaa or GBB in the product of Green function entries can be bounded using the
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improved estimate of resolvent in (3.27) and the local law in (4.3) and (4.4), e.g., the first

term in (5.29) is bounded by

1

n2

∑

a,B

E
[
F̂

z2
t (Gz1

BBG
z1
aa)

2
]
≺Ψ3 1

n

∑

a

E
[
|Gz1

aa|
]
=Ψ3E[Im〈Gz1〉] =O≺(n

−3/4+2τ ),

(5.30)

where we used the estimate in (3.27) with η = n−7/8−τ . The last term in (5.29) is bounded

similarly using the Ward identity, i.e.,

1

n2

∑

a,B

E
[
Gz1

aBG
z1
aBG

z2
BaG

z2
Ba

]
≺ 1

n2
Ψ2
∑

a,B

E[|Gz1
aB |2]≤Ψ2E[Im〈Gz1〉]

nη
=O≺(n

−3/4+2τ ).

(5.31)

Combining these bounds with (5.28), we conclude that
∑

p+q+1=4

K
z1,z2
p+1,q =O≺(n

−3/4+2τ ).(5.32)

Therefore, using (5.16), (5.20), (5.27) and (5.32), we prove (5.14) and (5.15), hence finish

the proof of the variance estimate in (5.2).

APPENDIX: PROOFS OF PROPOSITION 2.7

In this appendix we prove a lower tail bound on the smallest eigenvalue of

Y z := (X − z)∗(X − z),

which can also be viewed as the square of the smallest singular value of X − z or as the

smallest (in modulus) eigenvalue ofHz , for a standard complex Ginibre matrixX . Recall that

the parameter δ := |z|2−1 monitors the distance of z from the unit circle. We point out that in

earlier papers [23, 22, 26, 27] we defined δ with an opposite sign (i.e. δ := 1− |z|2) because

in those works we were primarily focused on the regime where |z| ≤ 1. Proposition 2.7 in the

current paper our focus is on the regime |z|> 1 so δ is positive with the new definition.

A simple redefinition of the variable y shows that (2.23) is equivalent to

(A.33) PGin
(
(λz1)

2 ≤ x

n2δ

)
.

x

(nδ2)2/3
e−nδ2(1+O(δ))/2, 0≤ x≤C.

We point out that the (nδ2)−2/3 prefactor in (A.33) is not optimal, but it is sufficient for

our purposes. To make the presentation clearer here we present only the proof of the simpler

version (A.33), while the following remark explains the possible improvements.

REMARK A.2. First, the bound (A.33) should hold all the way up to x≤ c(nδ2)2 with

some small constant c, corresponding to the fact that (2.23) should hold up to y ≤ c, i.e. for

an entire regime comparable with the gap size of order δ3 in the spectrum of Y z . Second, we

can improve the bound (A.33) to

(A.34) PGin
(
(λz1)

2 ≤ x

n2δ

)
.

x

nδ2
e−nδ2(1+O(δ))/2, 0≤ x≤ C

(nδ2)2
,

by exploiting an extra improvement choosing a different contour along the proof (see Re-

mark A.5 below for a detailed explanation). A simple asymptotic expansion indicates that the

bound (A.34) is actually optimal.
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REMARK A.3. In Proposition 2.7 (and in Remark A.2) we presented the bound on (λz1)
2

for n−1/2 ≪ δ≪ 1 to make our presentation more concise. However, a similar analysis gives

an analogous bound for δ ∼ n−1/2 and δ ∼ 1 as well (see also [22, Section 5.2] for the case

δ ∼ n−1/2).

This rest of this section is devoted to the proof of Proposition 2.7 in the form of (A.33).

We present two arguments. Our first proof with all details relies on an explicit formula

for the eigenvalue correlation kernel for Y z from [13]. This approach is fairly elementary

but it works only for the complex symmetry class. An alternative method is based upon

the supersymmetric (SUSY) representation for the resolvent in [22] which also has a ver-

sion for the real symmetry class. We sketch the rigorous argument for the simpler complex

case and we comment on the considerably more cumbersome details of the real case. Note

that (A.33) is formulated for the complex case, the factor x is expected to be replaced with√
x+ x exp (−n

2 (Im z)2) as it was the case in [22, Corollary 2.4] for the |z| ≤ 1 regime (see

also [27, 26]).

FIRST PROOF OF PROPOSITION 2.7. By [13, Theorem 7.1] the correlation kernel for Y z

is given by (to make the notations consistent we set the dimension N ≡ n)

(A.35)

Kn(u, v) =
n3

iπ

∫

Γ
dζ

∫

γ
dwen[f(w)−f(ζ)]KB(2nζ

√
u,2nw

√
v)ζw

(
1− |z|2

(|z|2 −w2)(|z|2 − ζ2)

)
,

where Γ is any contour symmetric around 0 which encircles ±|z|2, γ is the imaginary axis

positively oriented 0→+∞, 0→−∞, and

(A.36) f(w) :=w2 + log(|z|2 −w2).

Here, for any x, y ∈C , the kernel KB is defined by

(A.37) KB(x, y) =
xI ′0(x)I0(y)− yI ′0(y)I0(x)

x2 − y2
,

with I0(x) being the zeroth modified Bessel function:

(A.38) I0(x) :=
1

π

∫ π

0
ex cos θ dθ.

Note that

KB(x, y) =KB(x,−y) =KB(−x, y) =KB(−x,−y)
as a consequence of I0, I ′0 being even and odd functions, respectively.

We are interested in the case when |z|2 = 1+ δ, with 1≫ δ≫ n−1/2, and u= v. In this

case the formula (A.35) reduces to

Kn(u,u) =
2n3

iπ

∫

Γ
dζ

∫

γ̂
dwen[f(w)−f(ζ)]KB(2nζ

√
u,2nw

√
u)ζw

(
1− 1 + δ

(1 + δ −w2)(1 + δ − ζ2)

)
,

f(w) =w2 + log(1 + δ −w2),

(A.39)

with γ̂ being the line 0→ i∞. We point out that here we used the symmetry with respect to

the variable w of the integrand in (A.35) to replace the contour γ by γ̂.

The main technical result is the following lemma:



42

LEMMA A.4. For any n−1/2 ≪ δ≪ 1 and u. 1/(n2δ) it holds

(A.40) Kn(u,u). n4/3δ−1/3e−nδ2(1+O(δ))/2.

Hence, for any 0≤ x. 1 we compute

PGin
(
(λz1)

2 ≤ x

n2δ

)
≤
∫ x/(n2δ)

0
K(λ,λ) dλ.

x

(nδ2)2/3
e−nδ2(1+O(δ))/2,

which concludes the proof of (A.33), hence Proposition 2.7.

We now conclude this section with the proof of Lemma A.4.

PROOF OF LEMMA A.4. By explicit computations we get

f ′(w) = 2w

(
1− 1

1 + δ−w2

)
.

We thus find that the saddles of f , i.e. the solutions of f ′(w∗) = 0, are given by w∗ ∈
{0,±

√
δ}. Additionally, by Taylor expansion, we get

(A.41) f(ζ) = δ− δ2

2
+ δζ2 − ζ4

2
+O(δ3 + |ζ|6).

Step 1: Deformation of the contours. We parametrize the γ̂-contour as w = is, with s ≥ 0,

then

f(is) =−s2 + log(1 + δ+ s2).

Note that by (A.41) it follows

(A.42) Re[f(is)] = f(is) = δ− δ2

2
− δs2 − s4

2
+O(δ3 + s6).

Additionally, simple calculus shows that the map

(A.43) s 7→Ref(is)

is decreasing for s≥ 0. In particular, this implies f(is)≤ f(0) = log(1 + δ) for any s≥ 0.

We choose the contour Γ to consist of two disjoint closed curves around
√
1 + δ and

−
√
1 + δ, respectively. We focus on the contour encircling

√
1 + δ, the other one can be

handled in the same way, hence we neglect it from the discussion. Next, we parametrize the

part of the Γ-contour lying on the region Re ζ > 0 as ζ =
√
δ + t± it, with t≥ 0. The curve

may be closed with a circular arc |ζ|=R with some very large R, this regime of integration

is negligible; for practical purposes we consider R=∞. Note that by (A.41) we get

(A.44) Ref(
√
δ+ t± it) = δ+2t4 +4

√
δt3 +O(δ3 + t6).

Additionally, by an elementary calculation, we have that

(A.45) t 7→Ref(
√
δ + t± it) = δ+ 2

√
δt+

1

2
log
[
1− 4

√
δt+8t2δ +4t4 + 8

√
δt3
]

is a strictly increasing function on t≥ 0, as a consequence of

d

dt
Ref(

√
δ+ t± it)≥ 0, t≥ 0;

the equality holds only for t= 0.
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Finally, along the chosen contours we compute

1− 1 + δ

(1 + δ −w2)(1 + δ− ζ2)

=
−(1 + δ)(2

√
δt± 2i(

√
δ+ t)t+ s2)− (δ + 2

√
δt± 2i(

√
δ + t)t)s2

(1 + δ+ s2)(1− 2
√
δt−±2it(

√
δ + t))

.(A.46)

Step 2. Estimates of the integrals along the contours. We split the analysis into four regimes:

(s, t) ∈ [0,K
√
δ]2, (s, t) ∈ [0,K

√
δ] × (K

√
δ,+∞), (s, t) ∈ (K

√
δ,+∞) × [0,K

√
δ],

(s, t) ∈ (K
√
δ,+∞)2. Here K > 0 is a large constant independent of n and δ that we will

choose shortly.

Regime (s, t) ∈ [0,K
√
δ]2: In this regime we start with the following expansion for the

kernel KB :

(A.47) KB(x, y) =
1

2π2
+O(|x|2 + |y|2),

which follows by standard asymptotic of modified Bessel functions for |x|, |y|. 1.

Since in our regime u. 1/(n2δ) and we have
∣∣∣∣1−

1 + δ

(1 + δ −w2)(1 + δ − ζ2)

∣∣∣∣.
√
δt+ s2

for s, t≤K
√
δ, by (A.46), together with w = is and ζ =

√
δ+ t± it we find that for (s, t) ∈

[0,K
√
δ]2 it holds

Kn(u,u). n3δ

(∫ K
√
δ

0
senδ−n δ2+s4+2δs2

2
+O(nδ3) ds

)(∫ K
√
δ

0
te−nδ−2nt4−4n

√
δt3+O(nδ3) dt

)

+ n3
√
δe−nδ

∫ K
√
δ

0
s3enδ−n δ2+s4+2δs2

2
+O(nδ3) ds

. n3δe−nδ2(1+O(δ)/2

(∫ K
√
δ

0
se−nδs2 ds

)(∫ K
√
δ

0
te−n

√
δt3 dt

)

+ n3
√
δ

∫ K
√
δ

0
s3e−nδs2 ds

. n4/3δ−1/3e−nδ2(1+O(δ))/2.

(A.48)

where we also used (A.42) and (A.44).

REMARK A.5. The improved bound (A.34) (compared to (A.33)) can by achieved by

choosing the γ̂-contour as in Step 1, i.e. w = is, and the Γ-contour to be any admissible

contour which is given by ζ =
√
δ + t± ict, with some 1 < c ≤ 2, for t≪

√
δ and by ζ =√

δ + t± it for t≫
√
δ. In particular an additional gain of a factor (nδ2)−1/3 is due to the

fact that for this new ζ-contour the expansion in (A.44) is replaced by

Ref(
√
δ+ t± ict) = δ+2(c2−1)t2δ+ t4

(
3c2 − 1

2
− c4

2

)
+2(3c2−1)

√
δt3+O(δ3+ t6).

In particular, the term 2(c2 − 1)t2δ, which non vanishes only for c > 1, in the exponent

ensures an additional gain (nδ2)−1/3 compared to (A.48) where we only gained using the

smaller (for t≪
√
δ) factor 2(3c2 − 1)

√
δt3.
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Regime (s, t) ∈ [0,K
√
δ]× (K

√
δ,+∞): We start with the bound

(A.49)
∣∣KB(x, y)

∣∣. e|y|,

for |x| . 1. We remark that a similar bound holds for |y| . 1 after replacing y by x in the

r.h.s. of (A.49).

Define

(A.50) g(t) := Ref(
√
δ + t± it)− δ,

then, by (A.45), it follows that t 7→ g(t) is strictly increasing on t≥ 0. Hence, using (A.43)

together with f(0) = log(1 + δ), we get

en[f(w)−f(ζ)] ≤ e−ng(t) ≤ e−Knδ2/4e−ng(t)/2,

where we used (A.45) to estimate one of the two e−ng(t)/2 factors.

Then, using that

|1 + δ − (
√
δ + t± it)2|2 & 1− 4

√
δt+8t2δ+ 4t4 +8

√
δt3 ≥ 1

2
,

we readily conclude

(A.51) Kn(u,u). n3δK2e−Knδ2/4

∫ ∞

K
√
δ
e−ng(t)/2et/

√
δt3 dt. e−Knδ2/8,

where we used (A.49), (A.50), and that
∣∣∣∣
δ− (ζ2 +w2) + ζ2w2

(1 + δ −w2)(1 + δ− ζ2)

∣∣∣∣. t2

uniformly in t in this regime. To ensure that the error term in (A.51) is smaller than our goal

in (A.40) we choose K ≥ 5.

Regimes (s, t) ∈ (K
√
δ,+∞)× [0,K

√
δ] and (s, t) ∈ (K

√
δ,+∞)2: Given the bound

∣∣KB(x, y)
∣∣. e|x|+|y|,

and using the monotonicity properties (A.43),(A.45) of Ref along the contours chosen

in Step 1, the analysis of these regimes is analogous to the regime (s, t) ∈ [0,K
√
δ] ×

(K
√
δ,+∞) and so omitted. In particular, the contribution of both these regimes is bounded

as in (A.51). Combining this fact with (A.48) and (A.51) we conclude the proof of

(A.40).

Next we sketch the alternative proof relying on SUSY.

SECOND PROOF OF PROPOSITION 2.7. The starting point is the following contour inte-

gral representation of the trace of the resolvent of Y z = (X − z)∗(X − z) for a complex

Ginibre matrix X at any spectral parameter w = E + iǫ, with E ∈ R, ǫ > 0, (see [22, Eq.

(28)]):

EGinTr
1

Y z −w
=
n2

2πi

∫ i∞

0
dx

∮
dy e−nf(x)+nf(y)y ·G(x, y),

G(x, y) :=
1

xy
− 1

(1 + x)(1 + y)

[
1 +

|z|2
1 + x

+
|z|2
1 + y

]
,

f(x) := log
1 + x

x
− |z|2

1 + x
−wx,

(A.52)
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where the x-integration is over the half imaginary axis and the y-integration is over a pos-

itively oriented circle around the origin that does not enclose −1. Since the integrand is

analytic away from 0 and −1, the integration contours can be freely deformed away from

these two singularities. We need to investigate the imaginary part of (A.52) in the regime

where

(A.53) 0≤E1/3 ≪ n−1/2 ≪ δ = |z|2 − 1, ǫ=+0,

to detect the density ρ(E) of eigenvalues (λz)2 of Y z atE≪ n−3/2 that would directly imply

(2.23). Here ǫ is an infinitesimally small positive regularization parameter, its only role is to

specify in which direction the x-contour goes out to infinity.

Typically, the large n asymptotics of such contour integral is obtained by saddle point anal-

ysis. Both contours are deformed through the saddle point x∗ of f , defined by f ′(x∗) = 0,

where a second order Taylor expansion is performed both for f and G and the main con-

tribution comes from the value of these functions and their derivatives at the saddle. The

exponential factors cancel and the result is typically polynomial in n. Among others, this

strategy is followed in our analysis in [22] for the regime δ = |z|2 − 1< 0, where we found

that the saddle has a non-zero imaginary part. The current regime (A.53) behaves quite dif-

ferently since now E≪ δ3 lies outside of the support of 1
π Immz(x+ i0) (see (2.17)), which

implies that the relevant saddle x∗ is on the positive real axis, in fact by a simple calculation

we have4

(A.54) x∗ = δ−1
[
1 + (E/δ3) +O(E/δ3)2

]

for the unique positive solution to f ′(x∗) = 0.

The spectral density at E is given by

(A.55)

ρ(E) :=EGin 1

π
ImTr

1

Y z −E − i0
=

1

2πi
EGin

[
Tr

1

Y z −E − i0
−Tr

1

Y z −E + i0

]
,

i.e. we need to evaluate the difference of two copies of (A.52) with an opposite sign in front

of the regularization ǫ. Note that G and large part of f is independent of ǫ, this parameter

appears only as a ±iǫx term in f(x) and is relevant only for the non-compact x-integration as

ǫ is infinitesimally small. We deform the x-contour to γ± := [0, a]∪ [a, a± i∞], where a > x∗
is a large real parameter, i.e. we first go from the origin along the real axis to a and then we

move vertically up or down depending on the sign in front of ǫ=+0 in (A.55). When taking

the difference in (A.55), the contributions of the x-integration from the horizontal segment

[0, a] exactly cancel. The only contribution comes from the opposite vertical x-integration

regimes, that can now be estimated separately, yielding the bound

(A.56) ρ(E). n2
∣∣∣
∫ a+i∞

a
dx

∮
dy e−nf(x)+nf(y)y ·G(x, y)

∣∣∣

that we need to estimate in the regime E . n−2δ−1 in order to prove (A.33). We choose

a := (nE)−1 and note that a≫ δ−1 since nδ2 ≫ 1, i.e. a≫ x∗ by using (A.54). Thus by

deforming the y contour to pass through the saddle x∗, the two contours will not intersect,

analogously to the situation in Step 1 of the previous proof.

The rest of the computation is a standard saddle point analysis for the y-integration. Us-

ing (A.54), in our regime of parameters we have

f(x∗) =−δ
2

2
(1 +O(κ)), f ′′(x∗) = 3δ4(1 +O(κ)), x∗ ·G(x,x∗) =

δ2

x

[
1 +O

( 1

δ|x|
)]

4In the first displayed formula in Section 6.2 of [22] we erroneously claimed that x∗ ≈ 3δ−1/2 in the regime

E ≪ δ3, the correct behavior is x∗ ≈ δ−1. This wrong factor does not influence the arguments in [22].
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uniformly, whenever x = a+ it, t ∈ [0,∞), with a small parameter κ := δ + 1/(nδ2)≪ 1.

This yields

ρ(E).
n2√

nf ′′(x∗)
enf(x∗)

∣∣∣
∫ a+i∞

a
dx e−nf(x)x∗ ·G(x,x∗)

∣∣∣

. n3/2e−nδ2(1+O(δ))/2
∣∣∣
∫ a+i∞

a
dx

e−nf(x)

x

[
1 +O

( 1

δ|x|
)]∣∣∣,

(A.57)

assuming for the moment that the main contribution comes from the y-region around the

saddle.

In the large x regime, where |x|= |a+ it| ≫ δ−1 we have the expansion

(A.58) f(x) =− δ

1 + x
−Ex+O(|x|−2).

Note that

−nRef(a+ it)≤ nδ

|a+ it| + nEa. 1, t ∈ [0,∞),

therefore the error terms in the integrand can be handled trivially and we have

(A.59)

∣∣∣
∫ a+i∞

a
dx

e−nf(x)

x

[
1+O

( 1

δ|x|
)]∣∣∣.

∣∣∣
∫ ∞

0
dt

einEt

a+ it

∣∣∣+
∣∣∣
∫ ∞

0
dt
δ−1 + nδ

|a+ it|2
∣∣∣. 1

using nδ/a= n2Eδ . 1. This yields ρ(E). n3/2e−nδ2(1+O(δ))/2 in the regimeE . n−2δ−1,

which gives (A.33) with a slightly weaker (nδ2)−1/2 prefactor instead of (nδ2)−2/3.

Finally, the y-integration in the regime away from the saddle is estimated by using mono-

tonicity of Ref(y) along an appropriate contour found by plotting the level sets of Ref . We

omit these uninteresting details.

Compared with (A.52), for the real case an analogous but more involved representation

formula holds, see [22, Eq. (34)–(36)]. It carries an additional integration variable τ ∈ [0,1]
related to the nontrivial dependence on Imz. The phase function f(y) involving the integra-

tion variable on the compact contour in (A.52) is also present in the real case; this gives the

critical e−nδ2/2 factor exactly as in the complex case. The analogue of the phase function

f(x) for the non-compact integration (called g in [22]) will now depend on the additional

parameter τ , but for the relevant regime of very large |x| its asymptotic expansion is similar

to f(x) in (A.58). Both phase functions depend trivially on ǫ, hence we have exactly the same

cancellation effect in (A.55) as in the complex case, thus we indeed need to consider only

the large |x| regime. The precise estimates analogous to (A.57)–(A.59) and the control of the

regimes far away from the saddle are more cumbersome and we do not pursue them in this

paper.
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[34] ERDŐS, L. and YAU, H.-T. (2017). A dynamical approach to random matrix theory. Courant Lecture Notes

in Mathematics 28. Courant Institute of Mathematical Sciences, New York; American Mathematical

Society, Providence, RI. MR3699468
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