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Abstract. We prove that the mesoscopic linear statistics
∑

i f(n
a(σi − z0)) of the eigenvalues {σi}i of large n × n non-

Hermitian randommatrices with complex centred i.i.d. entries are asymptotically Gaussian for anyH2
0 -functions f around any

point z0 in the bulk of the spectrum on any mesoscopic scale 0 < a < 1/2. This extends our previous result [13], that was
valid on the macroscopic scale, a = 0, to cover the entire mesoscopic regime. The main novelty is a local law for the product

of resolvents for the Hermitization of X at spectral parameters z1, z2 with an improved error term in the entire mesoscopic

regime |z1 − z2| ≫ n−1/2 . The proof is dynamical; it relies on a recursive tandem of the characteristic flow method and the

Green function comparison idea combined with a separation of the unstable mode of the underlying stability operator.

1. Introduction

We consider the eigenvalues {σi}ni=1 of ann×n randommatrixX with i.i.d. entries under the standard normalisation
condition Exij = 0, E |xij |2 = 1

n . The classical circular law [28, 5, 47] asserts that the empirical eigenvalue density
converges to the uniform distribution on the unit diskD:

1

n

n∑

i=1

f(σi) →
1

π

∫

D

f(z) d2z, n→ ∞, (1.1)

for any continuous bounded test function f . In fact this limit also holds on any mesoscopic scale by the local circular law
[10], i.e.

n2a

n

n∑

i=1

f
(
na(σi − z0)

)
→ 1

π

∫

C

f(z) d2z, 0 < a <
1

2
, (1.2)

where the compactly supported C2 test function is scaled to concentrate on an n−a-neighborhood of any fixed point in

the bulk spectrum |z0| < 1. The threshold a < 1/2 is sharp since on scales of order n−1/2 there are only finitely many
fluctuating eigenvalues hence a law of large number type concentration cannot hold.
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In this paper we prove a central limit theorem (CLT) for the fluctuation around the local circular law (1.2) for complex
i.i.d. matrices, i.e. we show that

n∑

i=1

f
(
na(σi − z0)

)
− n

n2a

1

π

∫

C

f(z) d2z − 1

8π

∫

C

∆f(z) d2z =⇒ L(f) ∼ NC, 0 < a <
1

2
, (1.3)

and compute the varianceE|L(f)|2 = ‖∇f‖2/4π of the limiting normal distribution. Note the unusual normalisation:

the sum in (1.3) contains roughly n1−2a terms, but it is not divided by
√
n1−2a unlike for the standard CLT for sums

of independent random variables. The eigenvalues σi are strongly correlated, and their fluctuations are much smaller
than that of an independent point process (e.g. Poisson). It is very remarkable that nevertheless the normal distribution
emerges; in fact these eigenvalues asymptotically follow aGaussian Free Field (GFF), a logarithmically correlatedGaussian
process.

The CLT on the macroscopic scale, a = 0, around the circular law (1.1),

n∑

i=1

f(σi)−
n

π

∫

D

f(z) d2z +
κ4
π

∫

D

f(z)(2|z|2 − 1) d2z − 1

8π

∫

C

∆f(z) d2z =⇒ L(f) ∼ NC, (1.4)

has been proven earlier with a long history. Here κ4 := n2
[
E|xij |4 − 2(E|xij |2)2 − |E x2ij |2

]
denotes the normalised

joint cumulant of xij , xij , xij , xij . Historically the first results were for the complex Ginibre ensemble, i.e. when xij are
complex Gaussians (and therefore κ4 = 0); in this case an explicit formula for the joint density function of all eigenvalues
is available. Forrester in [26] proved (1.4) for radially symmetric f , he found E|L(f)|2 = (4π)−1

∫
D
|∇f |2 d2z and gave

a heuristic prediction that the variance E|L(f)|2 contains an additional boundary term for general f . Rider and Virág
in [43] have rigorously verified Forrester’s prediction for any f ∈ C1(D) and they also presented a GFF interpretation
of the result. Rider in [41] also considered special indicator test functions depending only on the angle or on the modulus
that are not inH1(D) even in the mesoscopic regime withE|L(f)|2 growing as logn.

Beyond the explicitly computable complex Ginibre case the first result was obtained by Rider and Silverstein [42,
Theorem 1.1]. They proved (1.4) for X with general i.i.d. complex matrix elements but only for test functions f that are
analytic on an unnaturally large disk of radius 2. In the real symmetry class the domain of analyticity was optimized in [40]
and the result was also extended to elliptic ensembles allowing correlation between xij and xji . Later even products of i.i.d.
matrices were considered in [22]. Alternatively, the moment method was used in [39] to prove CLT with polynomial test
functions f . Beyond analytic test functions, Nguyen and Vu in [38] proved a CLT for f = log and X with i.i.d. entries;
Tao and Vu in [48, Corollary 10] proved CLT for the counting function on balls even on mesoscopic scales assuming the
first four moments ofX match those of the complex Ginibre ensemble. The comparison method from Tao and Vu was
extended by Kopel [32, Corollary 1] to general smooth test functions and also to realX with an additional study on the real
eigenvalues (see also [46]). Finally, the macroscopic CLT (1.4) in full generality, i.e. for matrices with general i.i.d. entry
distribution and general smooth (in fact H2+δ) test functions, has been proven by us in [13] and in [16] for the complex
and real cases, respectively. For more details on the history of the circular laws (1.1)-(1.2) and the macroscopic CLT (1.4),
as well as several further references, see [13, 16].

Apart from [41] that holds only for complex Ginibre with special test functions and apart from [48, Corollary 10] that
assumes four matching moments and test functions being the indicator functions of mesoscopic balls, all previous CLT
results were onmacroscopic scales. The extension tomesoscopic scales (1.3) is clearly not feasible withmomentmethod or
with methods relying on the analyticity of the test function. Direct calculations based upon the explicit Ginibre formulas
beyond the special test functions in [41, 48] may be possible also for mesoscopic scales but their extension to the general
i.i.d. case would again require four moment matching.

In this paper we demonstrate that our approach in [13, 16] can be extended to cover the entire mesoscopic regime. For
simplicity, weworkwith the complex symmetry class, the real case requires additional technical steps that wewill explain
in Remark 3.6 but do not carry out in details. To highlight the novelty of the current proof, we briefly recall the main
ideas in [13]. The starting point is Girko’s formula,

∑

σ∈Spec(X)

f(σ) = − 1

4π

∫

C

∆f(z)

∫ ∞

0

ℑTrGz(iη) dη d2z, (1.5)
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expressing the linear statistics of the non-Hermitian eigenvalues ofX in terms of the resolventGz(w) := (Hz − w)−1

of the HermitisationHz ofX ,

Hz :=

(
0 X − z

X∗ − z 0

)
(1.6)

parametrized by z ∈ C. Note that Girko’s formula requires to understand the resolventGz(iη) very well for arbitrary
small η, even for the macroscopic CLT.

The different η-regimes in (1.5) require very different methods.

Sub-critical η ≪ 1/n: The absence of eigenvalues ofHz in [−η, η] is proved using smoothing inequalities for the lower
tail of the lowest eigenvalue [44, 49, 50] (see also [12, 18, 45]). This regime is handled exactly as in the macroscopic
case [13, 16].

Critical η ∼ 1/n: The asymptotic independence of resolvents for |z1 − z2| ≫ 1/
√
n is proved dynamically using

the Dyson Brownian motion (DBM) technique. Our new result is the asymptotic orthogonality of the low-lying
eigenvectors ofHz1 andHz2 . Once this key input is established, the proof proceeds exactly as in [16] following the
coupling technique and the homogenization idea thatwere first introduced in [8] forWignermatrices, substantially
generalized later in [35] for general DBM (see also [7]), and adapted to Hz in [11]. The almost orthogonality of
eigenvectors implies the almost independence of the driving Brownian motions in the DBM for λz1 and λz2 .

Super-critical η ≫ 1/n: A central limit theorem for resolvents is established using iterated cumulant expansions. The
covariance of TrGz1(iη1) and TrG

z2(iη2) for different parameters z1 6= z2 depends critically on the product of
resolventsTrGz1(iη1)G

z2(iη2) which we evaluate to high precision using our new multi-resolvent local laws.

We now explain the novelty of the presentwork for the critical and super-critical regime in form of an improvedmulti-
resolvent local law. The conventional single resolvent local law asserts thatGz(iη) can be approximated deterministically
by an explicitly computable matrixMz(iη) (see (3.4)) up to a negligible error as long as |η| ≫ 1/n:

1

2n

∣∣∣Tr
[
Gz(iη)−Mz(iη)

]∣∣∣ . nξ

n|η| (1.7)

holds with very high probability for any fixed ξ > 0.
While single resolvent local laws are well understood, their multi-resolvent versions are much more subtle. The naive

intuition from (1.7) would suggest that Gz1(iη1)G
z2(iη2) ≈ Mz1(iη1)M

z2(iη2), but this is wrong. The correct deter-
ministic approximation of Gz1(iη1)G

z2(iη2) is M12 := B−1
12 [M

z1(iη1)M
z2(iη2)], where B12 is the stability operator,

given explicitly in (3.13). This operator has a small eigenvalue β of order |z1 − z2|2 + η1 + η2. The key question is the
error term in this approximation.

Setting η1 = η2 =: η > 0 for simplicity, one may guess (and we prove below) the bound

1

2n

∣∣∣Tr
[
Gz1(iη)Gz2(iη)−M12

]∣∣∣ . nξ

nη2
. (1.8)

If z1 = z2, then this bound is essentially optimal and in this caseM12 ∼ 1/η since β ∼ η. However, when f in (1.5) is

mesoscopically supported, then typically we have |z1 − z2| ∼ n−a ≫ n−1/2 in the calculation of the variance of (1.5).
In this caseM12 ∼ [|z1 − z2|2 + η]−1, i.e. for η’s such that 1/n ≪ η ≪ |z1 − z2|2 ∼ n−2a, the bound onM12 is
already smaller than 1/η. One therefore expects that the error term (1.8) also improves in this regime and indeed we need
some improvement to handle the η ≫ 1/n regime when computing higher moments of (1.5). The main technical result
in our proofs of the macroscopic CLT was [13, Theorem 5.2], asserting that the error in (1.8) improves by a factor n−ǫ1

if |z1 − z2| ≥ n−ǫ2 for some small ǫ1, ǫ2. This improvement, however, does not apply to genuine mesoscopic scales
when |z1 − z2| ∼ n−a ≪ n−ǫ2 . In Theorem 3.3 of this paper we present a substantial improvement of [13, Theorem

5.2], essentially asserting that the error in (1.8) can be improved by a factor n−ǫ1 as long as |z1 − z2| ≥ n− 1
2+ǫ2 , i.e. the

improvement is present in the entire mesoscopic regime.
We stress that (1.8) even without any additional improvement is new in the mesoscopic regime and its proof is highly

nontrivial. Multi-resolvent local laws of the form (1.8) for products of resolventsG(z) = (W − z)−1 of Wigner matrices
W at different spectral parameters have been proven earlier (see e.g. [21, Theorem 3.4] and its refinements in [15, Propo-
sition 3.4], [17, Proposition 5.1], [19, Theorem 2.5], and [20, Theorem 2.2]). However, these proofs rely on the fact that both
resolvents stem from the same Hermitian matrix hence they have the same spectral resolution. This allowed us to use
resolvent identities to express products of resolvents in terms of their first powers and thus prevent the instability of the
operator B12 from influencing the error terms. Practically, multi-resolvent local laws were reduced to well established
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single resolvent local laws by algebraic identities1. The spectral resolution ofHz1 and Hz2 , however, are different even
though they are defined via the same matrix X . Lacking the convenient resolvent identity, the previous methods would
involve inverting B12 even along its unstable direction which would lead to an error term that is bigger than (1.8) by a
large multiplicative factor |β|−1. This was still affordable in the proof of the macroscopic CLT since in the typical regime
we had |z1 − z2| ∼ 1, hence |β|−1 ∼ 1 was harmless. The mesoscopic regime requires a completely new approach,
which allows us to deal with the unstable direction of the stability operator in a novel way completely circumventing the
resolvent identity.

The proof of our improved multi-resolvent local law relies on the characteristic flow method that has previously been
used for single-resolvent local laws and closely related quantities in various models in [30, 1, 33, 2, 34, 9, 7]. To our best
knowledge, this method has not been applied in a multi-resolvent setup before with the exception of [9, Proposition 4.5]
where the product of special time-evolved resolvents at two different times was considered.

The key idea in the characteristic flow method is to consider an Ornstein-Uhlenbeck flowXt with initial condition
X0 = X and follow the time evolution of its Hermitised resolvent Gt , but at time evolved spectral parameters zt and
ηt. These parameters satisfy a natural first order differential equation (the characteristic flow equation) that is chosen so
that the leading terms in the flow TrG

z1,t
t (iη1,t)G

z2,t
t (iη2,t) cancel out. In particular, unlike previous results using the

characteristic flow method, we consider a matrix version of the characteristics (see (A.18)) for the first time in the random
matrix setting, which we believe to be useful also for much more general random matrix ensembles. Along this flow
ηt > 0 decreases. In this way one can transfer a local law (1.8) from large η > 0 to a similar local law for much smaller
η > 0 at the expense of adding a Gaussian component to the entry distribution of X but without an additional |β|−1

factor, see Proposition 5.3. Furthermore, when η becomes smaller than the threshold |z1 − z2|2 , one η−1/2 factor in the

right hand side of (1.8) switches to the better |β|−1/2 ∼ |z1 − z2|−1 factor, explicitly bringing in the improvement we
were looking for. Next, we need to remove the added Gaussian component by fairly standard Green function comparison
arguments, however maintaining the improved precision in the error term requires nontrivial extra work. Technically
we do this via a recursive tandem: we successively reduce η by small steps and we immediately remove the Gaussian
component before further reduction in η. The regimes η & |z1 − z2|2 and η . |z1 − z2|2 need separate estimates.

Remark 1.1. We mention that with a similar (in fact simpler) scheme it is possible to give an alternative short proof of the
single resolvent local for Gz(iη) as well, see (3.6) later. The recursive tandem of the characteristic flow and the GFT offers an
alternative proof to many existing optimal local laws and it seems to be more powerful than previous methods in many situations.
For the sake of brevity of the current paper we refrain from demonstrating this idea for Gz(iη) since the optimal local law in
this case has already been established.

The multi-resolvent local law Theorem 3.3, the improved version of the local law (1.8), is also the key novel input for
the critical η-regime and implies the almost orthogonality of eigenvectorswz

i ofH
z in the entire mesoscopic regime:

|〈wi
z1 ,wj

z2〉| ≤ n−ǫ1 , |z1 − z2| ≫ n−1/2+ǫ2 , (1.9)

for any i, j, and a similar bound for the singular vectors ofX − z, see Lemma 3.1. The analogous result was proven only
for |z1 − z2| ≫ n−ǫ in [13, 16].

We remark that the relation (1.9) together with the closely related almost independence of the low lying eigenvalues
λz1 and λz2 are of substantial interest in themselves, independently of the proof of the mesoscopic CLT. Since low lying
eigenvalues ofHz are intuitively related to the eigenvalues ofX near z, the above relations indicate that the local spectral
behavior of X near z1 and z2 are largely independent as long as |z1 − z2| ≫ n−1/2, in other words the “correlation

length” in the spectrum ofX is n−1/2. We stress that currently we do not know how to turn this intuition into a rigorous
proof for general i.i.d. ensemble since our results concern only the eigenvalues and eigenvectors of the Hermitisation of
Hz , equivalently, the singular values and singular vectors of X − z for any fixed (deterministic) z, and not directly the
eigenvalues and eigenvectors ofX .

We note that for Ginibre ensemble the explicit two point eigenvalue correlation function exhibits an exponential

decay for |z1 − z2| ≫ n−1/2 and the eigenvector overlap of eigenvectors belonging to two different eigenvalues of X
has been explicitly computed in [27, 6], effectively proving a polynomial decay of correlation of eigenvectors beyond the
scale n−1/2 in the spectrum ofX . The extension of these results to i.i.d. matrices remains an outstanding open problem,

1The analysis was more complicated when deterministic matricesA1, A2, . . .were also present, i.e. we considered local laws forG1A1G2A2 . . ..
In this case we split A’s into a diagonal and a traceless part; the former was handled by resolvent identities, while on traceless matrices the stability

operator has bounded inverse. In nutshell, we still circumvented the instability of B−1
12 by resolvent identities in the Wigner case.
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closely related to the unsolved bulk universality conjecture2 for the local eigenvalue statistics of an i.i.d. matrix X , which
represents the non-Hermitian analogue of the celebrated Wigner-Dyson-Mehta universality for Wigner matrices [25].

Notations and conventions. We introduce some notations we use throughout the paper. For integers k ∈ N we
use the notation [k] := {1, . . . , k}. We write D ⊂ C for the open unit disk, and for any z ∈ C we use the notation
d2z := 2−1i(dz∧dz) for the two dimensional volume form onC. For positive quantities f, gwewrite f . g and f ∼ g
if f ≤ Cg or cg ≤ f ≤ Cg, respectively, for some constants c, C > 0 which depend only on the constants appearing
in (2.1) and on a, τ in (2.3). For any two positive real numbers ω∗, ω∗ ∈ R+ by ω∗ ≪ ω∗ we denote that ω∗ ≤ cω∗

for some small constant 0 < c ≤ 1/100. We denote vectors by bold-faced lower case Roman letters x,y ∈ Ck, for
some k ∈ N. Vector andmatrix norms, ‖x‖ and ‖A‖, indicate the usual Euclidean norm and the corresponding induced
matrix norm. For any d×dmatrixAwe use the notation 〈A〉 := 1

d TrA to denote the normalized trace ofA. Moreover,

for vectors x,y ∈ Cn and matrices A,B ∈ C2n×2n we define the scalar product

〈x,y〉 :=
∑

i

xiyi, 〈A,B〉 := 〈A∗B〉.

For an open set Ω ⊂ C, by H2
0 (Ω) we denote the Sobolev space defined as the completion of the smooth compactly

supported functions C∞
c (Ω) under the norm

‖f‖H2
0(Ω) =

(∫

Ω

∣∣∇f(z)
∣∣2 d2z

)1/2

.

We will use the concept of “with very high probability” meaning that for any fixed D > 0 the probability of the event is
bigger than 1 − n−D if n ≥ n0(D). Moreover, we use the convention that ξ > 0 denotes an arbitrary small exponent
which is independent of n. We introduce the notion of stochastic domination (see e.g. [23]): given two families of non-
negative random variables

X =
(
X(n)(u)

∣∣∣ n ∈ N, u ∈ U (n)
)

and Y =
(
Y (n)(u)

∣∣∣ n ∈ N, u ∈ U (n)
)

indexed by n (and possibly some parameter u in some parameter space U (n)), we say thatX is stochastically dominated
by Y , if for all ξ,D > 0 we have

sup
u∈U(n)

P
[
X(n)(u) > nξY (n)(u)

]
≤ n−D (1.10)

for large enough n ≥ n0(ξ,D). In this case we use the notationX ≺ Y orX = O≺(Y ).

Acknowledgement. The authors are grateful to Joscha Henheik for his help with the formulas in Appendix B.

2. Main result

Let X be an n × n matrix with independent identically distributed (i.i.d.) complex entries such that xab
d
= n−1/2χ

for some complex random variable χ, satisfying the following:

Assumption 1. The random variable χ satisfiesEχ = Eχ2 = 0 andE|χ|2 = 1. In addition we assume the existence of its
high moments, i.e. that there exist constants Cp > 0, for any p ∈ N, such that

E|χ|p ≤ Cp. (2.1)

We focus on the complex symmetry class, see Remark 3.6 for the necessary modifications for the real case.
Denote by {σi}i∈[n] the eigenvalues ofX , and consider the centered linear statistics

Ln(fz0,a) :=
∑

i

fz0,a(σi)−E
∑

i

fz0,a(σi), (2.2)

with

fz0,a(z) := f
(
na(z − z0)

)
, a ∈

(
0,

1

2

)
, |z0| ≤ 1− τ, (2.3)

for some small fixed τ > 0. Here f ∈ H2
0 (Ω)with a compact setΩ ⊂ C. We already mentioned in the introduction that

the sum in Ln(fz0,a) contains roughly n
1−2a summands but it is not normalized by (n1−2a)−1/2 unlike in the standard

CLT for independent summands.

2The same universality at the edge of the spectrum along the unit circle has been proven in [14].
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The main result of this paper is the following Central Limit Theorem for all mesoscopic scales.

Theorem 2.1. Let X be an n× n matrix satisfying Assumption 1, fix a small τ > 0, and let |z0| ≤ 1 − τ and a ∈ (0, 12 ).

Let fz0,a be defined as in (2.3), with f ∈ H2
0 (Ω) for some a compact set Ω ⊂ C. Then Ln(fz0,a) converges (in the sense of

moments3 and therefore in distribution) to a complex Gaussian random variable L(f),

Ln(fz0,a)
m
=⇒ L(f),

with expectation EL(f) = 0, and second moments E |L(f)|2 = C(f, f), EL(f)2 = C(f, f), where

C(g, f) :=
1

4π
〈∇g,∇f〉L2(Ω). (2.4)

Moreover, the expectation is given by

E
∑

i

fz0,a(σi) =
n1−2a

π

∫

C

f(z) d2z +
1

8π

∫

C

∆f(z) d2z +O
(
n−2a + n−c

)
, (2.5)

for some small fixed c > 0. The implicit constant in O(·) may depend on ‖∆f‖L2(Ω), and |Ω|.
Remark 2.2.

(i) In Theorem 2.1 we stated the CLT for the mesoscopic regime a ∈ (0, 1/2). The complementary regime a ∈ [0, ǫ], for
some small fixed ǫ > 0, was already covered in [13, Remark 2.6] (in fact that proof also holds on any almost macroscopic
scale where the power function na in (2.3) is replaced with any sequence Cn → ∞, Cn ≤ nǫ).

(ii) Note that in the macroscopic regime, a = 0, both asymptotic variance and expectation of Ln(f) depend on the fourth
cumulant κ4 = κ4(χ) = E|χ|4 − 2(E|χ|2)2 of the entry distribution, c.f. [13, Theorem 2.2]. The fact that in the
mesoscopic regime the CLT only depends on the first two moments of χ is yet another manifestation of the effect that
local properties of the spectrum are more universal than global properties.

Remark 2.3 (Gaussian Free Field). We recall from [13, Section 2.1] that in the macroscopic case a = 0 for κ4 ≥ 0 the limiting
Gaussian process L could be interpreted as

L =
1√
4π
Ph+

√
κ4(〈·〉D − 〈·〉∂D)Ξ, (2.6)

where Ph is the projection of the Gaussian free field (GFF) h on some bounded domain Ω ⊃ D conditioned to be harmonic in
the complement Dc of the unit disk D, Ξ is a standard real Gaussian variable, independent of h, and 〈·〉D, 〈·〉∂D denote the
averaging functionals onD, ∂D.

By Theorem 2.1 we can now conclude that in the bulk on all mesoscopic scales 0 < a < 1/2,

L =
1√
4π
h (2.7)

for some h in the equivalence class of the whole-plane GFF (which is only defined modulo additive constants), see e.g. [37, Section
2.2.1]. Compared to the macroscopic case, however, this interpretation is also valid for κ4 < 0.

Remark 2.4. By polarization we also conclude a multivariate CLT. In fact, our proof actually gives the joint Gaussianity of

Ln(f
(1)
z1,a1

), Ln(f
(2)
z2,a2

), . . . , Ln(f
(p)
zp,ap

), p ∈ N,

for the rescaled versions f
(i)
zi,ai(z) := f (i)(nai(z−zi)) of different test functions f (i) ∈ H2

0 (Ω) around fixed reference points
zi with |zi| ≤ 1 − τ and scales ai ∈ (0, 1/2) that are not necessarily equal. In particular, from our proof below (especially

around (4.4)) one can easily see that ELn(f
(i)
zi,ai)Ln(f

(j)
zj,aj ) can be non-zero (in the limit n→ ∞) only if ai = aj , zi = zj

and supp(f (i)) ∩ supp(f (j)) 6= ∅.
Remark 2.5. In Theorem 2.1 we assumed f ∈ H2

0 (Ω) for simplicity, but in fact the somewhat weaker regularity condition
of the form supp(f) ⊂ Ω with ∆f ∈ L1+δ(Ω) for any fixed δ > 0 and compact Ω suffices. By the Calderon-Zygmund

inequality, this condition implies f ∈W 2,1+δ
0 (Ω), hence f ∈ H1(Ω) as well, and these conditions are sufficient for our proof.

Note that the assumption f ∈ H1(Ω) is necessary to make sure that the variance in (2.4) is finite; in particular, this implies
that our regularity condition on f is close to being optimal.

3We say that a sequence of random variables Yn converges to Y∞ in the sense of moments, Yn
m
=⇒ Y∞, ifE |Yn|k = E |Y∞|k +O(n−c(k)) for

any k ∈ N for some small c(k) > 0. Even if not stated explicitely, the implicit constant inO(·)may depend on k.
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3. Proof strategy

To analyze the linear statistics in (2.2) for the test function fz0,a given in (2.3), we rely on Girko’s formula [28] in the
form used in [48]:

Ln(fz0,a) =
1

4π

∫
∆fz0,a(z)

[
log
∣∣det(Hz − iT )

∣∣+ i

(∫ η0

0

+

∫ ηc

η0

+

∫ T

ηc

)[
Tr[Gz(iη)]−ETr[Gz(iη)]

]
dη

]
d2z

=: JT (fz0,a) + Iη0

0 (fz0,a) + Iηc
η0
(fz0,a) + ITηc

(fz0,a),
(3.1)

where we choose the integration thresholds

η0 := n−1−δ0 , ηc := n−1+δ1 ,

for some small δ0, δ1 > 0 and we set T = n100. We recall the HermitisationHz ofX − z given by

Hz :=

(
0 X − z

(X − z)∗ 0

)
, (3.2)

and its resolvent Gz(w) := (Hz − w)−1 , with w ∈ C \ R. By spectral symmetry, the eigenvalues of Hz come
in opposite pairs, so we label them as {λz±i}i∈[n] where λ

z
−i = −λzi . The corresponding orthonormal eigenvectors

{wz
±i}i∈[n] consequently decompose into two n-vectors with symmetry {wz

±i}i∈[n] = {(uz
i ,±vz

i )}i∈[n] and with

‖uz
i ‖2 = ‖vz

i ‖2 = 1/2.
We have split (3.1) into the sum of four terms and each of them will be analyzed using different techniques. The term

JT will easily be estimated as in [4, Proof of Theorem 2.3], whilst the fact that Iη0

0 is negligible will follow by smoothing
inequalities for the smallest singular value ofX − z (see [49, Theorem 3.2]). To estimate Iηc

η0
, which is the regime when η

is proportional to the level spacing of the eigenvalues ofHz around zero, we will need the asymptotic independence of

TrGz1 and TrGz2 for |z1 − z2| ≫ n−1/2 (see Proposition 3.5 below). The proof of this proposition is analogous to [13,
Section 7] relying on the Dyson Brownian motion, once the following asymptotic orthogonality of the singular vectors
ofX − z1 andX − z2 is proven.

Theorem 3.1. Let {wzl
±i}ni=1 = {(uzl

i ,±v
zl
i )}ni=1 be the eigenvectors of H

zl for l = 1, 2. Then for any sufficiently small

ωd, ωp > 0 there exist ωB, ωE > 0 such that if n−1/2+ωp ≤ |z1 − z2| ≤ n−ωd , then
∣∣〈uz1

i ,u
z2
j 〉
∣∣+
∣∣〈vz1

i ,v
z2
j 〉
∣∣ ≤ n−ωE , 1 ≤ i, j ≤ nωB , (3.3)

with very high probability.

The proof of this theorem is presented in SectionA.2; itwill be a simple consequence of the new two–resolvent local law
for TrGz1(iη1)G

z2(iη2) given in Theorem 3.3 below. Finally, the leading contribution to Ln(f) comes from the regime
ITηc

, which thus needs to be computed more precisely by identifying all its moments. This is done first for the resolvent
in Proposition 3.4 and later we extend it to the z− and η-integrals of the resolvent according to Girko’s formula. The
fundamental input to prove Proposition 3.4 will be again our new local law from Theorem 3.3.

Before stating the new two–resolvent local law for TrGz1Gz2 we recall the local law for a single resolvent. In the
regime |ℑw| ≫ 1/n the resolventGz(w) has a deterministic leading term. This deterministic approximation is given by

Mz(w) :=

(
mz(w) −zuz(w)
−zuz(w) mz(w)

)
, uz(w) :=

w

w +mz(w)
, (3.4)

withmz being the unique solution of the scalar equation, with a side condition,

− 1

mz(w)
= w +mz(w)− |z|2

w +mz(w)
, ℑmz(w)ℑw > 0. (3.5)

HereMz =Mz(w) is a 2n× 2n block constantmatrix, i.e. it has a 2× 2 block structure with each block being a constant
multiple of the n×n identity. We remark that throughout this paper by 2× 2 blockmatrices we always refer to 2n× 2n
matrices which consists of four n × n blocks. Furthermore, we will say that a matrix A ∈ C2n×2n is block traceless if
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it is a 2 × 2 block matrix such that the trace of each of its blocks is equal to zero. We will work on the imaginary axis,
ℜw = 0, as required in Girko’s formula. More precisely, we have the following average and isotropic local laws from [3]

|〈A(Gz(iη)−Mz(iη))〉| ≺ ‖A‖
n|η| , |〈x, (Gz(iη)−Mz(iη))y〉| ≺ ‖x‖‖y‖√

n|η|
(3.6)

for any deterministic matrix and vectors A,x,y, uniformly in |η| ≥ n−1+ǫ and |z| ≤ 1− τ . Furthermore, using trivial
computations, along the imaginary axis we have the expansion formz, uz :

Lemma 3.2. Fix small η, τ > 0, z such that |z| ≤ 1− τ , letmz(iη) be the unique solution of (3.5), and let uz(iη) be defined
as in (3.4). Then, we have

mz(iη) = i
√
1− |z|2 + iη

2|z|2 − 1

2(1− |z|2) +O(η2),

uz(iη) = 1− η√
1− |z|2

+O(η2).
(3.7)

The implicit constant in O(·) depends on τ .
The deterministic approximationMz comes from the unique solution of the matrix Dyson equation

−[Mz(w)]−1 =

(
w z
z̄ w

)
+ S[Mz(w)], w ∈ C \R

with the side condition (ℑw)ℑMz(w) > 0. Here S is the covariance operatorwhich acts on any matrixR ∈ C2n×2n as4

S[R] :=
(
〈R22〉 0
0 〈R11〉

)
i.e. S[R] = 2〈RE2〉E1 + 2〈RE1〉E2 = 〈R〉 − 〈RE−〉E−, (3.8)

whereRij , with i, j ∈ [2] are the four blocks ofR. In the second formula we expressed S in a basis representation, where
we set E− := E1 − E2 and we defined the 2× 2 block constant matrices

E1 :=

(
1 0
0 0

)
, E2 :=

(
0 0
0 1

)
, F :=

(
0 0
1 0

)
. (3.9)

Note that {
√
2E1,

√
2E2,

√
2F,

√
2F ∗} is an orthonormal basis of the 2× 2 block constant matrices.

The averaged (tracial) version of our key two–resolvent local contained in the following theorem.

Theorem 3.3. Fix small ǫ, τ, ωd > 0, independent of n and let z1, z2 ∈ C such that |zi| ≤ 1 − τ and |z1 − z2| ≤ n−ωd ,
then for any deterministic matrices A,B it holds

∣∣〈(Gz1(iη1)AG
z2(iη2)−MA

12)B〉
∣∣ ≺ 1

nη
3/2
∗ (η∗)1/2

(
η
1/6
∗ + n−1/10 +

1√
nη∗

+

(
η∗

η∗ + |z1 − z2|2
)1/4

)
, (3.10)

with

MA
12 =MA

12(z1, iη1, z2, iη2) := (1−M1S[·]M2)
−1[M1AM2], Mj :=Mzj(iηj), j = 1, 2, (3.11)

and η∗ := |η1| ∧ |η2|, η∗ := |η1| ∨ |η2|. The bound in (3.10) holds uniformly for any matrices A,B with ‖A‖+ ‖B‖ . 1
and for η∗ ≥ n−1+ǫ. Additionally, for the deterministic term in (3.10) we have the bound

‖MA
12‖ .

1

|z1 − z2|2 + η∗
. (3.12)

The proof of Theorem 3.3 will be divided into two steps: (i) in Section 5 we use the characteristics flow (see the intro-
duction for relevant references using this method) to show that if we know (3.10) for large η’s then we can propagate the
same bound to smaller η’s at the expense of adding a Gaussian component toX (this will be used with an initial η ∼ 1),
(ii) in Section 6 we use a Green function comparison argument (GFT) to remove the Gaussian component added in (i).

4Here we recall the convention that for any A ∈ Cd×d we use the notation 〈A〉 = d−1Tr[A]. For example, 〈R〉 = (2n)−1Tr[R] and
〈R11〉 = n−1Tr[R11].
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As we already pointed out in the introduction, the local law in (3.10) is a significant improvement compared to [13,
Theorem 5.2]. The main difference is that the error term in [13, Theorem 5.2] contained an additional large factor ‖B−1

12 ‖,
the norm of the inverse of the stability operator

B12 := 1−M1S[·]M2 (3.13)

acting on C2n×2n matrices. As we have ‖B−1
12 ‖ ∼

[
|z1 − z2|2 + |η1| + |η2|

]−1
, this factor was affordable in [13]

since there we considered the regime |z1 − z2| ≥ n−ǫ but it would be badly not affordable in the current situation

|z1 − z2| ≥ n−1/2+ǫ. The removal of the factor ‖B−1
12 ‖, hence getting an improved bound for any |z1 − z2| ≥ n−1/2+ǫ,

is the main achievement of the new characteristic flow technique. In connection with this improvement, the range of η
has also been improved: the estimate in (3.10) holds uniformly in η∗ ≥ n−1+ǫ while the local law [13, Theorem 5.2] holds
only for η∗ ≥ n−1+ǫ|z1−z2|−2, which in the currentmesoscopic case can be basically order one, rendering the estimate
useless. Furthermore, the error term in (3.10) is better than the one in [13, Theorem 5.2] even in the almost macroscopic
regime |z1 − z2| ≥ n−ǫ for certain values of η∗. Finally, for a complete comparison we also mention that [13, Theorem
5.2] was valid for all z values, including the edge regime |z| ≈ 1 of the circular law, while for technical convenience we
restricted Theorem 3.3 to the bulk regime |z| ≤ 1− τ .

We stated only the averaged (tracial) version of the two–resolvent local law since this is needed in the proof of ourmain
result Theorem 2.1. However our method would also give an isotropic local law for the matrix elements 〈x, G1AG2y〉
for deterministic vectors x,y with a similar gain from the regime |z1 − z2| ≫ η∗ as in (3.10).

By Theorem 3.3 we readily conclude (see Appendices A.1–A.2) the following two propositions, whose combination will
prove Theorem 2.1 in Section 4.

Proposition 3.4 (CLT for resolvents). Let ǫ, ξ, τ, ωp, ωd > 0 be small constants and p ∈ N. Denote by Πp the set of

pairings5 on [p]. Then for z1, . . . , zp ∈ C, with |zi| ≤ 1 − τ , n−1/2+ωp ≤ |zl − zm| ≤ n−ωd , and η1, . . . , ηp ≥ n−1+ǫ,
we have

E
∏

i∈[p]

〈Gi −EGi〉 =
∑

P∈Πp

∏

{i,j}∈P

E〈Gi −EGi〉〈Gj −EGj〉+O (Ψ)

=
1

np

∑

P∈Πp

∏

{i,j}∈P

Vi,j + κ4UiUj

2
+O (Ψ) ,

(3.14)

where Gi = Gzi(iηi),

Ψ :=
nξ

(nη∗)1/2

∏

i∈[p]

1

nηi
, (3.15)

η∗ := mini ηi, and Vi,j = Vi,j(zi, zj , ηi, ηj) and Ui = Ui(zi, ηi) are defined as

Vi,j :=
1

2
∂ηi∂ηj log

[
1 + (uiuj |zi||zj |)2 −m2

im
2
j − 2uiujℜzizj

]
,

Ui :=
i√
2
∂ηim

2
i ,

(3.16)

withmi = mzi(iηi) and ui = uzi(iηi) from (3.4). Finally, κ4 := E |χ|4 − 2 is the fourth cumulant of the random variable
χ in Assumption 1.

The expectation ofGi appearing in (3.14) has already been identified with sufficiently high precision in [13, Lemma 6.2]:

〈EG〉 = 〈M〉 − iκ4
4n

∂η(m
4) +O

( 1

|1− |z||n3/2(1 + η)
+

1

|1− |z||(nη)2
)
, (3.17)

which holds for η ≥ n−1+ǫ and |z| ≤ C , for some constant C > 0.
The following proposition states that 〈Gz1〉 and 〈Gz2〉 are asymptotically independent as long asn−1/2 ≪ |z1−z2| ≪

1. This complements [13, Proposition 3.5] which proves a similar result in the regime |z1 − z2| ∼ 1.

5Note thatΠp = ∅ if p is odd.
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Proposition 3.5 (Independence of resolvents with small imaginary part). Fix p ∈ N. For any sufficiently small constants
τ, ωp, ωd, δ0, δ1 > 0, there exists ω ≫ δ0, δ1 such that for any |zl| ≤ 1 − τ , n−1/2+ωp ≤ |zl − zm| ≤ n−ωd , with
l,m ∈ [p], l 6= m, it holds

E

p∏

l=1

〈Gzl(iηl)〉 =
p∏

l=1

E〈Gzl(iηl)〉+O
(
npδ0+δ1

nω

)
, (3.18)

for any η1, . . . , ηp ∈ [n−1−δ0 , n−1+δ1 ].

Remark 3.6. We formulated our results for the complex case. We now briefly explain how the above strategy needs to be
modified for the real symmetry class, i.e. what should be changed to extend our real macroscopic CLT proof [16] to the entire
mesoscopic regime. Apart from some irrelevant technicalities, the main difference between the proofs for the complex and the
real cases is that the singular vector overlap bound in Theorem 3.1 is needed not only for the low lying singular values, but
practically for all of them. This requires to prove the improved version of the local law (1.8) for TrGz1(w1)G

z2(w2) not only
on the imaginary axis, wj = iηj , but for any spectral parameters w1, w2 (see [16, Theorem 3.5]). The GFT argument can easily
be adjusted to this more general case, but the characteristics flow requires very precise explicit calculations that were simpler on
the imaginary axis. These calculations are elementary but fairly tedious, so we omit them here.

4. Mesoscopic CLT for linear statistics: Proof of Theorem 2.1

The proof of Theorem 2.1 follows similarly to [13, Section 4] once Propositions 3.4–3.5 are given as inputs. We thus now
only present the necessary major steps in the proof of Theorem 2.1 without presenting the detailed (fairly elementary)
computations. The computations to get the expectation in (2.5) are completely analogous (indeed easier since here |z| ≤
1 − τ ) to [13, Section 4.2], and so omitted. Here we only focus on the computation of the variance and higher moments.

We remark that in [13] we assumed that f ∈ H2+δ
0 (Ω) instead of f ∈ H2

0 (Ω) only to compute the boundary term from
the last two lines of [13, Eq. (4.29)]. Since we now have |z0| ≤ 1 − τ this additional (+δ) regularity assumption is not
needed in this case (see also the related Remark 2.5).

First of all we notice that the main contribution to (3.1) comes when η ≫ n−1, i.e. the regime ITηc
is the only term in

(3.1) giving an order one contribution to the linear statistics Ln(fz0,a). This fact is stated in the following lemma whose
proof is postponed to the end of this section.

Lemma 4.1. Fix τ > 0, |z0| ≤ 1 − τ and a ∈ (0, 12 ), then for any p ∈ N, and for f
(i)
z0,a(z) := f (i)(na(z − z0)), with

f (i) ∈ H2
0 (Ω), it holds

E

p∏

i=1

Ln(f
(i)
z0,a) = E

p∏

i=1

ITηc
(f (i)

z0,a) +O
(
n−c(p)

)
, (4.1)

for some small c(p) > 0. The implicit constant in O(·) may depend on p, ‖∆f (i)‖L2(Ω), and |Ω|.
Using Lemma 4.1 we then compute the deterministic approximation of the moments of Ln(fz0,a) via the moments of

the leading term ITηc
. The proof of this lemma is presented after we conclude the proof of our main result Theorem 2.1.

Lemma 4.2. Consider f
(i)
z0,a as above, and recall that Πp denotes the set of pairings on [p]. Then it holds

E

p∏

i=1

Ln(f
(i)
z0,a) =

∑

P∈Πp

∏

{i,j}∈P

[
−
∫

C

d2zi∆f
(i)
z0,a(zi)

∫

C

d2zj∆f
(j)
z0,a(zj)

∫ ∞

0

dηi

∫ ∞

0

dηj
Vi,j + κ4UiUj

8π2

]
+O(n−c(p)),

(4.2)
for some small c(p) > 0, with the (zi, ηi)-dependent quantities Vi,j and Ui being defined in (3.16). The implicit constant in

O(·) may depend on p, ‖∆f (i)‖L2(Ω), and |Ω|.
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. To keep the presentation concise we only present the computations for higher moments, the com-
putations for the expectation are completely analogous (actually easier) and so omitted (see e.g. [13, Section 4.2]).

By Lemma 4.2 we are only left with the computation of the deterministic term in the right hand side of (4.2) for

f (1), . . . , f (p) ∈ {f, f}. In particular, using the explicit formulas for Vi,j and UiUj from (3.16), and using the explicit
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formulas formi, ui at ηi = 0, we readily conclude

−
∫ ∞

0

dηi

∫ ∞

0

dηj
[
Vi,j + κ4UiUj

]
= −1

2
log |zi − zj|2 +

κ4
2
(1− |zi|2)(1 − |zj|2), (4.3)

for |zi|, |zj| ≤ 1− τ (see [13, Sections 4.3.1–4.3.3]).
Then, performing integration by parts in the zi, zj-variables and using that

−∂z1∂z2 log |z1 − z2|2 d2z1 d2z2 =
π

2
δ(z1 − z2)

in the sense of distributions, we obtain6

ELn(f
(i)
z0,a)Ln(f

(j)
z0,a) ≈

1

4π

∫

C

∇f (i)
z0,a(z) · ∇f (j)

z0,a(z) d
2z +

κ4
π2

(∫

C

f (i)
z0,a(z) d

2z

)(∫

C

f (j)
z0,a(z) d

2z

)

=
1

4π

∫

C

∇f (i)(z) · ∇f (j)(z) d2z +O
(
n−4a

)
,

(4.4)

which concludes the proof of Theorem 2.1. �

We now conclude this section with the proof of Lemma 4.1 and Lemma 4.2.

Proof of Lemma 4.1. This proof is analogous to [13, Lemma 4.3]. We only present a fewminor differences for completeness.

Proceeding as in the proof of [13, Lemma 4.3], using that ‖∆f (i)
zi,ai‖Lq(Ω) = ‖∆f (i)‖Lq(Ω), q ≥ 1, we conclude the

following a priori bounds

|JT | ≤
n1+ξ‖∆f‖L1(Ω)

T 2
, |Iη0

0 |+
∣∣Iηc

η0

∣∣+ |ITηc
| ≤ nξ‖∆f‖L2(Ω)|Ω|1/2 (4.5)

with very high probability for each f = f (i), with JT = JT (f
(i)
zi,ai), and similarly for the other terms. Additionally, by

[49, Theorem 3.2] we conclude

E|Iη0

0 | ≤ n−δ′‖∆f‖L2(Ω), (4.6)

for some small fixed δ′ > 0. Next we will prove that

E
∣∣Iηc

η0

∣∣2 ≤ n−δ′‖∆f‖2L2(Ω). (4.7)

Note that combining (4.5)–(4.7) we immediately conclude (4.1).
For the proof of (4.7) we now compute (here we neglect logn-factors)

E|Iηc
η0
|2 =

n2

4π2

∫ ∫

|z2−z1|≥n−a−δ∗
d2z1 d

2z2 ∆fz0,a(z1)∆fz0,a(z2)

×
∫ ∫ ηc

η0

dη1 dη2 E
[
〈Gz1(iη1)−EGz1(iη1)〉〈Gz2 (iη2)−EGz2(iη2)〉

]
+O

(
n2ξ

nδ∗

)
,

(4.8)

6Here by≈ we mean that the equality holds up to error of size n−c for some small c > 0.
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where we used that the regime |z1 − z2| < n−a−δ∗ is bounded by n2ξ−δ∗ :

n2

4π2

∫ ∫

|z2−z1|<n−a−δ∗
d2z1 d

2z2 ∆fz0,a(z1)∆fz0,a(z2)

×
∫ ∫ ηc

η0

dη1 dη2 E
[
〈Gz1(iη1)−EGz1(iη1)〉〈Gz2(iη2)−EGz2(iη2)〉

]

. n2

∫ ∫

|z2−z1|<n−a−δ∗
d2z1 d

2z2
∣∣∆fz0,a(z1)

∣∣∣∣∆fz0,a(z2)
∣∣

×
∫ ∫ ηc

η0

dη1 dη2 E
[∣∣〈Gz1(iη1)−EGz1(iη1)〉

∣∣2 +
∣∣〈Gz2(iη2)−EGz2(iη2)〉

∣∣2
]

. n2ξ

∫
d2z1

∣∣∆fz0,a(z1)
∣∣
(∫

|z2−z1|<n−a−δ∗
d2z2

)1/2(∫

|z2−z1|<n−a−δ∗
d2z2

∣∣∆fz0,a(z2)
∣∣2
)1/2

. n2ξ‖∆f‖2L2(Ω)n
−a−δ∗na . n2ξ−δ∗ ,

where we recall that fz0,a(z) = f(na(z − z0)) by (2.3); more precisely, we used the scaling

‖∆fz0,a‖L1(Ω) = ‖∆f‖L1(Ω), ‖∆fz0,a‖L2(Ω) = na‖∆f‖L2(Ω).

We point out that in the second inequality we also used the averaged local law in (3.6). In particular, we remark that the
implicit constant inO(·) in (4.8) depends on ‖∆f‖L2(Ω) even if not written explicitly.

Then, by Proposition 3.5, we conclude that

E
[
〈Gz1(iη1)−EGz1(iη1)〉〈Gz2(iη2)−EGz2(iη2)〉

]
= O

(
nc(δ0+δ1)

nω

)
, (4.9)

for some c > 0 and ω ≫ δ0 + δ1. Plugging (4.9) in (4.8) we conclude the proof of (4.7).
�

Proof of Lemma 4.2. Again, this proof is basically the same as its macroscopic counterpart in [13, Lemma 4.7]. Using the
same notation as in [13, Proof of Lemma 4.7], we define

Ẑi :=
⋃

j<i

{zj : |zi − zj| ≤ n−a−ν}

for some small fixed ν > 0. Then, similarly to (4.8), we start removing the regime |zi − zj | < n−a−ν (recall that

ηc = n−1+δ1 ):

E

p∏

i=1

Ln

(
f (i)
z0,a

)
=

(−n)p
(2πi)p

∏

i∈[p]

∫

Ẑc
i

d2zi∆f
(i)(zi)E

∏

i∈[p]

∫ T

ηc

〈Gzi(iηi)−EGzi(iηi)〉dηi +O(n−c), (4.10)

for some small c > 0 which depends on p, ξ, δ1, ν and that may change from line to line. We point out that, before
removing |zi−zj| < n−a−ν , herewe also used Lemma 4.1 to remove the integration regimes η ∈ [0, ηc) and η ∈ (T,∞).

Then, by Proposition 3.4, it readily follows that

E

p∏

i=1

Ln

(
f (i)
z0,a

)
= −

p∏

i=1

∫

Ẑc
i

d2zi∆f
(i)
z0,a

∑

P∈Πp

∏

{i,j}∈P

∫ ∫ T

ηc

dηi dηj
Vi,j + κ4UiUj

8π2
+O(n−c). (4.11)

Using the following bounds

∣∣Vi,j
∣∣ . (1 + ηi)

−2(1 + ηj)
−2

|z1 − z2|2 + ηi + ηj
,

∣∣Ui

∣∣ . 1

(1 + ηi)3
,

from [13, Eq. (4.21)], to add back first the removed η-regimes [0, ηc]∪ [T,∞) and then the regime Ẑi in (4.11) we conclude
(4.2). �
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5. Proof of Theorem 3.3 for matrices with a Gaussian component

Consider the Ornstein-Uhlenbeck (OU) flow

dXt = −1

2
Xt dt+

dBt√
n
, (5.1)

withBt a matrix whose entries are complex i.i.d. Brownian motions. Let

Wt :=

(
0 Xt

X∗
t 0

)
,

be the Hermitisation of Xt as in (3.2) (for z = 0), and similarly define Bt being the Hermitisation of Bt. Furthermore,
for i = 1, 2, let Gi = Gzi

t (iηi) := (Hzi
t − iηi)

−1 be the resolvent of Hzi
t := Wt − Zi, with |ηi| > 0 and (recall the

definition of F from (3.9))

Zi :=

(
0 zi
zi 0

)
= ziF + ziF

∗.

In particular we let ηi assume both positive and negative values. Note that along the flow (5.1) the first two moments of
Xt are preserved, hence the deterministic approximation of Gzi

t (iηi) is given byMzi(iηi) for any t ≥ 0 (see (3.6)), i.e.
the deterministic approximation ofGzi

t (iηi) is independent of time.
By (5.1) and Itô’s formula, the evolution of 〈Gz1

t AG
z2
t B〉, for anydeterministicmatricesA,B7, and for time-independent

spectral parameters ηi and zi, is described by the following flow (recall the definition of E1, E2 from (3.9)):

d〈G1AG2B〉 =
∑

α

∂α〈G1AG2B〉d(Bt)α√
n

+ 〈G1AG2B〉dt

+ 2〈G1AG2E1〉〈G2BG1E2〉dt+ 2〈G1AG2E2〉〈G2BG1E1〉dt
+ 2〈G1E1〉〈G1AG2BG1E2〉dt+ 2〈G1E2〉〈G1AG2BG1E1〉dt
+ 2〈G2E1〉〈G2BG1AG2E2〉dt+ 2〈G2E2〉〈G2BG1AG2E1〉dt

+
1

2
〈(Z1 + iη1)G1AG2BG1〉dt+

1

2
〈(Z2 + iη2)G2BG1AG2〉dt.

(5.2)

Here α = (a, b) ∈ [2n]2 denotes a double index, and ∂α denotes the directional derivative ∂wα , with wα = wα(t) :=
(Wt)α. We point out that the summation

∑
α in (5.2) is restricted to either a ≤ n, n < b ≤ 2n or n < a ≤ 2n, b ≤ n

even if not stated explicitly; we will use this notation throughout the paper.
We now allow both pairs of spectral parameters, ηi and zi, i = 1, 2, to be time dependent in a specific way. Define

Λi :=

(
iηi zi
zi iηi

)
,

and consider its time evolution along the following differential equation (called the characteristic equation)

∂tΛi,t = −Λi,t

2
− S[M(Λi,t)] (5.3)

with some initial condition Λi,0, with S being defined in (3.8). Here we used the notation M(Λi,t) := Mzi,t(iηi,t).
Written component-wise, we thus have that

∂tηi,t = −ℑmzi,t(iηi,t)−
ηi,t
2
, ∂tzi,t = −zi,t

2
. (5.4)

Sinceℑmz(iη) is undefined for η = 0, we will always run this flow up to a maximal time

T ∗ = T ∗(Λi,0) = T ∗(zi,0, ηi,0) := sup{t : sgn ηi,t = sgn ηi,0}
to guarantee that ηi,t never crosses the real axis. Definemi,t := mzi,t(iηi,t), ui,t := uzi,t(iηi,t), and note that their time
dependence is particularly simple:

mi,t = et/2mi,0, ui,t = etui,0, zi,t = e−t/2zi,0, ηi,t = e−t/2ηi,0 − (et/2 − e−t/2)ℑmi,0. (5.5)

7HereB denotes a deterministic matrix whileBt denotes a matrix whose entries are i.i.d. Brownian motions; we apologize for this slight abuse of

notation.



14 MESOSCOPIC CENTRAL LIMIT THEOREM FOR NON-HERMITIAN RANDOM MATRICES

Additionally, by (3.7) we have ℑmzi,0
i,0 = sgn(ηi,0)

√
1− |zi,0|2 + O(|ηi,0|), which, together with (5.5), for t ≪ 1 gives

ηi,t = ηi,0 − sgn(ηi,0)cit, with some time dependent positive coefficient

ci = ci(t) =
√
1− |zi,t|2 +O(ηi,0). (5.6)

Note that ci is well separated from zero along the whole flow, as a consequence of the fact that if initially |zi,0| ≤ 1− τ
for some τ > 0 then we also have |zi,t| ≤ 1 − τ for any t ≥ 0. In particular, this shows that |ηi,t| = |ηi,0| − cit, so
the flow approaches the real axis with a speed of order one in the regime away from the non-Hermitian spectral edge
|z| = 1. This shows that the characteristics are monotone in time, i.e. |ηi,t| ≤ |ηi,s| for s ≤ t.

Define Gi,t := (Wt − Λi,t)
−1 , then combining (5.2) with (5.3) and using that Zi + iηi = Λi, we get (in the r.h.s. we

use the notationGi = Gi,t for simplicity):

d〈G1,tAG2,tB〉 =
∑

α

∂α〈G1AG2B〉dBα√
n

+ 〈G1AG2B〉dt

+ 2〈G1AG2E1〉〈G2BG1E2〉dt+ 2〈G1AG2E2〉〈G2BG1E1〉dt
+ 2〈(G1 −M1)E1〉〈G1AG2BG1E2〉dt
+ 2〈(G1 −M1)E2〉〈G1AG2BG1E1〉dt
+ 2〈(G2 −M2)E1〉〈G2BG1AG2E2〉dt
+ 2〈(G2 −M2)E2〉〈G2BG1AG2E1〉dt.

(5.7)

Note that the careful choice of the characteristic ODE (5.3) guarantees that the last line of (5.2) and the leading terms of
the third and fourth lines of (5.2) cancel.

Remark 5.1. Beside the spectral parameter ηt our characteristic flow also moves the additional parameter zt; previous applica-
tions of the flow method operated only with moving the spectral parameter. The main cancellation concerns the 〈iηGBGAG〉
term in (5.2) and this could be achieved by the correct choice of the ηt-flow alone. However, our choice of time dependent zt also
cancels the 〈ZGBGAG〉 term automatically, saving us from additional work to estimate it using the off-diagonality of Z . The
canonical form (5.3) of the flow seems the most efficient, and it also gives a hint how to find the best characteristic flow for much
more general ensembles.

The main result of this section is the following Proposition 5.3 below that shows how a two-resolvent local law at large
η can be propagated to smaller η. In Part 1 we formulate a general estimate, which will then be improved in Part 2 for
the special case when |z1 − z2| is relatively big compared with η. Note that both results are conditional: given a (small)
η where we want to prove the local law, we construct a (larger) η0 such that after time T the characteristic flow (5.4) with
initial condition η0 ends up precisely at our target η = ηT . Assuming the local law at η0, this proposition proves the local
law at η = ηT .

Before stating Proposition 5.3, in the following lemma we prove a simple property of the characteristics in (5.4). Recall
that T ∗ = T ∗(z, η) is the maximal time so that the ηt-flow with initial condition z, η does not cross the real axis.

Lemma 5.2. Fix n-independent τ, ω1 > 0, and pick any |η| > 0, 0 < T ≤ n−ω1 , |z| ≤ 1− τ . Then, there exist an initial
data η0, z0, with T

∗(z0, η0) ≥ T , such that the solutions to (5.4) with these initial data satisfy ηT = η, zT = z after time T .
We have |η0| & T and |z0| ≤ 1− τ/2.

Proof. This lemma is a simple consequence of the fact that the flow t → ηi,t, given in the last equation of (5.5), moves
toward the real axis with a linear speed that is well separated from zero. To establish this fact, we use that, since the time
T ≪ 1 is short, the right hand side of the second equation of (5.4) is bounded and initially |z0| is well separated from 1, we
see that |zt| ≤ 1− τ/2 for all t ≤ T ≤ n−ω1 , in particular we stay in the bulk regime for all t ∈ [0, T ]. This guarantees
that |ℑmz| ≥ c, with some small n-independent constant c > 0 along the whole solution up to time T . Thus the right
hand side of the first equation in (5.4) is negative, well separated away from zero for all t ∈ [0, T ]. This establishes the
linear speed of ηi,t. Therefore, if we are given some η, z, and T , with T ≪ 1 and z in the bulk of the spectrum ofX , then
by running this approximately linear flow backward in timewe can find initial values z0, η0 as required in the lemma. �

Proposition 5.3. Fix small n-independent constants ǫ, τ, ωd > 0, and, for i = 1, 2, let

Λi,0 =

(
iηi,0 zi,0
zi,0 iηi,0

)
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with |zi,0| ≤ 1 − τ , |z1,0 − z2,0| ≤ n−ωd and ηi,0 6= 0. Let Λi,t be the solution of (5.3) with initial condition Λi,0

for any t ≤ T ∗(zi,0, ηi,0). Set Gi,t := (Wt − Λi,t)
−1, and denote the deterministic approximation of G1,tAG2,t by

MA
12,t :=MA

12(z1,t, iη1,t, z2,t, iη2,t) as given in (3.11). Then we have the following statements:

Part 1. Choose ηi,0 such that |ηi,0| ≤ n−ω1 for some ω1 > 0. Assume that for any arbitrary small ξ > 0 it holds

∣∣〈G1,0AG2,0B −MA
12,0B〉

∣∣ ≤ nξ

nη∗,0
√
|η1,0η2,0|

(5.8)

with very high probability, uniformly for matrices A,B with ‖A‖+ ‖B‖ ≤ 1. Then

∣∣〈G1,TAG2,TB −MA
12,TB〉

∣∣ ≤ n2ξ

nη∗,T
√
|η1,T η2,T |

, (5.9)

with very high probability, uniformly in T ≤ mini T
∗(zi,0, ηi,0) such that η∗,T := min{|η1,T |, |η2,T |} ≥ n−1+ǫ and

uniformly in matrices A,B with ‖A‖+ ‖B‖ ≤ 1.
Part 2. Choose ηi,0 such that |ηi,0| . |z1,0 − z2,0|2. Assume that for any arbitrary small ξ > 0 it holds

∣∣〈G1,0AG2,0B −MA
12,0B〉

∣∣ ≤ nξE(n, η1,0, η2,0), (5.10)

with very high probability uniformly in matricesA,B with ‖A‖+‖B‖ ≤ 1, for some given error function E(n, η1,0, η2,0) .
(nη2∗,0)

−1. Then we have

∣∣〈G1,TAG2,TB−MA
12,TB〉

∣∣ ≤ n2ξ

n
√
|η1,T η2,T |η∗,T (η∗T + |z1,T − z2,T |2)

+
n3ξ

(nη∗,T )3/2
√

|η1,T η2,T |
+n2ξE(n, η1,0, η2,0),

(5.11)
with very high probability uniformly in T ≤ mini T

∗(zi,0, ηi,0) such that η∗,T ≥ n−1+ǫ and uniformly in matrices A,B
with ‖A‖+ ‖B‖ ≤ 1. Here η∗T := max{|η1,T |, |η2,T |}.

Note that the difference between (5.9) and (5.11) lies in the fact that in (5.11) the leading error term is smaller. However,
this bound is a genuine improvement compared to (5.9) only for η∗T . |z1,T − z2,T |2. The bounds (5.9), (5.11) agree for
η∗T & |z1,T − z2,T |2 and |η1,T | ∼ |η2,T |.

Proof of Proposition 5.3. At the beginning the proofs of both parts will be presented together and then we will specialize
to the two cases later. In the sequel we often omit the t-dependence and use Gi := Gi,t = (Wt − Λi,t)

−1, Mi :=
Mzi,t(iηi,t), and a similar definition formi, ui. Using the Schwarz inequality and the Ward identity GG∗ = ℑG/η we
have

|〈G1AG2BG1E2〉| ≤ 〈G1AG2G
∗
2A

∗G∗
1〉1/2〈BG1E2E

∗
2G

∗
1B

∗〉1/2

≤ 〈ℑG1AℑG2A
∗〉1/2〈ℑG1B

∗B〉1/2
|η1,t|

√
|η2,t|

≺ |〈ℑG1AℑG2A
∗〉|1/2‖B‖√

η∗,t|η1,tη2,t|
.

(5.12)

We point out that in the second inequality we used that

〈BG1E2E
∗
2G

∗
1B

∗〉 ≤ ‖E2‖2〈BG1G
∗
1B

∗〉 ≤ 〈BG1G
∗
1B

∗〉 = 〈ℑG1B
∗B〉

η1,t
,

where the last equality follows by Ward identity, and in the last inequality of (5.12) we used

〈ℑG1B
∗B〉 ≤ ‖BB∗‖〈ℑG1〉 . ‖B‖2

(
〈ℑM1〉+ |〈ℑG1 −ℑM1〉|

)
≺ ‖B‖2 + ‖B‖2

n|η1,t|
. ‖B‖2,

which follows by the imaginary part of the local law |〈G1−M1〉| ≺ 1/(n|η1,t|) from (3.6). We remark that the key point
in the estimate (5.12) is that the G1AG2 block is separated from the rest and the estimate reduces a trace with three G’s
to one with twoG’s (up to imaginary part), i.e. it is of the similar form as the left hand side in Proposition 5.3. This allows
us to have a closed Gronwall-like inequality for products with two resolvents. We point out that this philosophy will be
often used within the proof of Proposition 5.3 (see e.g. (5.15) below).
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Using the bound (5.12) in (5.7), together with the single resolvent local law (3.6), we get

d〈G1,tAG2,tB〉 =
∑

α

∂α〈G1AG2B〉dBα√
n

+ 〈G1AG2B〉dt

+ 〈S[G1AG2]G2BG1〉dt+O
(
nξ|〈ℑG1AℑG2A

∗〉|1/2

nη
3/2
∗,t
√
|η1,tη2,t|

)
dt.

(5.13)

Here we estimated the error in terms of |〈ℑG1AℑG2A
∗〉|1/2 and ignored ‖B‖ for brevity (recall that ‖A‖+ ‖B‖ ≤ 1).

Note that to go from (5.7) to (5.13) we also used that from (3.8) we have

2〈G1AG2E1〉〈G2BG1E2〉+ 2〈G1AG2E2〉〈G2BG1E1〉 = 〈S[G1AG2]G2BG1〉.
We now consider the stochastic term in (5.13). We first estimate its quadratic variation and then use the Burkholder–

Davis–Gundy (BDG) inequality to conclude a bound with very high probability. LetFt denote the filtration generated by

(Bs)0≤s≤t, with Bt from (5.1). The quadratic variation process of n−1/2
∑

α ∂α〈G1AG2B〉dBα is given by

E


 1

n

∑

α,β

[
〈G1∆

αG1AG2B〉+ 〈G1AG2∆
αG2B〉

]
·
[
〈G1∆βG1AG2B〉+ 〈G1AG2∆βG2B〉

]
dBαdBβ

∣∣∣∣∣Ft




=
1

n2

∑

ab

[
(G1AG2BG1)ab + (G2BG1AG2)ab

]
·
[
(G1AG2BG1)ab + (G2BG1AG2)ab

]
dt

=
1

n2

[
〈G1AG2BG1EiG

∗
1B

∗G∗
2A

∗G∗
1Ej〉+ 〈G2BG1AG2EiG

∗
2A

∗G∗
1B

∗G∗
2Ej〉+ 2ℜ〈G1AG2BG1EiG

∗
2A

∗G∗
1B

∗G∗
2Ej〉

]
dt,

(5.14)

where α, β denote index pairs, and (∆ab)cd = δacδbd. In the last line of (5.14) the indices i, j are summed over two pairs
(i, j) ∈ {(1, 2), (2, 1)}. Similarly to (5.12), by Schwarz inequality (performed by separating the blockG1AG2 from the
rest), it is easy to see that the quadratic variation is bounded by a multiple of (recall that ‖A‖+ ‖B‖ ≤ 1)

|〈ℑG1AℑG2A
∗〉|

n2η2∗,t|η1,tη2,t|
. (5.15)

Here we also used that ‖Gi‖ ≤ |ηi,t|−1 deterministically, and that |〈Gi〉| ≤ 1 with very high probability by the single
resolvent local law (3.6). Then by the BDG inequality we conclude

sup
0≤t≤T

∣∣∣∣∣

∫ t

0

∑

α

∂α〈G1AG2B〉dBα√
n

∣∣∣∣∣ . nξ

(∫ T

0

|〈ℑG1AℑG2A
∗〉|

n2η2∗,t|η1,tη2,t|
dt

)1/2

, (5.16)

with very high probability. Recall that 0 < T ≪ 1 is fixed.
Combining (5.13) and (5.16), we get the integral equation

〈G1,TAG2,TB〉 = 〈G1,0AG2,0B〉+
∫ T

0

〈S[G1,tAG2,t]G2,tBG1,t〉 dt+
∫ T

0

〈G1,tAG2,tB〉 dt

+O


nξ

(∫ T

0

|〈ℑG1,tAℑG2,tA
∗〉|

n2η2∗,t|η1,tη2,t|
dt

)1/2

+ nξ

∫ T

0

|〈ℑG1,tAℑG2,tA
∗〉|1/2

nη
3/2
∗,t
√
|η1,tη2,t|

dt


 ,

(5.17)

with very high probability, ignoring the B-error terms. We now start distinguishing the proof of (5.9) and (5.11).

Proof of Part 1. Recall that the stability operator, defined as B12 := 1 −M1S[·]M2, withMi = Mzi(iηi), acts on the
Hilbert space of (2n)× (2n)matrices equipped with the usual Hilbert-Schmidt scalar product. It will play a key role in
the analysis, in fact we will need to compute the inverse of its adjoint [B∗

12]
−1. In Appendix B we collected all precise

information on the eigenvalues and left/right eigenvectors8 of B12, giving immediately the spectral data of B∗
12 as well.

First, the 2 × 2 block structure ofMi and S shows that B12 and B∗
12 are just the identity on the 4n2 − 4 dimensional

subspace of block traceless matrices. So effectively we need to understandB12 on the four dimensional subspace of block

8These are actually matrices, but we will call them eigenvectors since we view them as elements of the vector space of (2n) × (2n)matrices.
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constant matrices that is invariant for both B12 and B∗
12. The main point is that in our relevant regime, |ηi| ≤ n−ω2 ,

|zi| ≤ 1 − τ and |z1 − z2| ≤ n−ωd , only one simple eigenvalue, denoted by β−, is very small, a second eigenvalue,
denoted by β+ is well separated away from zero,

|β−| ∼ |z1 − z2|2 + η1 + η2, |β+| ∼ 1, (5.18)

see (B.3), and all the other eigenvalues are 1 with multiplicity 4n2 − 2. The left and right eigenvectors corresponding to
β±, denoted by L± = L12,± andR± = R12,±, are block constant matrices, defined to satisfy9

B12[R±] = β±R±, B∗
12[L

∗
±] = β±L

∗
±, (5.19)

noting that the two nontrivial eigenvalues of B∗
12 are β± (here we dropped the 12 indices). Explicit formulas are given in

Appendix B but they are largely irrelevant for us, here we only remark that it is possible to choose the normalization such
that ‖L±‖ ∼ 1, ‖R±‖ ∼ 1 and |〈R∗

−L
∗
−〉| ∼ 1. In fact, the spectral data corresponding to β+, as well as eigenvectors

corresponding to the trivial eigenvalues 1 will not be necessary for our main argument. Also notice that the eigenvalues
of B12 and B21 are the same (see (B.1) in Appendix B), but their eigenvectors are not identical, e.g. R12,± 6= R21,±.

The inverse of B∗
12 can be computed by its spectral decomposition, separating the one dimensional (non-orthogonal)

spectral projectionΠ− corresponding to the small eigenvalue β̄− from the spectral projectionΠ corresponding to all the
other eigenvalues. Explicitly, any matrixQ can be decomposed as

Q = Π−[Q] + Π[Q], Π−[Q] :=
〈R∗

−Q〉
〈R∗

−L
∗
−〉
L∗
−, Π[Q] :=

1

2πi

∮
1

z − B∗
12

[Q] dz, (5.20)

with the integral over a contour which encircles β+ and 1, excludes β− and is well separated (order one away) from all
eigenvalues. The resolvent (z−B∗

12)
−1 can be viewed only on the four dimensional invariant subspace of block constant

matrices, hence its norm is bounded as all four eigenvalues of z − B∗
12 are well separated away from zero when z is on

the contour. Thus bothΠ andΠ− are bounded;

‖Π‖+ ‖Π−‖ . 1. (5.21)

We clearly have that (B∗
12)

−1 is bounded on the range of Π, i.e. for any matrixQ

‖(B∗
12)

−1)[Π[Q]]‖ . ‖Q‖. (5.22)

Since (B∗
12)

−1 on the complementary one dimensional spectral subspace Span(L∗
−) can be very large, of order |β−|−1,

this subspace requires a separate treatment. Note that all these bounds trivially extend to (B∗
12)

−1 viewed on the space
of all (2n)× (2n)matrices due to the invariance of the space of block traceless matrices.

Owing to the time evolution, we actually need the spectral data for B12,t[·] := (1 −M1,tS[·]M2,t) for small times
t ≥ 0. Let L±,t andR±,t, be the left and right eigenvectors of B12,t with corresponding eigenvalues β±,t, then by (5.5) it
readily follows that L±,t = L±,0, R±,t = etR±,0 for any t ≥ 0. Since the difference between the eigenvectors at time
0 and time t amounts to a simple rescaling by an irrelevant factor et = 1+O(t), we can use the zero-time eigenvectors
L± := L±,0, R± := R±,0 for all later times. The eigenvalues β±,t depend on t nontrivially but smoothly and the time
dependent version of (5.18) holds, in particular β−,t still remains well separated from the rest of the spectrum if t≪ 1.

After all these preparations, we first handle (5.9) in the case when either A∗ or B∗ lies in the range of Π. The proof
relies on the following technical lemma (whose proof is postponed to the Appendix A):

Lemma 5.4. Fix any small τ, ǫ > 0, and fix zi, ηi, with i = 1, 2, such that |zi| ≤ 1 − τ , |ηi| ≥ n−1+ǫ. Let A,B be any
deterministic matrices with ‖A‖ + ‖B‖ ≤ 1 and such that at least one among ‖[B−1

21 ]
∗[A∗]‖, ‖[B−1

12 ]
∗[B∗]‖ is bounded by

an (n,η)–independent constant, where B12[·] := 1−M1S[·]M2,Mi =Mzi(iηi). Then it holds

|〈(G1AG2 −MA
12)B〉| ≺ 1

nη∗
√
|η1η2|

, (5.23)

uniformly in η∗ ≥ n−1+ǫ.

9Here we deliberately use the convention that a left eigenvector L is defined such that L∗ is the right eigenvector of the adjoint operator. This

convention will simplify many formulas below.
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Given a deterministic matrix A, we split A∗ as in (5.20), then, by (5.22), it clearly follows that ‖(B−1
12 )

∗[Π[A∗]]‖ is
bounded. In particular, by (5.20) and bilinearity of (5.9), we obtain that Lemma 5.4 proves (5.9) in all cases except for when
A∗ and B∗ are in the range of the correspondingΠ−. Thus the remainder of the proof focuses on the case A = L21,−
andB = L12,−, where we recall from (5.19) that L12,− is defined byB∗

12[L
∗
12,−] = β−L∗

12,−. Fromnow onwe introduce
the shorthand notations

L± := L12,±, L′
± := L21,±.

For definiteness we only consider the case when η1,tη2,t < 0. In this case we have (see (B.6)):

L− = (1 +O(|z1,t − z2,t|))I +O(|z1,t − z2,t|)E−,

and an analogous relation for L′
−. The case η1,tη2,t > 0 is completely analogous and so omitted.

Define the stopping time

τ1 := inf

{
t ≥ 0 :

∣∣∣〈(G1,t(iη1,t)L
′
−G2,t(iη2,t)−M

L′
−

12,t)L−〉
∣∣∣ = n2ξ

nη∗,t
√

|η1,tη2,t|

}
∧ T. (5.24)

Here ξ ≤ (ǫ ∧ ωd)/10 with ǫ > 0 such that η∗,t ≥ n−1+ǫ and ωd such that |z1,t − z2,t| . n−ωd for any t ≥ 0. We
remark that L−, L′

− in (5.24) are independent of time.
Define

Yt := 〈(G1,t(iη1,t)L
′
−G2,t(iη2,t)−M

L′
−

12,t)L−〉.

In order to study the time evolution of Yt , we need to understand howM
L′

−
12,t evolves in time. This is explained in the

following lemma, whose proof is postponed to Appendix A (see (A.26)).

Lemma 5.5. For any A,B ∈ C2n×2n It holds that

∂t〈MA
12,tB〉 = 〈MA

12,tB〉+ 〈S[MA
12,t]M

B
21,t〉. (5.25)

Then, choosing A = L′
−,B = L− in (5.17) and (5.25), we obtain

YT = Y0 +

∫ T

0

Yt dt+

∫ T

0

[
〈S[G1,tL

′
−G2,t]G2,tL−G1,t〉 − 〈S[ML′

−
12 ]M

L−
21 〉

]
dt

+O


nξ

(∫ T

0

|〈ℑG1,tL
′
−ℑG2,t(L

′
−)

∗〉|
n2η2∗,t|η1,tη2,t|

dt

)1/2

+ nξ

∫ T

0

|〈ℑG1,tL
′
−ℑG2,t(L

′
−)

∗〉|1/2

nη
3/2
∗,t
√
|η1,tη2,t|

dt


 .

(5.26)

Next, to estimate the last term in the first line of (5.26) we rely on the following lemma, whose proof is postponed to
Appendix A.

Lemma 5.6. DenoteM
L′

−
12 =M

L′
−

12,t, Gi = Gi,t(iηi,t), then it holds

〈S[G1L
′
−G2]G2L−G1〉 = 〈S[ML′

−
12 ]M

L−
21 〉+ 2〈M I

12〉Yt +O
(
(1 + |Yt|)|Yt|+

nξ

nη2∗,t
√
|η1,tη2,t|

)
. (5.27)

Combining (5.26) with (5.27), we conclude

Yt = Y0 + 2

∫ t

0

〈M I
12,s〉Ys ds+O

(∫ t

0

(
1 + |Ys|

)
|Ys| ds+

nξ

nη∗,t
√
|η1,tη2,t|

)
, (5.28)

where we used that |〈ℑG1,tL
′
−ℑG2,t(L

′
−)

∗〉| ≤ η−1
∗,t with very high probability, by Schwarz inequality and the single

resolvent local law (3.6), to estimate the error terms in the second line of (5.26). Finally, using that, by the definition of the

stopping time τ1, we have |Ys| ≤ n2ξ(nη∗,s
√
|η1,sη2,s|)−1 , for 0 ≤ s ≤ τ1 , to estimate (1 + |Ys|)|Ys| (here we also

used that ξ ≤ ǫ/10), we conclude

Yt = Y0 + 2

∫ t

0

〈M I
12,s〉Ys ds+O

(
nξ

nη∗,t
√
|η1,tη2,t|

)
. (5.29)

We now precisely estimate the deterministic term 〈M I
12,s〉 in (5.29) (the proof is postponed to Appendix A):
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Lemma 5.7. Letmi,t := mzi,t(iηi,t), ui,t := uzi,t(iηi,t), then we have
∣∣〈M I

12,t〉
∣∣ ≤ a0

b0 − a0t

(
1 +O

(
|η1,0|+ |η2,0|+ |z1,0 − z2,0|2 + t

) )
, (5.30)

where

a0 := 2− |z1,0|2 − |z2,0|2, b0 := |z1,0 − z2,0|2 + |η1,0|
√

1− |z1,0|2 + |η2,0|
√
1− |z2,0|2.

In order to obtain an estimate for Yt from (5.29) we will use a Gronwall inequality. For this purpose we compute

exp

(
2

∫ t

s

∣∣〈M I
12,r〉

∣∣ dr
)

≤ exp

(
2

∫ t

s

∣∣∣∣
a0

b0 − a0r

∣∣∣∣ dr
)

=

(∣∣∣∣
b0 − a0s

b0 − a0t

∣∣∣∣
)2

∼
( |z1,s − z2,s|2 + |η1,s|+ |η2,s|

|z1,t − z2,t|2 + |η1,t|+ |η2,t|

)2

.

(5.31)

Here in the last step we used various elementary properties of zi,t and ηi,t that follow from (5.5). In particular, we used
that ηi,t = ηi,0 − sgn(ηi,0)cit, with ci given in (5.6), and that 1− |zi,t| ∼ 1− |zi,t| ∼ 1− |zi,0|, as well as |z1,t− z2,t| ∼
|z1,s − z2,s| ∼ |z1,0 − z2,0|, for the times we consider 0 ≤ s ≤ t ≤ T ≪ 1. Combining these information we obtain

b0−a0t = |z1,0−z2,0|2+|η1,0|
√
1− |z1,0|2+|η2,0|

√
1− |z2,0|2−t[2−|z1,0|2−|z2,0|2] ∼ |z1,t−z2,t|2+|η1,t|+|η2,t|,

which was used in the last step of (5.31). Note that in our regime |z1,t − z2,t| . |η1,t|+ |η2,t| for any 0 ≤ t ≤ T , hence
the |z1,t − z2,t| terms are negligible in (5.31). Using again the elementary properties of zi,t and ηi,t described above, we
note that

|η1,s|+ |η2,s|
|η1,t|+ |η2,t|

. 1 + (t− s)
(
√

1− |z1,0|2 +
√
1− |z2,0|2)

|η1,t|+ |η2,t|
. 1 + (t− s)

(
√
1− |z1,0|2 +

√
1− |z2,0|2)

η∗,t
.
η∗,s
η∗,t

,

(5.32)
by 1 − |zi,t| ∼ 1− |zi,t| ∼ 1− |zi,0| and |ηi,s| = |ηi,t|+ (ci + o(1))(t− s), with ci defined below (5.5). In particular,
this also implies that

|η1,s|+ |η2,s|
|η1,t|+ |η2,t|

.

√
|η1,sη2,s|√
|η1,tη2,t|

. (5.33)

Combining (5.31)–(5.33), we conclude

exp

(
2

∫ t

s

∣∣〈M I
12,r〉

∣∣ dr
)

.
η∗,s
√
|η1,sη2,s|

η∗,t
√
|η1,tη2,t|

. (5.34)

Finally, using (5.34), by a simple Gronwall inequality, together with (5.8) to bound Y0, we conclude

|Yt| .
nξ

nη∗,t
√
|η1,tη2,t|

, (5.35)

with very high probability for any t < τ1. This proves that τ1 = T and concludes the proof of (5.9).

Proof of Part 2. Since |ηi,0| . |z1,0 − z2,0|2 by assumption, and

ηi,t = ηi,0 − (1 − |zi,0|2)1/2t+O(t|ηi,0|),
|z1,0 − z2,0|2 = et|z1,t − z2,t|2 = |z1,t − z2,t|2(1 +O(t)),

we also have that η∗i,t . |z1,t − z2,t|2 for any 0 ≤ t ≤ T in our perturbative regime T . |z1,0 − z2,0|2 ≤ n−2ωd .
Unlike in Part 1 (see (5.20)), we do not need to separate the spectral projection corresponding to the smallest eigenvalue

β−, this is because the norm estimate (5.21) combined with (5.18) giving

‖(B∗
12)

−1‖ . |β−|−1 . |z1 − z2|−2 (5.36)

is affordable in the regime of Part 2 when |z1 − z2| is relatively large. Therefore we can use a standard orthogonal

decomposition in the space of block constant matrices and we use the orthonormal basis {I, E−,
√
2F,

√
2F ∗} in which

the covariance operator S is particularly simple. We thus decompose any deterministic matrices A as

A =: 〈A〉I + 〈AE−〉E− + 2〈AF ∗〉F + 2〈AF 〉F ∗ + Å, (5.37)
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with Å being defined by this formula. In particular, Å is just the orthogonal projection (with respect to the usual Hilbert-
Schmidt scalar product) of A onto the space of block traceless matrices, i.e. matrices whose all four blocks are traceless.
LetA,B ∈ {E−, I, F, F ∗}, then we define

Yt : = sup
A,B∈{E−,I,F,F∗}

|〈
(
G1,t(iη1,t)AG2,t(iη2,t)B −MA

12,t(iη1,t, iη2,t)
)
B〉|

+ sup
A,B∈{E−,I,F,F∗}

[|〈
(
G1,t(iη1,t)AG2,t(−iη2,t)B −MA

12,t(iη1,t,−iη2,t)
)
B〉|.

(5.38)

Choose ξ ≤ ǫ/10 and define the stopping time

τ2 := inf

{
t ≥ 0 : Yt =

n2ξ

n
√
η∗,t|η1,tη2,t|(|z1,t − z2,t|2 + η∗t )

+
1

√
nη∗,t

· n3ξ

nη∗,t
√
|η1,tη2,t|

+ n2ξE(n, η1,0, η2,0)
}
∧T.

Note that by the definition of τ2 and the assumption |E(n, η1,0, η2,0)| . (nη2∗,0)
−1 . (nη2∗,t)

−1 it follows that Yt ≤
n2ξ(nη2∗,t)

−1 for any t < τ2. Here we also used that ξ ≤ ǫ/10 (recall that η∗,t ≥ n−1+ǫ for any t ≥ 0) so that

nξ/
√
nη∗,t ≤ 1

We now proceed similarly to (5.27)–(5.29), we thus do not write all the details but only explain the main differences. By
adding and subtracting the deterministic approximation of all the terms in (5.17), by using Lemma 5.5 to show that all the
deterministic terms exactly cancel, and that ‖MA

12,t‖ . 1/|z1,t − z2,t|2, for any t ≤ τ2 , we obtain

Yt ≤ Y0 + C

∫ t

0

(
1

|z1,s − z2,s|2
+ Ys

)
Ys ds+ nξ

(∫ t

0

Ys
n2η2∗,s|η1,sη2,s|

ds

)1/2

+ nξ

∫ t

0

Y
1/2
s

nη
3/2
∗,s
√

|η1,sη2,s|
ds

+
nξ

n
√
η∗,t|η1,tη2,t|(|z1,t − z2,t|2 + η∗t )

≤ Y0 + C

∫ t

0

(
1

|z1,s − z2,s|2
+ Ys +

nξ

√
nη

3/2
∗,s

)
Ys ds+

nξ

N
√
η∗,t|η1,tη2,t|(|z1,t − z2,t|2 + η∗t )

+
1

√
nη∗,t

· n2ξ

nη∗,t
√
|η1,tη2,t|

,

(5.39)

for some constant C > 0. Note that in the last inequality we first used Schwarz inequality (here we also use the mono-
tonicity of the characteristics |ηi,t| ≤ |ηi,s| for s ≤ t)

Y
1/2
s

nη
3/2
∗,s
√
|η1,sη2,s|

≤ Ys√
nη

3/2
∗,s

+
1

√
nη∗,s

· 1

Nη2∗,s
√
|η1,sη2,s|

(∫ t

0

Ys
n2η2∗,s|η1,sη2,s|

ds

)1/2

≤ 1

n3/4η
3/4
∗,t (η1,sη2,s)

1/4

(∫ t

0

Ys√
nη

3/2
∗,s

ds

)1/2

≤ 1
√
nη∗,t

· 1

nη∗,t
√
|η1,tη2,t|

+

∫ t

0

Ys√
nη

3/2
∗,s

ds,

and then we used that Ys ≤ n2ξ(nη2∗,s)
−1 for s ≤ τ2. Finally, by a simple Gronwall inequality, using that T . |z1,0 −

z2,0|2 and the bound Y0 ≤ nξE(n, η1,0, η2,0) from (5.10) ,we conclude that

Yt .
nξ

n
√
η∗,t|η1,tη2,t|(|z1,t − z2,t|2 + η∗t )

+
1

√
nη∗,t

· n2ξ

nη∗,t
√
|η1,tη2,t|

+ nξE(n, η1,0, η2,0),

for any t ≤ τ2. This shows that τ2 = T and thus that (5.11) holds, completing the proof of Proposition 5.3.
�
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6. GFT: Proof of Theorem 3.3

The goal of this section is to show that we can remove the Gaussian components added in Section 5. Consider the
Ornstein-Uhlenbeck flow

dXt = −1

2
Xt dt+

dBt√
N
. (6.1)

and define

Rt := 〈Gt
1AG

t
2B −MA

12B〉, (6.2)

with

Gt
i := (Wt − Zi − iηi)

−1, Zi :=

(
0 zi
zi 0

)
, Wt :=

(
0 Xt

X∗
t 0

)
, (6.3)

where t in Gt
i denotes time dependence and it should not be confused with the transpose G⊺

i . Here we recall that A,B
are generic deterministic square matrices of bounded norm. Also we mention that this Gt

i is not the same as Gi,t =
(Wt −Λi,t)

−1 used in Section 5 since now both spectral parameters z and η are time independent and onlyWt changes
with time.

Note that along the OU flow the first two moments ofXt are preserved henceM
A1
12 is independent of time. Our main

technical result of this section is the following Proposition 6.1.

Proposition 6.1. Let A,B be arbitrary deterministic matrices with ‖A‖+ ‖B‖ ≤ 1, and let z, η1, η2 be spectral parameters
with |z| ≤ 1− τ and η∗ := |η1| ∧ |η2| ≥ n−1+ǫ for some fixed ǫ, τ > 0. Then for any ξ > 0 and any even p ≥ 4 it holds
that

|dE|Rt|p| .
p∑

k=4

n2−k/2+ξ

(nη1η2)k
E|Rt|p−k + nξ

(
1 +

1√
nη∗

)
E

[ |Rt|p−1

nη1η2
+ |Rt|p−3

( 1

nη1η2

)3]
. (6.4)

From Proposition 6.1 we obtain the following Proposition 6.2 by integration:

Proposition 6.2. Let X be an i.i.d. matrix, and let Xt the solution of the OU flow (5.1), with initial dataX0 = X . Then for
any small τ, ǫ > 0, for any 1 ≥ |ηi| ≥ n−1+ǫ, |zi| ≤ 1 − τ , and for any p ∈ N, denoting Gt

i := (Ht − Zi − iηi)
−1, it

holds:

(
E|〈(G0

1AG
0
2 −MA

12)B〉|p
)1/p

. e
t

(
η∗+|z1−z2|2

η∗ + 1
√

nη
3/2
∗

)[(
E|〈(Gt

1AG
t
2 −MA

12)B〉|p
)1/p

+
nξ

nη∗η∗

(
η
1/6
∗ + n−1/10 +

(
η∗

η∗ + |z1 − z2|2
)1/4

)]
,

(6.5)

for any 0 ≤ t . 1 and any small ξ > 0, whereA,B are deterministic matrices with ‖A‖+ ‖B‖ ≤ 1, and η∗ := |η1| ∧ |η2|,
η∗ := |η1| ∨ |η2|.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. The proof of this theorem follows by an induction argument, and it is divided into two cases: (i)
η∗ ≥ |z1 − z2|2, (ii) η∗ < |z1 − z2|2. Since the proofs of (i) and (ii) are analogous we mostly focus on the proof in case
(i) and then explain the minor changes for the proof of case (ii).

We start with the first step of the induction. By [13, Theorem 5.2] for any z1, z2 it holds

∣∣〈(Gz1 (iη1)AG
z2(iη2)−MA

12)B〉
∣∣ . n2ξ

nη∗
√
|η1η2|

, (6.6)

with very high probability for any small ξ > 0 uniformly in |η∗| & n−ξ . Fix |z1|, |z2| ≤ 1−τ such that |z1−z2| ≤ n−ωd ,

and η1, η2 such that η∗ ≥ n−1/3 and η∗ ≥ |z1−z2|2, and fixT = n−ξ , then by Lemma 5.2 there exist η1,0, η2,0, z1,0, z2,0,
with |ηi,0| & n−ξ , |zi,0| ≤ 1 − τ/2, such that for the solution of (5.3) with initial condition ηi,0 , zi,0 it holds ηi,T = ηi,
zi,T = zi. Additionally, since (5.8) for those ηi,0, zi,0 is verified thanks to (6.6), by Part 1 of Proposition 5.3 we conclude
that

∣∣〈(Gz1
T (iη1)AG

z2
T (iη2)−MA

12,T )B〉
∣∣ . n3ξ

nη∗
√
|η1η2|

, (6.7)
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with very high probability uniformly in η∗ & n−1/3 and η∗ ≥ |z1 − z2|2. Then, by Proposition 6.2, we readily conclude
that

∣∣〈(Gz1 (iη1)AG
z2(iη2)−MA

12)B〉
∣∣ . n3ξ

nη∗
√
|η1η2|

, (6.8)

with very high probability uniformly in η∗ & n−1/3 and η∗ ≥ |z1 − z2|2 , i.e. the Gaussian component added in
Proposition 5.3 can be completely removed using Proposition 6.2. This concludes the first step of the induction that

reduced the lower threshold for η∗ from |η∗| & n−ξ in (6.6) to |η∗| & n−1/3 in (6.8).

For the general induction step define η(k) := n−1+(2/3)k ∨ n−1+ǫ, we now show that if (6.8) holds for η∗ ≥ η(k)

then it holds for η∗ ≥ η(k+1) as well. Pick z1, z2 as above and η1, η2 such that η∗ ≥ η(k+1) and η∗ ≥ |z1 − z2|2.
Choose T = η(k) and use the local law (6.8) for η∗ ≥ η(k) as an initial input to apply Part 1 of Proposition 5.3 again.

With the output of this step, together with an application of Proposition 6.2 for η∗ ≥ η(k+1) , we conclude that (6.8) holds
for η∗ ≥ η(k+1) . Iterating this procedure k ∼ | log ǫ| times we conclude (3.10) for η∗ ≥ |z1 − z2|2 and η∗ ≥ n−1+ǫ.
Note that the apparently accumulating factors of nξ at each step are not a problem since the exponent ξ can always be
redefined before every iteration step. Since ǫ is given at the beginning, the number of iteration steps is finite, hence ξ
needs readjustment only finitely many times.

We now prove Theorem 3.3 for the complementary case η∗ < |z1 − z2|2; as before we proceed by induction. We start
describing the first step of the induction. Fix |z1|, |z2| ≤ 1− τ such that |z1− z2| ≤ n−ωd , η1, η2 with |ηi| < |z1− z2|2 ,
and choose T = C|z1 − z2|2 for a constant C > 0. Applying Lemma 5.2, there exist |ηi,0| ≥ |z1 − z2|2 and zi,0 as
initial conditions of the characteristics flow so that ηi,T = ηi and zi,T = zi. Additionally, since T . |z1,0 − z2,0|2, by
(5.4) it follows that |ηi,0| . |z1,0 − z2,0|2. Then by an application of Part 2 of Proposition 5.3, with E(n, η1,0, η2,0) =
(nη1,0η2,0)

−1 for the ηi,0, zi,0 from Lemma 5.2 and Proposition 6.2 we conclude

∣∣〈(Gz1(iη1)AG
z2(iη2)−MA

12)B〉
∣∣ . nξ

nη∗η∗

(
η
1/6
∗ + n−1/10 +

(
η∗

η∗ + |z1 − z2|2
)1/4

)

+
n2ξ

n
√
|η1η2|η∗,T (η∗ + |z1 − z2|2)

+
n3ξ

(nη∗)3/2
√
|η1η2|

+ n2ξE(n, η1,0, η2,0)

.
n3ξ

nη
3/2
∗ (η∗)1/2

(
η
1/6
∗ + n−1/10 +

1√
nη∗

+

(
η∗

η∗ + |z1 − z2|2
)1/4

)

(6.9)

holds with very high probability uniformly in η∗ ≥ |z1 − z2|4 ∨ n−1/3. Note that in the last inequality in (6.9) we used
that E(n, η1,0, η2,0) = (nη1,0η2,0)

−1 . [nη∗(η∗ + |z1 − z2|2)]−1 since |ηi,0| ≥ |z1 − z2|2. Along the flow z1 and z2
also move slightly, but it is easy to check that |z1,t − zi,t| ∼ |z1 − z2| for any 0 ≤ t ≤ T since T ≪ |z1 − z2| and the
speed of zi,t is bounded. Therefore we ignored the difference between |z1,t − zi,t| and |z1 − z2| in the above estimates.

The induction step is now exactly as above using η̃(k) :=
[
|z1 − z2|2(k+1) ∨ n−1+(2/3)k

]
∨ n−1+ǫ instead of η(k) at

each induction step and using

E(n, η1,0, η2,0) =
n3kξ

nη
3/2
∗,0 (η

∗
0)

1/2

(
η
1/6
∗,0 + n−1/10 +

1
√
nη∗,0

+

(
η∗0

η∗0 + |z1 − z2|2
)1/4

)
(6.10)

for T = η̃(k) and |ηi,0| ≥ η̃(k) as an input for Part 2 of Proposition 5.3. The application of Proposition 6.2 is completely
analogous to the case η∗ ≥ |z1 − z2|2 in the first part of the proof. In particular, at the k + 1-th step we get that for
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η∗ ≥ η̃(k+1) it holds

∣∣〈(Gz1(iη1)AG
z2(iη2)−MA

12)B〉
∣∣ . n3kξ

nη∗η∗

(
η
1/6
∗ + n−1/10 +

(
η∗

η∗ + |z1 − z2|2
)1/4

)

+
n2ξ

n
√
|η1η2|η∗,T (η∗ + |z1 − z2|2)

+
n3ξ

(nη∗)3/2
√
|η1η2|

+ n2ξE(n, η1,0, η2,0)

.
n3(k+1)ξ

nη
3/2
∗ (η∗)1/2

(
η
1/6
∗ + n−1/10 +

1√
Nη∗

+

(
η∗

η∗ + |z1 − z2|2
)1/4

)
,

(6.11)

where we used the expression of E(n, η1,0, η2,0) from (6.10). In the last inequality of (6.11) we used the definition of

η̃(k) and the fact that |ηi,t| is decreasing in time to show that E(n, η1,0, η2,0) is smaller than the last line of (6.11) (recall
that ηi = ηi,T ). Iterating this procedure ∼ 1/(2ωd) ∨ | log ǫ| times we conclude the proof of this theorem in the case

η∗ < |z1 − z2|2 as well. We remark that, also in this case, the accumulating factors of nξ is not a problem, since the
exponent ξ can always be redefined before every iteration step and the number of iteration steps is finite.

�

We conclude this section with the proofs of Propositions 6.1–6.2.

Proof of Proposition 6.2. By (6.4), estimating n−2/k−1/2 ≤ n−1/10 for any k ≥ 5 in the first term of (6.4), we get

|dE|Rt|p| .
(

nξ

nη1η2

)4

|Rt|p−4 +

p∑

k=5

(
n−1/10+ξ

nη1η2

)k

+
(
1 +

1√
nη∗

)
E

[ |Rt|p−1

nη1η2
+ |Rt|p−3

( 1

nη1η2

)3]
. (6.12)

We now estimate

(
nξ

nη1η2

)r

|Rt|p−r ≤
(
η∗ + |z1 − z2|2

η∗

)(
nξ

nη∗(η∗)1−1/r(|z1 − z2|2 + η∗)1/r

)r

|Rt|p−r,

1√
nη∗

(
1

nη1η2

)r

|Rt|p−r ≤ 1
√
nη

3/2
∗

(
η
1/2r
∗
nη1η2

)r

|Rt|p−r.

(6.13)

Then, combining (6.12) with (6.13), where we use the first bound for r = 1, 3, 4 and the second bound for r = 1, 3, and
using that η∗ ≤ 1, (η∗ + |z1 − z2|2)/η∗ ≥ 1 we conclude

|dE|Rt|p| .
((

η∗ + |z1 − z2|2
η∗

)4

+
1

√
nη

3/2
∗

)(
|Rt|p +

(
nξη

1/6
∗ + n−1/10+ξ

nη∗η∗

)p

+

(
nξ

nη∗(|z1 − z2|2 + η∗)

)p
)
.

(6.14)
Finally, (6.5) readily follows from (6.14) by a simple Gronwall inequality.

�

Proof of Proposition 6.1. For notational simplicity we drop the absolute value. In fact the whole proof verbatim applies to∏p
k=1 Rt(σk,1η1, σk,2η2) for any σk,1, σk,2 = ±1 and therefore the absolute value can be obtained by choosing half the

σ’s to be+1 and the other half−1 withA,B replaced by B∗, A∗.
By Itô’s formula we have

dERp
t = E


−1

2

∑

α

wα(t)∂αR
p
t +

1

2

∑

α,β

κ(α, β)∂α∂βR
p
t


 , (6.15)
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where wα(t) are the entries of Wt for double-indices α = (a, b) ∈ [2n]2, and κ(α, β) denotes the joint cumulant of
wα, wβ . Performing a cumulant expansion10 in (6.15) we conclude that

dERp
t = −1

2

K∑

k=3

∑

ab

∑

α∈{ab,ba}k

κ(α)

(k − 1)!
E ∂αR

p
t +ΩK (6.16)

with an error termΩK = O≺((nη1η2)−p) forK = const·p, wherewe recall from (5.2) that
∑

ab is a shorthand notation
for
∑

a≤n

∑
b>n +

∑
a>n

∑
b≤n. We first establish a priori bounds on derivatives ofRt which are sufficient for higher

order cumulants.

Lemma 6.3. For any α ∈ {ab, ba}k and k ≥ 1 we have

|∂αRt| ≺
1

nη1η2
. (6.17)

Proof. By the differentiation identity ∂abG = −G∆abG for the resolvent (which follows from applying the resolvent
identity to the difference quotient) we have that

∂abRt = − (G1AG2BG1)ba + (G2BG1AG2)ba
n

(6.18)

and therefore any derivative is a sum of monomials of types

(G1AG2BG1)
∏

G, (G2BG1AG2)
∏

G, or (G1AG2)(G2BG1)
∏

G,

where
∏
G stands for some product of entries of either G1, G2. By estimating |Gab| ≺ 1 (see (3.6)) and Schwarz-

inequlities of the form

|(G1AG2)ab| ≤
√
(G∗

2A
∗AG2)bb(G1G∗

1)aa ≤ ‖A‖
√
(ℑG2)bb(ℑG1)aa√

η1η2
≺ 1√

η1η2

|(G1AG2BG1)ab| ≤
√
(G∗

1B
∗G∗

2A
∗AG2BG1)bb(G1G∗

1)aa ≤ ‖A‖‖B‖
√
(ℑG1)aa(ℑG1)bb
η1η2

≺ 1

η1η2

(6.19)

the claim follows. Here we also used the operator-bound 0 ≤ A∗A ≤ ‖A‖2I and the Ward identityGG∗ = ℑG/η. �

By distributing the derivatives (6.16) according to the Leibniz rule and using Lemma 6.3 it follows that we can estimate
the k-th order terms using |κ(α)| . N−k/2 by

n2−k/2

k∧p∑

l=1

( 1

nη1η2

)l
|Rt|p−l. (6.20)

We now consider the third order terms (k = 3) which symbolically (with ∂ = ∂ab + ∂ba and R = Rt and ignored
summations and constants) are given by

(∂3R)Rp−1 + (∂2R)(∂R)Rp−2 + (∂R)3Rp−3. (6.21)

We begin with the last term in (6.21) which is given by

n−3/2|(∂R)3| . n−9/2
∑

ab

|(G1AG2BG1)ba + (G2BG1AG2)ba|3

≺ 1

n9/2η1η2

∑

ab

(
|(G1AG2BG1)ba|2 + |(G2BG1AG2)ba|2

)

=
1

n7/2

(〈ℑG1AG2BℑG1B
∗G∗

2A
∗〉

η31η2
+

〈ℑG2BG1AℑG2A
∗G∗

1B
∗〉

η1η32

)

≺ 1

n7/2

η∗
η2∗(η1η2)

3
=
( 1

nη1η2

)3 1√
nη∗

,

(6.22)

10Such an expansion was first used in the random matrix context in [31] and later revived in [29, 36]. Technically we use a truncated version of the

expansion above, see e.g. [24, 29, 24]. The truncation error of the cumulant expansion after K = const · p terms can be estimated trivially by the

single-G local law for resolvent entries, and by norm for entries ofGAG · · · resolvent chains.
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where in the second step we used the entrywise estimate from (6.19) for one of the factors, and in the third step performed
the a, b summation for the other two. The power counting behind (6.22) is rather simple: the naive size of (∂R)3 would
be given by n−3/2 × n2 × (nη1η2)

−3 if all three factors were estimated by the a priori estimate in (6.17), where the

n−3/2 comes from the third order cumulant, n2 from the summation, and (nη1η2)
−3 from the a priori estimate in (6.17).

However, by summation off-diagonal resolvent chains, i.e. products of resolvents and deterministic matrices evaluated
in the (a, b) or (b, a)-entry, can be estimated more efficiently. By two Ward estimates we can gain an additional factor

of [(nη∗)−1/2]2 over the naive size, giving (nη1η2)
−3n−1/2η−1

∗ for the final estimate. The very same power counting
principle applies also to the first two terms in (6.21) whenever at least two off-diagonal resolvent chains appear (in which
case all three resolvent chains are off-diagonal by parity) that allows us to sum up a, b into a full trace. Now we record
the remaining terms explicitly:

n−3/2
∣∣(∂3R)

∣∣ ≺ (
√
nη∗)−1

nη1η2
+

∣∣∣∣∣
∑

ab

(GAGBG)abGaaGbb + (GAG)ab(GBG)aaGbb +Gab(GAG)aa(GBG)bb
n5/2

∣∣∣∣∣

n−3/2|(∂2R)(∂R)| ≺ (
√
nη∗)−1

(nη1η2)2
+

∣∣∣∣∣∣

∑

ab

(GAGBG)ab

(
(GAGBG)aaGbb + (GAG)aa(GBG)bb

)

n7/2

∣∣∣∣∣∣
(6.23)

where we dropped the subscripts fromG for notational brevity as they play no role in the sequel. For the terms in (6.23)
with some Gaa or Gbb we further splitGaa = (G −m)aa +m so that using the entry–wise local law |(G −m)aa| ≺
(nη∗)−1/2 from (3.6) gives the same estimate as the first term on the right hand side of (6.23)11. For the m contribution
we use a so called isotropic resummation trick: for example for the second line of (6.23) after splitting Gbb = m + (G −
m)bb for them-contribution the b-index only appears once in (GAGBG)ab and can be summed into the inner product
〈ea, GAGBG1a〉 with the a-th unit vector ea and the constant-(0, 1) vector 1a defined as 1a := (0, . . . , 0, 1, . . . , 1)
for a > n and 1a := (1, . . . , 1, 0, . . . , 0) for a ≤ n (recall that the

∑
ab summation is restricted to either a ≤ n, b > n

or a > n, b ≤ n). Thus
∣∣∣∣∣
∑

ab

(GAGBG)ab(GAGBG)aa
n7/2

∣∣∣∣∣

=

∣∣∣∣∣
∑

a

〈ea, GAGBG1a〉(GAGBG)aa
n7/2

∣∣∣∣∣

≺
√
〈1n, G∗B∗G∗A∗G∗E1GAGBG1n〉+

√
〈12n, G∗B∗G∗A∗G∗E2GAGBG12n〉

n3η1η2

≤ ‖A‖‖B‖
√
〈1n,ℑG1n〉+ 〈12n,ℑG12n〉

n3η21η
2
2

√
η1

≺
( 1

nη1η2

)2 1√
nη∗

(6.24)

using Cauchy-Schwarz, the operator bound B∗G∗A∗G∗E1GAGB . (‖B‖2‖A‖2η−4)I and the isotropic local law
〈1a,ℑG1a〉 ≺ ‖1a‖2 = n. The same argument applies to the diagonalGaa, Gbb terms in the first line of (6.23). Together
with the following Lemma 6.4 for the remaining terms of (6.23) we thus conclude the proof of Proposition 6.1. �

Lemma 6.4.
∣∣∣∣∣n

−5/2
∑

ab

EGab(GAG)aa(GBG)bb

∣∣∣∣∣ ≺
1

nη1η2

(
1 +

1√
nη∗

)
, (6.25)

∣∣∣∣∣n
−7/2

∑

ab

E(GAGBG)ab(GAG)aa(GBG)bb

∣∣∣∣∣ ≺
( 1

nη1η2

)2(
1 +

1√
nη∗

)
(6.26)

11For instance, for the (GAGBG)(GAGBG)(G −m) term we obtain a bound of

n−7/2η−2(nη)−1/2
∑

ab

|(GAGBG)ab| ≤ n−5/2η−5/2〈|GAGBG|2〉1/2 ≺ n−5/2η−5 = (nη2)−2(
√
nη)−1,

ignoring the difference of η1, η2 for convenience.
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Proof of Lemma 6.4. For (6.25) we write

G =M −MWG+GO≺

(
1

nη∗

)
:=M −M(WG+ S[G]G) +GO≺

(
1

nη∗

)
, (6.27)

c.f. [13, Eq.(5.2)], in terms of the “underline renormalization” from (A.4). When using (6.27) for Gab in (6.25) theM - and
O≺(· · ·)-contributions are trivially of the claimed size. For theWG-part we compute with another cumulant expansion

∣∣∣∣∣n
−5/2

∑

ab

E(WG)ab(GAG)aa(GBG)bb

∣∣∣∣∣ . n−7/2

∣∣∣∣∣
∑

abc

EGcb∂ca

(
(GAG)aa(GBG)bb

)∣∣∣∣∣

+ n−5/2
∑

k≥2

∣∣∣∣∣∣

∑

abc

∑

β∈{ac,ca}k

κ(ac,β)

k!
E ∂β

(
Gcb(GAG)aa(GBG)bb

)
∣∣∣∣∣∣
.

(6.28)

For the last term the trivial estimate is sufficient: the ∂β-derivative is bounded by (η1η2)
−1 c.f. (6.19), while the prefactor,

i.e. the cumulant and the summation, contribute n−k/2. For the first term we exploit that the action of the ∂ca derivative
yields at least one additional off-diagonal resolvent chain, hence we gain an additional factor of [(nη∗)−1/2]2 over the

naive size n−1/2(η1η2)
−1 to obtain a final bound of n−1/2(η1η2)

−1(nη∗)−1 , just as claimed. More explicitly, if for
instance the derivative acts on the secondG factor, then we estimate

n−7/2
∑

abc

|Gcb(GAG)acGaa(GBG)bb| ≤ n−7/2
∑

ab

|Gaa||(GBG)bb|
√∑

c

|Gcb|2
√∑

c

|(GAG)ac|2

= n−7/2
∑

ab

|Gaa||(GBG)bb|
√
(G∗G)bb(GAGG∗A∗G∗)aa

≺ n−3/2η−3,

just as claimed. We point out that in the last inequality we used (6.19) to estimate all the factors in the second to last line.
In order to prepare the more complicated estimate on (6.26) we now explain the general power counting principle

behind the improvement in (6.28): the trivial estimate on the left hand side of (6.25) using one off-diagonal gain forGab is by
a factor of

√
nη∗ larger than the right hand side. Performing the cumulant expansion forG =M−MWG+. . . is neutral

for the Gaussian (i.e. second order cumulant) term (one additional summation is compensated by κ(ac, ca) = 1/n) but
gains a factor of n−1/2 already for the third order cumulants. This and the additional gain in the Gaussian term due to
the second off-diagonal resolvent chain is sufficient for the claimed bound.

We now consider (6.26) where the non-Gaussian terms, as well as the Gaussian terms with two off-diagonal resolvent
chains, of the cumulant expansion can be estimated just as for (6.25) using either the gain from the third cumulant or the
additional Ward estimate. Thus we obtain

∣∣∣∣∣n
−7/2

∑

ab

E(WGAGBG)ab(GAG)aa(GAG)bb

∣∣∣∣∣

.
( 1

nη1η2

)2 1√
nη∗

+

∣∣∣∣∣n
−9/2

∑

abc

E[(GAGBG)ccGab + (GAG)cc(GBG)ab](GAG)aa(GBG)bb

∣∣∣∣∣.
(6.29)
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We now continue with another cumulant expansion (6.27) for Gab = Mab − (MWG)ab + . . . and (GBG)ab =
(MBG)ab − (MWGBG)ab + . . . and obtain
∣∣∣∣∣n

−9/2
∑

abc

E(GAGBG)cc(MWG)ab(GAG)aa(GAG)bb

∣∣∣∣∣ ≺
( 1

nη1η2

)2(
1 +

1√
nη∗

)

∣∣∣∣∣n
−9/2

∑

abc

E(GAG)cc(MWGBG)ab(GAG)aa(GBG)bb

∣∣∣∣∣

≺
( 1

nη1η2

)2(
1 +

1√
nη∗

)
+

∣∣∣∣∣n
−11/2

∑

abcd

E(GAG)cc(GBG)dd(MG)ab(GAG)aa(GBG)bb

∣∣∣∣∣ ≺
( 1

nη1η2

)2(
1 +

1√
nη∗

)
,

(6.30)

where for the first inequality we used that for the Gaussian term the ∂da-derivative creates one additional off-diagonal re-
solvent chain. For the second inequality we kept the unique term inwhich the ∂da derivative does not create an additional
off-diagonal resolvent chain and estimated the remaining terms as before. Finally, for the last inequality we performed
another cumulant expansion inGab =Mab − (MWG)ab + . . . =Mab −n−1

∑
eGeb∂ea[· · · ] + . . . and used that the

∂ea-derivative creates a second off-diagonal resolvent chain which is sufficient to achieve the claimed bound. Finally the
M - andO≺(·)- contributions of (6.27) towards (6.30) can be trivially estimated. �

Appendix A. Additional technical results

Here we prove several technical inputs which are used in Section 5.

A.1. Proof of Proposition 3.4. The proof is essentially identical to the proof of [13, Proposition 3.3] upon replacing [13,
Theorem 5.2] by the improved Theorem 3.3. For the sake of brevity we here only give a sketch highlighting the differences.
The analogue of [13, Eq. (6.9)] is

〈G−M〉 =
〈
D−1[I]M [−WG+ S[G −M ](G−M)]

〉
, D[R] := 1− S[MRM ] (A.1)

and by an explicit computation it follows that

D−1[I] =
I

1−m2 − |z|2u2 , ‖D−1[I]‖ .
1

τ
. 1 (A.2)

and therefore

〈G−M〉 = −〈AWG〉+O≺

(
1

(nη)2

)
, A :=

M

1−m2 − |z|2u2 . (A.3)

Here

Wf(W ) :=Wf(W )− ẼW̃ (∂
W̃
f)(W ) (A.4)

for any given f , where W̃ is an independent copy ofW , and ∂
W̃

denotes the directional derivative in the direction W̃ .
In particular, we have

WG =WG+ S[G]G.
The accuracy of the expectation computation from [13, Lemma 6.2] was already sufficient also on optimal mesoscopic

scales and we recall from (3.17) that

〈G−EG〉 = 〈G−M − E〉+O≺

(
1

n3/2(1 + η)
+

1

(nη)2

)
, (A.5)

where

E := − iκ4
4n

∂η(m
4) =

κ4
n
m3〈MA〉 = κ4

n

m3〈M2〉
1−m2 − |z|2u2 (A.6)

using [13, Eq. (6.10)].
Therefore, for the higher moments it suffices to compute

E
∏

i

〈Gi −EGi〉 =
∏

i

〈−AiWGi − Ei〉+O≺

(
ψ√
nη∗

)
, ψ :=

∏

i

1

n|ηi|
(A.7)
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due to

|〈AiWGi〉| ≺
1

nηi
(A.8)

by [13, Eq. (6.14)]. As in [13, Eq. (6.17)] we then perform a cumulant expansion to obtain

E
∏

i

〈−AiWGi − Ei〉

= −〈Ei〉E
∏

i6=1

〈−AiWGi − Ei〉

+
∑

i6=1

E Ẽ〈−A1W̃G1〉〈−AiW̃Gi +AiWGiW̃Gi〉
∏

j 6=1,i

〈−AjWGj − Ej〉

+
∑

k≥2

∑

ab

∑

α∈{ab,ba}k

κ(ba,α)

k!
E ∂α

[
〈−A1∆

baG1〉
∏

i6=1

〈−AiWGi − Ei〉
]

=
∑

i6=1

E
[
Ẽ〈−A1W̃G1〉〈−AiW̃Gi +AiWGiW̃Gi〉+

κ4U1Ui

2n2

] ∏

j 6=1,i

〈−AjWGj − Ej〉+O≺

(
ψ√
nη∗

)
.

(A.9)

with Ui as in (3.16), and where we used [13, Eqs. (6.26), (6.29)] for the last equality. By combining [13, Eq. (6.2)] and the
display below [13, Eq. (6.21)] we have

E Ẽ〈−A1W̃G1〉〈−AiW̃Gi +AiWGiW̃Gi〉
∏

j 6=1,i

〈−AjWGj − Ej〉

=
〈G1A1EGiAiE

′ +G1S[G1A1EGiAi]GiE
′〉

2n2
E
∏

j 6=1,i

〈−AjWGj − Ej〉+O
(
nǫψ

nη∗

)
,

(A.10)

where it is understood that (E,E′) is summed over (E1, E2) and (E2, E1). From Theorem 3.3 and the computations
around [13, Eq. (6.23)] we obtain

〈G1A1EGiAiE
′ +G1S[G1A1EGiAi]GiE

′〉
2n2

=
〈Mz1,zi

A1E
+Mzi,z1

E′ S[Mz1,zi
A1E

]〉
2n2

+O≺

(
1

n2η1ηi

1

nη∗

)

=
V1,i
2n2

+O≺

(
1

n2η1ηi

1

nη∗

) (A.11)

with V1,i as in (3.16). Inserting (A.10) and (A.11) into (A.9) we conclude the proof of Proposition 3.4 by induction.

A.2. Asymptotic independence. In this section we present the proof of Theorem 3.1 and of Proposition 3.5.

Proof of Theorem 3.1. Using the spectral symmetry ofHz , for any z ∈ C we writeGz in spectral decomposition as

Gz(iη) =
∑

j>0

2

(λzj )
2 + η2

(
iηuz

j (u
z
j )

∗ λzju
z
j (v

z
j )

∗

λzjv
z
j (u

z
j )

∗ iηvz
j (v

z
j )

∗

)
.

Let η = n−1+ǫ, with ǫ ≤ ωp/10, then by rigidity of the eigenvalues (see e.g. [13, Eq. (7.4)]), for any 1 ≤ i0, j0 ≤ nω
B such

that λzli0 , λ
zl
j0

. η, with l = 1, 2, and any z1, z2 such that n
−1/2+ωp ≤ |z1 − z2|2 ≤ n−2ωd , it follows that

∣∣〈uz1
i0
,uz2

j0
〉
∣∣2 +

∣∣〈vz1
i0
,vz2

j0
〉
∣∣2

.

n∑

i,j=1

4η4

((λz1i )2 + η2)((λz2j )2 + η2)

(∣∣〈uz1
i ,u

z2
j 〉
∣∣2 +

∣∣〈vz1
i ,v

z2
j 〉
∣∣2
)

= η2 Tr(ℑGz1)(ℑGz2) .
nη2

|z1 − z2|2
+ nξ

(
η1/6 + n−1/10 +

1√
nη

+

(
η

|z1 − z2|2
)1/4

)

. n−2δ + n(δ+2ξ−ωp)/2 + n−(δ+ωp−4ξ)/4.

(A.12)
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The first inequality in the third line of (A.12) is from Theorem 3.3. In the last inequality we chose η = n−1/2−δ|z1 − z2|,
for any δ ≤ ωp/10. This concludes the proof by choosing ωB small enough and ωE := (2δ)∧ [(ωp− δ− 2ξ)/2]∧ [(δ+
ωp − 4ξ)/4]which is still positive by our choice of δ and ξ. �

Proof of Proposition 3.5. The proof of this proposition is completely analogous to [13, Proof of Proposition 3.5 in Section 7],
the only difference is that [13, Lemma 7.9] has to be replaced by Theorem 3.1. The key change is that in [13, Proposition 3.5]

we required |z1−z2| to basically be order one, whilst nowwe consider the entire mesoscopic regime |z1−z2| ≫ n−1/2.

In particular, Theorem 3.1 ensures that [13, Assumption 7.1] is satisfied even in themesoscopic regime |z1−z2| ≥ n−1/2+ωp

and so that [13, Proposition 7.14] holds in this case as well. This proposition and a simple standard GFT were the only
input to prove [13, Proposition 3.5]. �

A.3. Proof of Lemma 5.4. Without loss of generality we assume that ‖(B−1
12 )

∗[B∗]‖ . 1. The case ‖(B−1
21 )

∗[A∗]‖ . 1
is completely analogous using cyclicity of the trace.

We start writing down the equation forG1AG2. First of all notice that

G =M −MWG+MS[G−M ]G, (A.13)

whereW := H + Z , with

Z :=

(
0 z
z 0

)
= zF ∗ + zF. (A.14)

Here we also recall thatWG =WG+ 〈G〉G.
Next, using (A.13) forG1 and writingG2 =M2 + (G2 −M2), we find

G1AG2 =M1AM2 +M1A(G2 −M2)−M1WG1AG2 +M1S[G1 −M1]G1AG2

+M1S[G1AG2]G2

=M1AM2 +M1A(G2 −M2)−M1WG1AG2 +M1S[G1 −M1]G1AG2

+M1S[G1AG2]M2 +M1S[G1AG2](G2 −M2),

(A.15)

where

WG1AG2 :=WG1AG2 + S[G1AG2]G2.

Then, by (A.15) it follows that

〈G1AG2B −MA
12B〉 = 〈M1A(G2 −M2)((B−1

12 )
∗[B∗])∗〉 − 〈M1WG1AG2((B−1

12 )
∗[B∗])∗〉

+ 〈M1S[G1 −M1]G1AG2((B−1
12 )

∗[B∗])∗〉+ 〈M1S[G1AG2](G2 −M2)((B−1
12 )∗[B∗])∗〉.

(A.16)

Finally, the single resolvent local law |〈Gi −Mi〉| ≺ (nηi)
−1 from (3.6) and the bound

|〈M1WG1AG2((B−1
12 )

∗[B∗])∗〉| ≺ 1

nη∗
√
η1η2

from [13, Eq. (5.10c)] we conclude the proof of this lemma.

A.4. Proof of Lemma 5.5. We present the proof in the most general setting for convenience. Consider the matrix Dyson
equation (MDE)M =M(Λ) solving

−M−1 = S[M ] + Λ, sgnℑM = sgnℑΛ (A.17)

for some generalised spectral parameter Λ with ℑΛ either positive or negative definite in order for sgnℑΛ to be well
defined.

Lemma A.1. If Λ = Λ(t) ∈ CN×N
± (with ± independent of t) solves the ODE

Λ̇ :=
dΛ

dt
= −Λ

2
− S[M ], (A.18)

then

Ṁ =
M

2
. (A.19)
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Proof. By inverting and differentiating (A.17) we have

M−1ṀM−1 = S[Ṁ ] + Λ̇ = S[Ṁ ]− S[M ]− Λ

2
= S[Ṁ ]− S[M ]

2
+
M−1

2
(A.20)

and therefore

B[Ṁ ] = B
[M
2

]
, B := 1−MS[·]M (A.21)

and the claim follows upon inverting B. �

Lemma A.2. Let B be arbitrary, letMi =M(Λi) be the solution to (A.17) for i = 1, 2, and let

MB
12 =MB(Λ1,Λ2) = B−1

12 [M1BM2], B12 := 1−M1S[·]M2. (A.22)

If Λi = Λi(t) satisfy the ODE

Λ̇i = −Λi

2
− S[Mi], (A.23)

then
ṀB

12 = B−1
12 [M

B
12]. (A.24)

Proof. We invert B12 in (A.22) and differentiate to obtain

Ṁ12 −M1S[Ṁ12]M2 = Ṁ1(B + S[M12])M2 +M1(B + S[M12])Ṁ2

= Ṁ1M
−1
1 M12 +M12M

−1
2 Ṁ2 =M12

(A.25)

where we used (A.22) in the second step and Lemma A.1 in the final step. �

Lemma A.2 implies for arbitraryB1, B2 that

〈ṀB1
12 B2〉 =

〈
B2B−1

12 [M
B1
12 ]
〉
=
〈
(1 − S[M2 ·M1])

−1[B2]M
B1
12

〉

=
〈
M−1

2 MB2
21 M

−1
1 MB1

12

〉
=
〈
B2M

B1
12

〉
+
〈
S[MB2

21 ]MB1
12

〉 (A.26)

usingM−1
2 MB

21M
−1
1 = S[MB

21] +B in the last step. This concludes the proof of Lemma 5.5.

A.5. Proof of Lemma 5.6. Adding and subtracting the deterministic approximations of G1L
′
−G2 and G2L−G1, and

using the definition of S in (3.8), we obtain

〈S[G1L
′
−G2]G2L−G1〉 = 〈S[ML′

−
12 ]M

L−
21 〉+ 〈G1L

′
−G2 −M

L′
−

12 〉〈ML−
21 〉+ 〈G1L

′
−G2〉〈G2L−G1 −M

L−
21 〉

− 〈(G1L
′
−G2 −M

L′
−

12 )E−〉〈ML−
21 E−〉 − 〈G1L

′
−G2E−〉〈(G2L−G1 −M

L−
21 )E−〉.

(A.27)

In Appendix B we will derive various elementary facts about the eigenvectors of the stability operator. In particular,
in (B.6) we will prove that η1,tη2,t < 0 we have

I = (1+O(|z1,t−z2,t|))L−+O(|z1,t−z2,t|)L+, E− = (1+O(|z1,t−z2,t|))L++O(|z1,t−z2,t|)L−, (A.28)

and similar relations hold with L± replaced with L′
±. Next, using (A.28), we write

〈(G1L
′
−G2−ML′

−
12 )E−〉 = (1+O(|z1,t−z2,t|))〈(G1L

′
−G2−ML′

−
12 )L+〉+O(|z1,t−z2,t|)〈(G1L

′
−G2−ML′

−
12 )L−〉.

We can thus estimate

〈(G1L
′
−G2 −M

L′
−

12 )E−〉 = O
(

nξ

nη∗,t
√
|η1,tη2,t|

+ |z1 − z2||Yt|
)
, (A.29)

wherewe used Lemma 5.4 forA = L+ andB = L′
− to estimate the terms containingL+. Notice that ‖(B∗

12)
−1[L∗

+]‖ =
‖L+‖/|β+| . ‖L+‖ ∼ 1, where we used that |β+| ∼ 1 by (B.3); this ensures the applicability Lemma 5.4 for A = L+

andB = L′
−.

Using that

∣∣〈ML−
21 E−〉

∣∣ .
∣∣〈ML−

21 L+〉
∣∣+ |z1,t − z2,t|

∣∣〈ML−
21 L−〉

∣∣ . 1 +
|z1,t − z2,t|

|z1,t − z2,t|2 + η∗,t
,
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together with (A.29) and similar bounds for 〈G1L
′
−G2E−〉 = 〈ML′

−
12 E−〉+ 〈(G1L

′
−G2 −M

L′
−

12 )E−〉, we obtain

〈S[G1L
′
−G2]G2L−G1〉 = 〈S[ML−

12 ]M
L−
21 〉+ 〈G1L

′
−G2 −M

L′
−

12 〉〈ML−
21 〉+ 〈G1L

′
−G2〉〈G2L−G1 −M

L−
21 〉

+O
(

nξ

nη2∗,t
√
|η1,tη2,t|

+ |Yt|+ |z1,t − z2,t|2|Yt|2
)
,

(A.30)

where we used that ǫ > ξ/10 (recall η∗,t ≥ n−1+ǫ).

Finally, writing 〈G1L
′
−G2〉 = 〈ML′

−
12 〉+ 〈(G1L

′
−G2 −M

L′
−

12 )〉, using
〈ML−

21 〉 = 〈M I
12〉(1 +O(|z1,t − z2,t|)),

〈G1L
′
−G2 −M

L′
−

12 〉 = (1 +O(|z1,t − z2,t|))Yt +O(|z1,t − z2,t|)〈(G1L
′
−G2 −M

L′
−

12 )L+〉,
(A.31)

by (A.28), and a similar approximation for the last term in the first line of (A.30), we conclude (5.27).

A.6. Proof of Lemma 5.7. Define

Ξt = Ξ(η1,t, η2,t, z1,t, z2,t) := |η1,t|+ |η2,t|+ |z1,t − z2,t|2.
Then, we estimate

〈M I
12,t〉 =

m1,tm2,t + 1−ℜ[z1,tz2,t]u1,tu2,t
1 + |z1,tz2,t|2u21,tu22,t −m2

1,tm
2
2,t − 2u1,tu2,tℜ[z1,tz2,t]

− 1

=

√
(1− |z1,t|2)(1− |z2,t|2) + 1−ℜ[z1,tz2,t]

|z1,t − z2,t|2 + |η1,t|
√
1− |z1,t|2 + |η2,t|

√
1− |z2,t|2

(
1 +O (Ξt)

)

=

√
(1− |z1,0|2)(1 − |z2,0|2) + 1−ℜ[z1,0z2,0]

|z1,0 − z2,0|2 + |η1,0|
√
1− |z1,0|2 + |η2,0|

√
1− |z2,0|2 − t[2− |z1,0|2 − |z2,0|2]

(
1 +O (Ξ0 + t)

)

≤ 2− |z1,0|2 − |z2,0|2
|z1,0 − z2,0|2 + |η1,0|

√
1− |z1,0|2 + |η2,0|

√
1− |z2,0|2 − t[2− |z1,0|2 − |z2,0|2]

(
1 +O (Ξ0 + t)

)
,

(A.32)

We point out that here we also used that

|ηi,t| = |ηi,0| − t
√
1− |zi,0|2 +O(t|ηi,t|), zi,t = e−t/2zi,0 = zi,0

(
1 +O(t)

)
,

and that

1−ℜ[z1,0z2,0] = 1− |z1,0|2 + |z2,0|2
2

+ |z1,0 − z2,0|2.
Additionally, to go from the first to the second line of (5.30) we also used (3.7).

Appendix B. Eigendecomposition of the stability operator

The stability operatorB12 := 1−M1S[·]M2 , withMi :=Mzi(wi), acts on the 4n
2 dimensional space of (2n)×(2n)

block matrices. From the action of S and the fact thatMi are block constant, it immediately follows that both B12 and
B∗
12 leave the 4n

2 − 4 dimensional subspace of block traceless matrices invariant and they act trivially as the identity on
it. Nowwe describe its spectral data on the 4 dimensional space of block constant matrices, which are a constant multiple
of the n× n identity in all four blocks. We use the notation ui := uzi(iηi),mi := mzi(iηi), with u

z ,mz being defined
in (3.4) and (3.5), respectively. There are eigenvalues (1, 1, β+, β−) with

12

β± := 1±√
s− u1u2ℜz1z2, s := m2

1m
2
2 − u21u

2
2(ℑz1z2)2, (B.1)

and right eigenvectors F, F ∗, R+, R− in the sense that B12[R±] = β±R± and B12[F
(∗)] = F (∗), where F has been

defined in (3.9) and

R± =




−u1u2ℜz1z̄2 ±
√
s z1u1m2 +

z2u2m
2
1m2

iu1u2ℑz1 z̄2∓
√
s

z̄2u2m1 +
z̄1u1m

2
2m1

iu1u2ℑz1z̄2∓
√
s

m1m2

iu1u2ℑz1z̄2∓
√
s

(
− u1u2ℜz1z̄2 ±

√
s
)


 . (B.2)

12The complex square root
√· in (B.1) and (B.2) is defined using the standard branch cutC \ (−∞, 0).
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We point out that the quantities s, β±, R±, and L± below naturally depend on z1, z2, η1, η2; we omitted this from
the notation for simplicity. Furthermore, we remark that the explicit formulas for the eigenvalues in (B.1), for the right
eigenvectors in (B.2), and for the left eigenvectors in (B.4) below hold for any z1, z2 ∈ C and for any spectral parameters
w1, w2 ∈ C \ R; however we present the following estimates only on the imaginary axis, i.e. for wi = iηi, and for
1 − |zi|2 ∼ 1, |z1 − z2| ≪ 1, since this is the only regime needed in the proof of Theorem 2.1. Note that by an explicit
computation for z1 = z2 and a simple Taylor expansion it follows that ‖R±‖ ∼ 1. On the eigenvalues β± we also have
the following asymptotics:

β− ∼ |z1 − z2|2 + η1 + η2, |β+| ∼ 1. (B.3)

The fact that |β+| ∼ 1 follows trivially by its explicit expression in (B.1), the lower bound for |β−| follows by [16, Lemma
6.1], whilst the upper bound follows from the fact that for η1 = η2 = 0 we have

β− = 1−ℜ[z1z2]−
√
1− |z1|2 − |z2|2 + ℜ[z1z2]2

= 1− |z1|2 + |z2|2
2

+
|z1 − z2|2

2
−
√(

1− |z1|2 + |z2|2
2

)2

− |z1 − z2|2
(
|z1|2 + |z2|2 +

|z1 − z2|2
4

)

. |z1 − z2|2

and a simple Taylor expansion in the ηi variables. We point out that here we used 2ℜ[z1z2] = |z1|2 + |z2|2 − |z1 − z2|2
and that for ηi = 0 it holdsm2

i = |zi|2 − 1, ui = 1.
Since B12 is not self-adjoint, it has a separate set of left eigenvectors defined by

B∗
12[L

∗
±] = β±L

∗
±, B∗

12[L
∗
(∗)] = L∗

(∗).

The left eigenvectors corresponding to β± are given by

L± =
1

m1m2

(
iu1u2ℑz1z̄2 ∓

√
s 0

0 m1m2

)
. (B.4)

We do not give the explicit form of the eigenvectorsL∗
(∗) since they are not used for our analysis. With the normalizations

above we have ‖L±‖ ∼ 1, and 〈L−R−〉 ∼ 1; however 〈L+R+〉 can be small when |z1|, |z2| ≈ 2−1/2, i.e. when β+
resonates with the eigenvalue 1. As before, for these conclusions we used that for z1 = z2 = z it holds

〈L±R±〉 = |m|2 ∓ |z|2|u|2, (B.5)

and Taylor expansion to access the |z1 − z2| ≪ 1 regime.
Wewill also need to express the standard basis vectors I, E− in terms ofL±. For z1 = z2 it holds I = L−,E− = L+

if η1η2 < 0, and I = L+, E− = L− if η1η2 > 0. Then again using a simple Taylor expansion it follows that

I = (1 +O(|z1 − z2|))Lσ +O(|z1 − z2|)L−σ, E− = (1 +O(|z1 − z2|))L−σ +O(|z1 − z2|)Lσ, (B.6)

with σ := sign(η1η2).
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