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Abstract. We consider large non-HermitianN ×N matrices with an additive independent, identically
distributed (i.i.d.) noise for each matrix elements. We show that already a small noise of variance 1/N
completely thermalises the bulk singular vectors, in particular they satisfy the strong form of Quantum
Unique Ergodicity (QUE) with an optimal speed of convergence. In physics terms, we thus extend the
Eigenstate Thermalisation Hypothesis, formulated originally by Deutsch [34] and proven for Wigner ma-
trices in [24], to arbitrary non-Hermitian matrices with an i.i.d. noise. As a consequence we obtain an
optimal lower bound on the diagonal overlaps of the corresponding non-Hermitian eigenvectors. This
quantity, also known as the (square of the) eigenvalue condition number measuring the sensitivity of the
eigenvalue to small perturbations, has notoriously escaped rigorous treatment beyond the explicitly com-
putable Ginibre ensemble apart from the very recent upper bounds given in [7] and [45]. As a key tool, we
develop a new systematic decomposition of general observables in randommatrix theory that governs the
size of products of resolvents with deterministic matrices in between.

1. Introduction

Traditional random matrix theory focuses on statistics of eigenvalues, where spectacular univer-

sality phenomena arise: the local spectral statistics tend to become universal as the dimension goes

to infinity with new distributions arising; most importantly the celebrated Wigner-Dyson-Mehta bulk
statistics and the Tracy-Widom edge statistics in the Hermitian spectrum and the Ginibre statistics in the

non-Hermitian spectrum. More recently eigenvectors of Hermitian ensembles received considerable

attention. They also become universal, albeit in a more conventional way: they tend to be entirely ran-

domised, i.e. Haar distributed [16, 17, 49, 11, 27, 29, 10]. In this paper we study two related questions: how

do eigenvectors and singular vectors of a typical non-Hermitian randommatrix in high dimension look

like? To answer them, we introduce a new decomposition of general observables that identifies cor-

relations of the Hermitised resolvents as entire matrices at different spectral parameters. This captures

correlations of the singular vectors well beyond correlations of traces of resolvents that govern only the
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2 EIGENVECTOR OVERLAPS FOR NON-HERMITIAN RANDOM MATRICES

singular values. Somewhat surprisingly, we are then able to transfer information on singular vectors to

the non-Hermitian eigenvectors.

1.1. Non-Hermitian eigenvector overlaps. To be specific, we consider non-Hermitian N ×N ma-

trices of the form Λ +X , where Λ is an arbitrary deterministic matrix and X is random. We assume

that the norm of Λ is bounded independently of N and X has independent, identically distributed

(i.i.d.) centred matrix elements with variance E ∣xij ∣2 = 1

N
with some further moment conditions.

This normalisation guarantees that ∥X∥ ≤ 2 + o(1) and the spectrum ofX lies essentially in the unit

disk (circular law) with very high probability, henceΛ andX remain of comparable size asN increases.

Note thatX perturbs each matrix elements of Λ by a small random amount of order 1/√N , however

the spectra of Λ and Λ +X substantially differ.

The analysis of non-Hermitian random matrices is typically much harder than that of the Hermit-

ian ones. Non-Hermitian matrices have two different sets of spectral data: eigenvalues/vectors and

singular values/vectors which cannot be directly related. In particular, the study of singular vectors

and eigenvectors substantially differ: while singular vectors can still be understood from a Hermitian

theory, there is no such route for eigenvectors. Unlike for non-Hermitian eigenvalues, where Girko’s
formula translates their linear statistics into a Hermitian problem, no similar "Hermitisation" relation

is known for non-Hermitian eigenvectors. Furthermore, left and right eigenvectors differ and their rela-

tion is very delicate. Assuming that each eigenvalueµi ofΛ+X is simple, we denote the corresponding

left and right eigenvectors by li, ri, i.e.

(Λ +X)ri = µiri , l
t
i(Λ +X) = µil

t
i ,

under the standard bi-orthogonality relation ⟨l̄j ,ri⟩ = ltjri = δi,j . Note that this relation leaves a large
freedom in choosing the normalisationof each eigenvector. The key invariant quantity is the eigenvector
overlap

Oij ∶= ⟨rj ,ri⟩⟨lj , li⟩ ,
which emerges in many problems where non-Hermitian eigenvectors are concerned, see e.g. [3, 19, 20,

8, 13, 40]. Two prominent examples are

(i) in numerical linear algebra; where
√Oii is the eigenvalue condition number determining how

fast µi moves under small perturbation in the worst case using the formula

√Oii = lim
t→0

sup{∣µi(Λ +X + tE) − µi(Λ +X)
t

∣ ∶ E ∈ CN×N
, ∥E∥ = 1} (1.1)

(see, e.g. [7]);

(ii) in the theory of the Dyson Brownian motion for non-Hermitian matrices; where Oij gives the

correlation of the martingale increments for the stochastic evolution of the eigenvalues µi and

µj as the matrix evolves by the natural Ornstein-Uhlenbeck flow (see [42], [13, Appendix A]).

The main result of this paper is an almost optimal lower bound of order N on the diagonal over-

lap Oii , with very high probability. In the context of numerical linear algebra this means that non-

Hermitian eigenvalues of Λ +X still move at a speed of order
√
N under the "worst" perturbation E

in (1.1), despite having added a random smoothing componentX toΛ. Note that in numerics one typi-

cally views the random smoothing as a tool to reduce the overlap ofΛ in order to enhance the stability

of its eigenvalues; our result shows a natural limitation for such reduction. It still does not exclude the

possibility that a very specially chosenX reduces the eigenvalue condition numbers much more than

a typical random one does, in particular it does not disprove the Davidson-Herrero-Salinas conjecture

(see [33, Problem 2.11]). However, our N-dependent lower bound on Oii shows that a naive randomi-

sation argument is not sufficient for resolving this conjecture. Complementary upper bounds on Oii

have recently been proven in [7] and [45]. These hold only in expectation sense, as Oii has a fat-tail,

and they are off by a factorN . Very recently this factor was removed in [36]. We remark, however, that

N is the most relevant parameter of the problem only from our random matrix theory point of view.

Works motivated by numerical analysis, such as [7, 45] and references therein, often focus on tracking

the γ-dependence for the problemΛ+γX in the small noise regime γ ≪ 1 in order to reduce the effect
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of the random perturbation. In this setup the non-optimality of theN-power may be considered less

relevant.1

In the context of the Dyson Brownian motion, our lower bound on Oii implies a diffusive lower

bound on the eigenvalues of the Ornstein-Uhlenbeck (OU) matrix flow, generalizing the analogous

result of Bourgade and Dubach [13, Corollary 1.6] from Ginibre ensemble to arbitrary i.i.d. ensemble

(see (2.14) later).

1.2. Thermalisation of singular vectors. The key step to our lower bound onOii is a thermalisation
result on the singular vectors that is of independent interest. Namely, we show that singular vectors of

Λ +X are fully randomised in the largeN limit in the sense that their quadratic forms with arbitrary

test matrices have a deterministic limit with an optimalN−1/2 speed of convergence. This holds with

very high probability which enables us to make such statement for matrices of the form (Λ − z) +X
simultaneously for any shift parameterz, even for random ones. Wewill use this for z = µ, an eigenvalue
ofΛ+X . This allows us to gain access to eigenvectors of Λ+X , by noticing that singular vectors and

eigenvectors are unrelated in general with an obvious exception: if µ is an eigenvalue of Λ +X , then

any vector in the kernel of Λ +X − µ is an eigenvector of Λ +X with eigenvalue µ, and a singular

vector of Λ +X − µ with singular value 0. Hence high probability statements for singular vectors can

be converted into similar statements for eigenvectors – this key idea may be viewed as the eigenvector

version of the transfer principle between eigenvalues and singular values encoded in Girko’s formula.

Our thermalisation result for singular vectors may be viewed as the non-Hermitian analogue of

the Quantum Unique Ergodicity (QUE) for Hermitian Wigner matrices proven in [24]. We now briefly

explain the QUE phenomenon and its physics background in the simplest Hermitian context before we

consider the singular vectors ofΛ+X . In fact, via a standard Hermitisation procedure we will turn the

singular vector problem to a Hermitian eigenvector problem.

For Hermitian randommatricesH , that can be considered as the Hamilton operator of a disordered

quantum system, a majormotivation comes from physics, where the randomisation of the eigenvectors

is interpreted as a thermalisation effect. The Eigenstate Thermalisation Hypothesis (ETH) by Deutsch [34]
and Srednicki [52] (see also [32, 35]) asserts that any deterministic Hermitian matrix A (observable), be-

comes essentially diagonal in the eigenbasis of a "sufficiently chaotic" Hamiltonian, where chaos may

come from an additional randomness or from the ergodicity of the underlying classical dynamics. In

other words,

⟨ui,Auj⟩ − δij⟨⟨A⟩⟩i → 0 , asN →∞ , (1.2)

where {ui} is a orthonormal eigenbasis ofH and the deterministic "averaged" coefficient ⟨⟨A⟩⟩i is to
be computed from the statistics ofH .

In themathematics literature the same problem is known as theQuantum (Unique) Ergodicity,origi-

nally formulated for the Laplace-Beltrami operator on surfaceswith ergodic geodesic flow, see [51, 30, 58],

on regular graphs [5] and on special arithmetic surfaces [50, 18, 48, 53]. In [24] we proved QUE in the

strongest form with an optimal speed of convergence for the eigenvectors of Wigner matrices that, by

E. Wigner’s vision, can be viewed as the "most random" Hamiltonian. In this case, the diagonal limit⟨⟨A⟩⟩i in (1.2) is independent of i and given by the normalised trace ⟨A⟩ ∶= 1

N
TrA. In fact, in subse-

quent papers [27, 29] (see also [11]) even the normal fluctuation of
√
N[⟨ui,Aui⟩ − ⟨A⟩] was proven,

followed by the proof of joint Gaussianity of finite many overlaps in [10]. Previously QUE results were

proven for rank one observables (see [46, 55] under four momentmatching and [16] in general) and finite

rank observables [49], see also [9] for deformedWigner matrices and [17] for band matrices. The proofs

crucially used thatH is Hermitian, heavily relying on sophisticated Hermitian techniques (such as local
laws and Dyson Brownian Motion) developed in the last decade for eigenvalue universality questions.

Back to our non-Hermitian context, we consider the singular vectors {ui,vi}Ni=1 of Λ +X ,

(X +Λ)(X +Λ)∗ui = σ2
iui , (X +Λ)∗(X +Λ)vi = σ2

i vi ,

1As long as γ is N independent, one may set γ = 1 by a simple rescaling so we refrain from carrying this extra factor in the
current paper. We remark that our methods would allow to trace the polynomial γ-dependence in all our main estimates as well,
albeit not with an optimal power.
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belonging to the singular value σi. We view them as the twoN-dimensional components of the eigen-

vectorswi = (ui,vi) of the 2N-dimensional Hermitisation of Λ +X , defined as

H =HΛ ∶=W + Λ̂ , W ∶= ( 0 X

X∗ 0
) , Λ̂ ∶= ( 0 Λ

Λ∗ 0
) . (1.3)

In particular, from the overlaps ⟨wi,Awj⟩ of eigenvectors for the Hermitised problem with a gen-

eral (2N) × (2N) matrix A one may read off all the singular vector overlaps of the form ⟨ui,Buj⟩,⟨vi,Bvj⟩ and ⟨ui,Bvj⟩ with any N ×N matrix B. Therefore our goal is to show the general ther-

malisation phenomenon, the convergence of ⟨wi,Awj⟩ (cf. (1.2)), for the Hermitised matrixHΛ thus

generalizing the ETH proven in [24] beyond Wigner matrices and with an additional arbitrary matrix

Λ. Unlike in theWigner case, the limit ⟨⟨A⟩⟩i genuinely depends on the index i and part of the task is to
determine its precise form. Note that due to the large zero blocks,W has about half as many random

degrees of freedom as a Wigner matrix of the same dimension has, moreover the block structure gives

rise to potential instabilities, thus the ETH forHΛ is considerably more involved than for Wigner ma-

trices. In the next section we explain the main new method of this paper that systematically handles all

these instabilities.

1.3. Structural decomposition of observables. We introduce a new concept for splitting general

observables into "regular" and "singular" components; where the singular component gives the leading

contribution and the regular component is estimated. In the case of Wigner matricesH in [24, 25] we

used the decomposition A = ⟨A⟩ + Å, where the traceless part of A, Å ∶= A − ⟨A⟩, is the regular
component and the projection2 of A onto the one dimensional space spanned by the identity matrix

is the singular component. This gave rise to the following decomposition of resolvent G = G(w) =(H −w)−1 for any w ∈C ∖R:

⟨GA⟩ =m⟨A⟩ + ⟨A⟩⟨G −m⟩ + ⟨GÅ⟩, (1.4)

wherem =m(w) is the Stieltjes transform of the semicircle law. The second term in (1.4) is asymptot-

ically Gaussian of size ⟨G −m⟩ ∼ (Nη)−1 [43] and the last term is also Gaussian, but of much smaller

size ⟨GÅ⟩ ∼ ⟨ÅÅ∗⟩1/2/(Nη1/2) in the interesting regime of small η ∶= ∣Imw∣ ≪ 1 [25].

Similar decomposition governs the traces of longer resolvent chains ofWignermatrices, for example

⟨GAG∗B⟩ = ⟨GG∗⟩ = 1

η
⟨ImG⟩ ∼ 1

η
≫ 1

ifA = B = I , i.e. both observable matrices are purely singular, while for regular (and bounded) observ-

ablesA = Å,B = B̊ we have ⟨GAG∗B⟩ ∼ 1. (1.5)

Both examples indicate the
√
η-rule (see (3.16) and Remark 4.6 later), informally asserting that each regu-

lar observable renders the size of a resolvent chain smaller by a factor
√
η than its singular counterpart.

In [28, 29] we obtained the deterministic leading terms and optimal error estimates on the fluctuation

for resolvent chains of arbitrary length

⟨G(w1)A1G(w2)A2 . . .⟩ (1.6)

with arbitrary observables in between. The answer followed the
√
η-rule hence it heavily depended on

theAi = ⟨Ai⟩ + Åi decomposition for each observable.

In particular, in order to estimate ⟨ui,Auj⟩ − δij⟨A⟩ = ⟨ui, Åuj⟩ for ETH in (1.2), we had

N ∣⟨ui, Åuj⟩∣2 ≲ ⟨ImG(w1)ÅImG(w2)Å⟩ ≲ 1 ,
wherewe first used spectral decompositionof bothG’s and then used a version of (1.5). Here the spectral

parameterswk = ek+ iη are chosen such that e1 and e2 be close to the eigenvalues corresponding toui

and uj , respectively, and η ∼ N
−1 in order to resolve the spectrum on the fine scale of the individual

eigenvalues.3

2We equip the space of matrices with the usual normalised Hilbert-Schmidt scalar product, ⟨A,B⟩ ∶= 1
N

TrA∗B = ⟨A∗B⟩.
3Strictly speaking we used η = N−1+ξ with any small ξ > 0, and all estimates held up to an Nξ factor but we ignore these

technicalities in the introduction.
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The key point in all these analyses for Wigner matrices was that the regular/singular concept was

independent of the spectral parameter: the same universal decomposition into tracial and traceless parts

worked in every instance along the proofs. One consequence is the i-independence of the limiting

overlap ⟨⟨A⟩⟩i ∶= ⟨A⟩ in (1.2).4
For more complicated ensembles, like HΛ in (1.3), especially if an arbitrary matrix Λ is involved,

the correct decomposition depends on the location in the spectrum ofH where we work. To guess it,

first we recall the single resolvent local law (Theorem 2.6) for the resolventG = GΛ(w) = (HΛ −w)−1 ,
asserting that ⟨GA⟩ ≈ ⟨MA⟩, whereM = MΛ(w) solves a nonlinear deterministic equation, the

Matrix Dyson Equation (MDE), see (2.20) later. Then a heuristic calculation (see Appendix A.1) shows

that for w = e + iη ∈C+ we have
E ∣⟨(G −M)A⟩∣2 ≈ ∣⟨ImMA⟩∣2

(Nη)2 + ∣⟨ImMAE−⟩∣2
N2η(∣e∣ + η) +O(

1

N2η
) , E− ∶= (1 0

0 −1) , (1.7)

indicating that the singular component ofA is two dimensional, depends onw, and for anyA orthogonal

to the two singular directions ImM andE−ImM the size of ⟨(G −M)A⟩ is smaller by a factor
√
η.

The first singular direction is always present. The second singular direction is a consequence of the

block structure ofH and it is manifested only forw near the imaginary axis. For energies ∣e∣ ∼ 1, only
the first singular direction, namely the one involving ImM plays a role.

What about longer chains (1.6)? EachmatrixAi is sandwiched between two resolventswith different

spectral parameterswi,wi+1 . We find that the correct decomposition of anyA between two resolvents

in a chain . . . G(w)AG(w′) . . . depends only on w,w′ and it has the form
A = ⟨V+,A⟩U+ + ⟨V−,A⟩U− + Å , V± = V w,w′

± , Å = Åw,w′

, (1.8)

where the first two terms form the singular component of A, and Å, defined by this equation, is the

regular component. Wewill establish that bothV+ andV− are the right eigenvectors of a certain stability
operatorB acting onC2N×2N that corresponds to the Dyson equation. For example, if Imw and Imw′

have opposite signs then V+ is the right eigenvector of

B[⋅] = 1 −M(w̄)S[⋅]M(w̄′) ,
whereS is covariance operator for thematrixW in (1.3) (see (2.21)). V± with other sign combinations are

defined very similarly (in Appendix A.3 we present all cases). Actually, the special directions ImM and

E−ImM that we found by direct variance calculation in (1.7) also emerge canonically as eigenvectors
of a certain stability operator! Similar variance calculation for longer chains would reveal the same

consistency: the variance of the chain (1.6) is the smallest if each Ai is regular with respect to the two

neighboring spectral parameterswi,wi+1 .

Note that the choice of V± is basically dictated by variance calculations like (1.7). However, the

matricesU± in (1.8) can still be chosen freely up to their linear independence and the normalisation re-

quirement ⟨Vσ,Uτ ⟩ = δσ,τ . The latter guarantees that the sum of the singular terms in (1.8) is actually a

(non-orthogonal) projection ∣U+⟩⟨V+∣+ ∣U−⟩⟨V−∣ acting onA. Since V± are the right eigenvectors of a
stability operator, onemay be tempted to chooseU± as certain left eigenvectors but we did not find this

guiding principle helpful. Instead, we use this freedom to simplify the calculation of the singular terms.

Substituting the singular part of A into . . . G(w)AG(w′) . . ., we need to compute G(w)U±G(w′)
and quite pragmatically we choose U± such that the resolvent identity could be applied and thus re-

duce the length of the chain. Thanks to the spectral symmetry of H = HΛ, for its resolvent we have

E−G(−w)E− = −G(w), and we find that U+ = I , U− = E− do the job, which accidentally coincide

with the left eigenvectors of the stability operator for the special case of i.i.d. matrices.

In Appendix A.3 we present the canonical choices of V± and U± in a more general situation and

explain at which stage of the proof their correct choice emerges. In our current application only V± are

nontrivial (in particular energy dependent), while U± are very simple. This is due to the fact that the

chain (1.6) consists of resolvents of the same operator. Inmore general problemsonemay take resolvents

with two different Λ’s in the chain, in which case U± are also nontrivial.

4A quick direct way to see this independence is the special case of Gaussian Wigner matrices (GUE or GOE), where the eigen-
vectors are Haar distributed, independently of their eigenvalue.
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This decomposition scheme is the really novel ingredient of our proofs. Several other tools we use,

such as recursive Dyson equations, hierarchy of master inequalities and reduction inequalities have been
introduced before (especially in our related works on Wigner matrices [24, 25]), but the dependence of

the decomposition on the spectral parameters in the current setup requires quite different new estimates

along the arguments. We informally explain the prototype of such an estimate at the beginning of

Section 4.1.

1.4. Notations. We define the 2N × 2N matricesE± ∶= E1 ±E2, where

E1 ∶= (1 0

0 0
) and E2 ∶= (0 0

0 1
) .

Each entry of the matrix is understood as a multiple of theN ×N–identity. By ⌈⋅⌉, ⌊⋅⌋ we denote the
upper and lower integer part, respectively, i.e. for x ∈ R we define ⌈x⌉ ∶= min{m ∈ Z∶m ≥ x} and⌊x⌋ ∶= max{m ∈ Z∶m ≤ x}. We denote [k] ∶= {1, ..., k} for k ∈N and ⟨A⟩ ∶= d−1Tr(A), d ∈ N, is

the normalised trace of a d × d-matrix. For positive quantitiesA,B we write A ≲ B resp.A ≳ B and

mean thatA ≤ CB resp. A ≥ cB for someN-independent constants c,C > 0. We denote vectors by

bold-faced lower case Roman letters x,y ∈C2N , for someN ∈N, and define

⟨x,y⟩ ∶=∑
i

x̄iyi , Axy ∶= ⟨x,Ay⟩ .
Matrix entries are indexed by lower case Roman letters a, b, c, ... from the beginning of the alpha-

bet and unrestricted sums over a, b, c, ... are always understood to be over {1, ...,N,N + 1, ...,2N}.
Analogously, unrestricted sums over lower case Roman letters i, j, k, ... from themiddle of the alphabet

are always understood to be over {−N, ...,−1,1, ...,N}. Finally, the lower case Greek letters σ and τ

as indices indicate a sign, i.e. σ, τ ∈ {+,−}, and unrestricted sums over σ, τ are understood to be over{+,−}.
Wewill use the concept of ‘with very high probability’, meaning that any fixedD > 0, the probability

of an N-dependent event is bigger than 1 −N−D for all N ≥ N0(D). Also, we will use the conven-
tion that ξ > 0 denotes an arbitrarily small constant, independent ofN . Moreover, we introduce the

common notion of stochastic domination (see, e.g., [37]): For two families

X = (X(N)(u) ∣ N ∈N, u ∈ U (N)) and Y = (Y (N)(u) ∣ N ∈N, u ∈ U (N))
of non-negative random variables indexed by N , and possibly a parameter u, then we say that X is

stochastically dominated by Y , if for all ε,D > 0 we have
sup

u∈U(N)

P [X(N)(u) > Nǫ
Y
(N)(u)] ≤ N−D

for large enoughN ≥ N0(ǫ,D). In this case we writeX ≺ Y . If for some complex family of random

variables we have ∣X ∣ ≺ Y , we also writeX = O≺(Y ).
Acknowledgement: The authors are grateful to Oleksii Kolupaiev for valuable discussions, especially

about the choice of contours in Lemma 5.1. We thankNikhil Srivastava for bringing [33] to our attention.

2. Main results

We consider real or complex i.i.d. matrices X , i.e. N ×N matrices whose entries are independent

and identically distributed as xab
d= N−1/2χ for some real or complex random variable χ satisfying the

following assumptions:

Assumption 2.1. We assume that Eχ = 0 and E ∣χ∣2 = 1. Furthermore, we assume the existence of high
moments, i.e., that there exist constants Cp > 0, for any p ∈N, such that

E ∣χ∣p ≤ Cp .

Additionally, in the complex case, we assume that Eχ2 = 0.
For definiteness, in the sequel we perform our entire analysis for the complex case; the real case

being completely analogous and hence omitted.
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2.1. Non-Hermitian singular vectors and eigenvectors. Fix a deterministic matrix Λ ∈ C
N×N ,

with N-independent norm bound, ∥Λ∥ ≲ 1. Let {σi}i∈[N] be the singular values of X + Λ with

corresponding (normalised) left- and right-singular vectors {ui}i∈[N] and {vi}i∈[N], respectively, i.e.
(X +Λ)vi = σiui and (X +Λ)∗ui = σivi . (2.1)

All these objects naturally depend onΛ, but we will omit this fact from the notation.

Let νi, i ∈ [N], be the increasingly ordered singular values of Λ. Define the Hermitisation of Λ as

Λ̂ ∶= ( 0 Λ

Λ∗ 0
) . (2.2)

Due to its block structure, the spectrum of Λ̂ is symmetric with respect to zero, with eigenvalues{νi}0≠∣i∣≤N such that ν−i = −νi for all i ∈ [N]. The empirical density of states of Λ̂ is denoted by

µΛ̂ ∶= 1

2N
∑

0≠∣i∣≤N
δνi .

Let µsc be the Wigner semicircle distribution with density ρsc(x) ∶= (2π)−1√[4 − x2]+ , where[⋯]+ is the positive part of a real number. Define the free additive convolution

µ = µΛ ∶= µsc ⊞ µΛ̂, (2.3)

which is a probability distribution onR. We now briefly recall basic facts about the free convolution

with the semicircle density (see, e.g. the classical paper by P. Biane [12]). Most conveniently µ may be

defined by inverting its Stieltjes transform

m(w) =mΛ(w) ∶= ∫
R

µ(de)
e −w , w ∈C ∖R,

wherem satisfies the implicit equation

m(w) = ∫
R

µΛ̂(de)
e − (w +m(w)) . (2.4)

With the additional constraint Imm(w) ⋅ Imw > 0 this equation has a unique solution that is analytic
away from the real axis withm(w) = m(w). Since µΛ̂ is symmetric to zero with bounded support,

µ is also symmetric with support bounded independently ofN . Moreover µ is absolutely continuous

with respect to Lebesgue measure with density denoted by ρ = ρΛ. The density ρmay be obtained5 as

the boundary value of Imm at any e on the real line, i.e.

ρ(e) ∶= lim
η↓0

ρ(e + iη) , ρ(w) ∶= 1

π
∣Imm(w)∣ . (2.5)

In factm itself has a continuous extension to the real axis from the upper half planem(e) ∶= limη↓0m(e+
iη). Proving the existence of these limits is standard from (2.4).

Next, for any (small) κ > 0, we define the κ-bulk of the density ρ as
Bκ = BΛ

κ ∶= {x ∈R ∶ ρ(x) ≥ κ1/3} (2.6)

which is symmetric to the origin. Finally, we denote a (modified) ith quantile of the density ρ by γi, i.e.

i +N
2N

= ∫ γi

−∞
ρ(e)de , ∣i∣ ≤N , (2.7)

and we immediately conclude by symmetry of ρ that γi = −γ−i for every ∣i∣ ≤ N .

Our first main result establishes the thermalisation of singular vectors of X + Λ in the bulk, i.e. for

indices i, j with quantiles γi, γj uniformly in the bulk of the density ρ.

5For orientation of the reader we mention that ρ is the deterministic approximation, the so-called self-consistent density of states
(scDos), for the empirical eigenvalue density of the Hermitisation ofX +Λ. This connection will be explained in the next Section 2.2.
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Theorem 2.2. (Thermalisation of Singular Vectors)

Fix a bounded Λ ∈CN×N and κ > 0 independent ofN . Let {ui}i∈[N] and {vi}i∈[N] be the (normalised)
left- and right-singular vectors ofX +Λ, respectively, whereX is an i.i.d. matrix satisfying Assumption 2.1.
Then, for any deterministic matrix B ∈CN×N with ∥B∥ ≲ 1 it holds that6

max
i,j

RRRRRRRRRRRRRR
⟨ui,Buj⟩ − δj,i ⟨Im [

γj+m(γj)
ΛΛ∗−(γj+m(γj))2

] B⟩
πρ(γj)

RRRRRRRRRRRRRR
≺ 1√

N
, (2.8a)

max
i,j

RRRRRRRRRRRRRR
⟨vi,Bvj⟩ − δj,i ⟨Im [

γj+m(γj)
Λ∗Λ−(γj+m(γj))2

] B⟩
πρ(γj)

RRRRRRRRRRRRRR
≺ 1√

N
, (2.8b)

max
i,j

RRRRRRRRRRRRRR
⟨ui,Bvj⟩ − δj,i ⟨ΛIm [(Λ∗Λ − (γj +m(γj))2)−1] B⟩

πρ(γj)
RRRRRRRRRRRRRR
≺ 1√

N
, (2.8c)

where the maximum is taken over all i, j ∈ [N] such that the quantiles γi, γj ∈ Bκ are in the κ-bulk of the
density ρ.

The thermalisation of singular vectors will be a simple corollary to the Eigenstate Thermalisation
Hypothesis (ETH) for the HermitisationHΛ ofX +Λ, which is formulated in Theorem 2.7 below. The

proof of Theorem 2.2 will be given in Section 3.

Our second main result concerns the bi-orthonormal left and right eigenvectors {li}i∈[N] and{ri}i∈[N] , respectively, ofX +Λ, with corresponding eigenvalues {µi}i∈[N] , i.e.
(X +Λ)ri = µiri , l

t
i(X +Λ) = µil

t
i , (2.9)

where t denotes the transpose of a vector. More precisely, the following theorem provides a lower

bound on the diagonal part of the overlaps matrix

Oij ∶= ⟨rj ,ri⟩⟨lj , li⟩ , (2.10)

defined subject to the standard normalisation

⟨l̄j ,ri⟩ = ltjri = δi,j . (2.11)

We restrict our results to eigenvalues µi in the bulk ofX +Λ in the following sense.

Definition 2.3. We say that z ∈ C is in the bulk of X + Λ if and only if there exists an N-independent
κ > 0 for which

0 ∈BΛ−z
κ = {x ∈R ∶ ρΛ−z(x) ≥ κ1/3} .

There is no simple characterisation of the bulk ofX +Λ in terms of the spectrum of Λ. However,

taking the imaginary part of (2.4) at w = 0 + i0 shows that 0 ∈BΛ−z
κ is equivalent to

1

N

N

∑
i=1

1

νi(Λ − z)2 + κ2/3 ≥ 1 ,
where νi(Λ − z) are the singular values of Λ − z.
Theorem 2.4. Consider X + Λ, with Λ being a deterministic matrix as in (2.2) and with X being an
i.i.d. matrix satisfying Assumption 2.1. Then

Oii ≻ N , (2.12)

where the index i ∈ [N] is such that µi is in the bulk ofX +Λ.

6The deterministic terms following the Kronecker symbol δj,i in (2.8) will be shown to be bounded.
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In the introduction we already mentioned the consequence of this result on the sensitivity of an

eigenvalue ofX+Λ under small perturbations. Nowwe explain its other consequence on the diffusivity

of the Dyson-type eigenvalue dynamics. Let each entry ofX =X(t) evolve as an independent complex

OU process,

dXij = dBij√
N
− 1

2
Xijdt,

whereBij are independent standard complex Brownian motions and the initial conditionX(0) sat-
isfies Assumption 2.1. A direct calculation [13, Proposition A.1] shows that the eigenvalues µi = µi(t)
follow the Dyson-type stochastic dynamics

dµi = dMi − 1

2
µidt, {µi(0)} = SpecX(0), 1 ≤ i ≤N, (2.13)

where the martingalesMi have brackets ⟨Mi,Mj⟩ = 0 and d⟨Mi,Mj⟩t = 1

N
Oij(t)dt. In particular,

we immediately obtain, for any ǫ > 0 that
E [∣µi(t) − µi(0)∣21(µi(0) ∈Bκ)] ≥ tN−ǫ (2.14)

up to some time t ≤ T (κ), whereBκ denotes the κ-bulk ofX(0). For Ginibre initial conditionX(0)
(2.14) was established in [13, Corollary 1.6], we now generalise it to i.i.d. initial conditions. We remark

that (2.13) is similar to its Hermitian counterpart, the standard Dyson Brownian motion (DBM) on the

real line, with some notable differences. In particular, in the latter process the eigenvalues cannot cross

each other, hence they are quite rigid and confined to an interval of size essential 1/N , so they are not

diffusive beyond a time-scale 1/N . Along the evolution (2.13) the non-Hermitian eigenvalues still repel

each other (encoded in the typically negative off-diagonal overlaps, see [13, Theorem 1.3] in the Gaussian

case), but they still can pass by each other and not hindering the diffusive behavior (2.14).

Example 2.5. The most prominently and extensively studied [41, 6, 54, 14, 15, 57, 56, 21, 22, 23] deformation
is Λ = −z with z ∈ C, since it plays a key role in Girko’s formula [41] expressing linear statistics of non-
Hermitian eigenvalues ofX in terms of the Hermitisation ofX − z. In this case, the self-consistent equation
(2.4) reduces to the well-known cubic relation

− 1

m
= w +m − ∣z∣2

w +m .

As a consequence, the deterministic terms in (2.8) drastically simplify (e.g., the fractions in (2.8a) and (2.8b) are
simply replaced by ⟨B⟩) and one also has explicit formulas for the bulk (2.6) in terms of solution of a cubic
equation. In particular, for ∣z∣ < 1− ǫκ , the κ-bulkBκ consists of a single interval, while for ∣z∣ ≥ 1− ǫκ it

consists of two intervals, where ǫκ ∼ κ
2/3. In the former case 0 ∈ Bκ. Consequently, Theorem 2.4 gives the

lower bound (2.12) for all the diagonal overlapsOii of eigenvectors ofX whose eigenvalue µi lies in a disk of
radius 1 − ǫ with some ǫ > 0 independent ofN .

In the next section we explain the key technical result behind our main theorems, the eigenstate

thermalisation for the Hermitisation ofX +Λ.
2.2. Eigenstate Thermalisation Hypothesis for the Hermitisation of X + Λ. The key to access

the non-Hermitian singular vectors ofX +Λ is to study its Hermitisation [41], which is defined as

H =HΛ ∶= ( 0 X +Λ(X +Λ)∗ 0
) =∶W + Λ̂ , (2.15)

where Λ̂∗ = Λ̂ was defined in (2.2) and can also be viewed as the matrix of expectation Λ̂ = EHΛ.

We denote by {wi}∣i∣≤N the (normalised) eigenvectors of H and by {λi}∣i∣≤N the corresponding

eigenvalues.7 By means of the singular value decomposition in (2.1), the eigenvalues and eigenvectors of

H are related to the singular values and singular vectors ofX +Λ as follows:

wi = (ui,vi)t and λi = σi for i ∈ [N] ,
7In the definition of the eigenvectors and eigenvalues, we omitted 0 in the set of indices, i.e. ∣i∣ ≤ N really means i ∈

{−N, ...,−1, 1, ...,N}.
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∼ κ
2/3 ∼ κ

∼ κ
1/3

-2 2

Rew

ρ(Rew)

Figure 1. Depicted is the density ρ for the deformation Λ = −z with ∣z∣ slightly
less than one. On the horizontal axis, we indicated the two components of the bulk

Bκ . The distance between Bκ and a regular edge scales like κ2/3 , while near an
(approximate) cusp the distance between the two components scales linearly (see

also (2.6) and (2.23)).

up to a normalisation, since now ∥ui∥2 = ∥vi∥2 = 1

2
. Moreover, the block structure of H induces

a symmetric spectrum around zero, i.e. λ−i = −λi for any i ∈ [N]. This symmetry for the eigen-

values is also reflected in the eigenvectors, which satisfy w−i = E−wi for any i ∈ [N]. By spectral

decomposition, this immediately shows the chiral symmetry

E−G(w) = −G(−w)E−, with E− = (1 0

0 −1) , (2.16)

for the resolventG(w) = GΛ(w) ∶= (HΛ −w)−1 , with spectral parameterw ∈ C ∖R. We also have⟨G(w)E−⟩ = 0 for anyw since ⟨wi,E−wi⟩ = ∥ui∥2 − ∥vi∥2 = 0.
A basic feature of a very large class of randommatrices is that their resolvent becomes approximately

deterministic in the large N limit, often even for any spectral parameter with ∣Imw∣ ≥ N−1+ǫ ; these
statements are called local laws. In our case the deterministic approximation of the resolventG(w) is
given by

M(w) =MΛ(w) ∶= ⎛⎝
M11(w) ΛM22(w)

w+m(w)
Λ∗M11(w)
w+m(w) M22(w)

⎞
⎠ ∈C2N×2N

, w ∈C ∖R, (2.17)

with each block being understood as a matrix inCN×N , where the diagonal entries are defined via

M11(w) ∶= w +m(w)
ΛΛ∗ − (w +m(w))2 , M22(w) ∶= w +m(w)

Λ∗Λ − (w +m(w))2 . (2.18)

Here we require m(w) = ⟨M(w)⟩, which is an implicit equation for the function m(w). Simple

calculation shows that this implicit equation is exactly (2.4). Moreover, one can easily check thatM(w)
also satisfies the chiral symmetry (2.16), i.e.

E−M(w) = −M(−w)E− . (2.19)

To derive these formulas systematically, we recall that the deterministic approximation to G(w)
is obtained as the unique solution to the matrix Dyson equation (MDE) (introduced first in [44] and

extensively studied in [1, 2, 4]). The MDE corresponding to the random matrixH is given by

− 1

M(w) = w − Λ̂ + S[M(w)] (2.20)

under the constraint ImM(w) ⋅ Imw > 0, where ImM(w) ∶= 1

2i
[M(w) − (M(w))∗]. Here S[⋅],

the self-energy operator, is defined via

S[T ] ∶= Ẽ(H̃ −EH)T (H̃ −EH)
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for any T ∈C2N×2N , where H̃ denotes an independent copy ofH . In our case we have

S[T ] = 2E1⟨TE2⟩ + 2⟨E1T ⟩E2 = ∑
σ=±

σ⟨TEσ⟩Eσ. (2.21)

Using ⟨M11(w)⟩ = ⟨M22(w)⟩ that directly follows from (2.18), it is straightforward to check that

M(w) as defined in (2.17) satisfies the MDE (2.20). Since the MDE has a unique solution, we see that

the density ρ defined via free convolution in Section 2.1 coincides with the self-consistent density of states
(scDos) corresponding to the MDE, defined as the boundary value of 1

π
⟨ImM⟩ on the real axis in the

theory of MDE [2, 4].

For the reader’s convenience in Appendix B.1 we will collect a few facts aboutM , in particular we

will show that it has a continuous extension as a matrix valued function to the real axis, i.e. the limit

M(e) ∶= limη↓0M(e+ iη) exists for any e ∈R. This extends the similar result on its trace mentioned

in (2.5). Moreover, we will also show that for spectral parametersw ∈C∖RwithRew ∈Bκ, we have

∥M(w)∥ ≲ 1 . (2.22)

In particular, together with (2.17)–(2.18) this implies that the deterministic terms in (2.8) are bounded.

Finally, we will also prove an important regularity property of the κ-bulk, namely that

dist(∂Bκ′ ,Bκ) ≥ c(κ − κ′) (2.23)

for any small 0 < κ′ < κ and someN-independent constant c = c(∥Λ∥) > 0. In fact, for our proof it is
sufficient if c = c(κ, ∥Λ∥), i.e. an additional κ dependence is allowed – in Appendix B.1 we will explain

that this weaker result is considerably easier to obtain (see Remark B.3). We will also show thatBκ is a

finite disjoint union of compact intervals; the number of these components depends only on κ and ∥Λ∥.
The abovementioned concentration ofG aroundM is the content of the following single resolvent

local law, both in averaged and isotropic form, which we prove in Appendix C.

Theorem 2.6. (Single resolvent local law for the HermitisationH )

Fix a bounded deterministic Λ ∈ CN×N and κ > 0 independent of N . Then, for any w ∈ C ∖R with∣w∣ ≤ N100 and Rew ∈Bκ, we have

∣⟨(G(w) −M(w))B⟩∣ ≺ 1

Nη
, ∣⟨x, (G(w) −M(w))y⟩∣ ≺ 1√

Nη
,

where η ∶= ∣Imw∣, for any bounded deterministic matrix ∥B∥ ≲ 1 and vectors ∥x∥, ∥y∥ ≲ 1.
Our main result for the Hermitised random matrix H is the Eigenstate Thermalisation Hypothesis

(ETH), that in mathematical terms is the proof of an optimal convergence rate of the strong Quantum
Unique Ergodicity (QUE) for general observables A, uniformly in the bulk (2.6) of the spectrum of H ,

i.e. in the bulk of the scDos ρ.

Theorem 2.7. (Eigenstate Thermalisation Hypothesis for the HermitisationH )

Fix some bounded Λ ∈ CN×N and κ > 0 independent of N . Let {wi}∣i∣≤N be the orthogonal eigenvectors
of the Hermitisation H of X + Λ, where X is an i.i.d. matrix satisfying Assumption 2.1. Then, for any
deterministic matrixA ∈C2N×2N with ∥A∥ ≲ 1 it holds that

max
i,j
∣⟨wi,Awj⟩ − δj,i ⟨ImM(γj)A⟩⟨ImM(γj)⟩ − δj,−i

⟨ImM(γj)E−A⟩⟨ImM(γj)⟩ ∣ ≺ 1√
N
, (2.24)

where the maximum is taken over all ∣i∣, ∣j∣ ≤ N , such that the quantiles γi, γj ∈Bκ defined in (2.7) are in
the bulk of the scDos ρ.

The main technical result underlying Theorem 2.7 is an averaged local law for two resolvents with
different spectral parameters, which we will formulate in Theorem 4.4 later.

Remark 2.8. Given the optimal bound (2.24), following a Dyson Brownian Motion (DBM) analysis similar
to [27, 29], it is possible to prove a CLT for single diagonal overlaps ⟨wi,Awi⟩. However, for the sake of
brevity, we do not present this argument here and defer the CLT analysis to future work.
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In the following Section 3 we precisely define the regularisation and we will prove our main re-

sults formulated above assuming the key technical Proposition 3.4. This proposition is obtained from

a local law, which we prove in Section 4. Local laws are proved by a hierarchy of master and reduction
inequalities, that are derived in Sections 5 and 6, respectively. Appendix A contains two motivating cal-

culations for the correct regularisation. Several technical and auxiliary results are deferred to the other

appendices.

3. Proof of the main results

The key to understanding the eigenvector overlaps and showing our main results is an improved

bound on the averaged trace of two resolvents with regular (see Section 3.1 below for the precise defini-

tion) deterministic matricesA1,A2 in between, i.e. for

⟨G(w1)A1G(w2)A2⟩ . (3.1)

Naively, for arbitrary A1,A2 , estimating (3.1) via a trivial Schwarz inequality and Ward identity yields

the upper bound ∣⟨G(w1)A1G(w2)A2⟩∣ ≺ 1/η, where η ∶=minj ∣Imwj ∣. However, this bound dras-
tically improves, whenever the matricesA1,A2 are regular, i.e. orthogonal to certain critical eigenvec-

tors V± of the associated two-body stability operators (B.2), which is denoted asAj = Åj ; see (3.2) and

Definitions 3.1 and 4.2. In this case, in our key Proposition 3.4 we will show that

∣⟨G(w1)Å1G(w2)Å2⟩∣ ≺ 1
even for very small η ∼ N−1+ǫ as a consequence of amore precise local law for (3.1), whichwe present in

Section 4. Wefind that (see Theorem4.4 andRemark 4.6) both the size of its deterministic approximation

and the fluctuation around this mean heavily depend on whether (one or both of) the matricesA1,A2

are regular, i.e. satisfy ⟨V±,Aj⟩ = 0, or not.
Therefore, the general rather structural regularizing decomposition (or regularisation) of a matrixA

shall be conducted as

A
○ ≡ Å ∶= A − ⟨V+,A⟩U+ − ⟨V−,A⟩U− (3.2)

for Uσ, Vσ ∈ C2N×2N satisfying ⟨Vσ,Uτ ⟩ = δσ,τ and the normalisation ⟨Uσ,Uσ⟩ = 1, where recall

that ⟨R,T ⟩ ∶= ⟨R∗T ⟩ denotes the (normalised) Hilbert-Schmidt scalar product. The regularisation map

(1 −Π) ∶C2N×2N
→C

2N×2N
, A↦ Å , (3.3)

whereΠ is a two-dimensional (non-orthogonal) projection,8 is closely related to the built-in chiral sym-

metry (2.16) of our model. Indeed, for other ensembles without this special structure only one of the
terms ⟨Vσ,A⟩Uσ in (3.2) would be present.

As mentioned above, the matrices V± are determined as critical eigenvectors (with corresponding

small eigenvalue) of naturally associated two-body stability operators with their precise form worked

out in Appendix A and given in (A.19). In Appendix A we also give two different calculations that helped

us guess these formulas. However, for the directions U± there are a priori no further constraints (apart
from orthogonality and normalisation). Hence, as it turns out to be convenient for our proofs, we will

choose the matrices Uσ (in principle, even allowing for two different deformations Λ1 ≠ Λ2) in such a

way, that a resolvent identity

G
Λ1(w1)UσG

Λ2(w2) ≈ (GΛ1(w1) −GΛ2(σw2))Uσ , (3.4)

can be applied (here, the symbol ‘≈’ neglects lower order terms). This is used to reduce the number of

resolvents in a chain. Note that, again due to the eminent chiral symmetry (2.16) for the resolvents, there

are in fact two matrices Uσ for which a resolvent identity (3.4) can be applied.

Although the regularisation (3.2) shall be motivated for arbitrary deformations Λ1,Λ2 in Appen-

dix A, we will henceforth choose a single bounded deformationΛ ∈ CN×N , which remains fixed with

the just mentioned exception in Appendix A. For a single deformationΛ, this restricts the matrices U±
satisfying (3.4) to be given by E±.

8The condition ⟨Vσ , Uτ ⟩ = δσ,τ guarantees that the regularisation is idempotent, i.e. (Å)○ = Å andΠ2
= Π.
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In case that the spectral parameters (w1,w2) appearing in (3.1) (with a single fixed deformationΛ)

are such that none of the eigenvectors of the stability operator is critical (cf. Appendix B), we consider
everymatrixA as regular. The distinction between these two scenarios is regulated by cutoff functions

1
±
δ introduced in (3.6) below.

3.1. Regular observables: A bound on (3.1). As already mentioned above, our main result for the

Hermitised random matrix, Theorem 2.7, shall be derived from a bound on (3.1), where we assume the

(real parts of the) spectral parametersw1,w2 to be in the bulk of the scDos ρ (recall (2.6)).
We now specify the concept of regularisation (3.2) to our setting. The eigenvectors V± will be com-

puted in Appendix A, the matrices U± are simply chose as E±.

Definition 3.1. (Regular observables) Given κ > 0, let9
δ = δ(κ, ∥Λ∥) > 0 (3.5)

be sufficiently small (to be chosen below, see (4.22)) and let w,w′ ∈ C ∖R with Rew,Rew′ ∈ Bκ be
spectral parameters. Furthermore, we introduce the (symmetric) cutoff functions

1
±
δ (w,w′) ∶= φδ(Rew ∓Rew

′) φδ(Imw) φδ(Imw
′) , (3.6)

where 0 ≤ φδ ≤ 1 is a smooth symmetric bump function on R satisfying φδ(x) = 1 for ∣x∣ ≤ δ/2 and
φδ(x) = 0 for ∣x∣ ≥ δ.

(a) We define the (w,w′)-regular component or (w,w′)-regularisation Åw,w′ of a matrix A as10

Å
w,w′ ∶= A − ∑

τ=±

1
τs
δ (w,w′) ⟨M(Rew + iImw)AM(Rew′ + τ iImw′)Eτs⟩⟨M(Rew + iImw)EτsM(Rew′ + τ iImw′)Eτs⟩Eτs , (3.7)

where the relative sign of the imaginary parts is defined as

s ≡ sw,w′ ∶= − sgn(Imw Imw
′) . (3.8)

(b) We say that A is (w,w′)-regular if and only if A = Åw,w′ .

The regularisation shall be revisited in Definition 4.2, where we tailor it to certain averaged (4.5) or

isotropic (4.6) resolvent chains.

Remark 3.2. We have several comments concerning the above definition.

(i) In case that at least one of the spectral parameters is away from the imaginary axis, say ∣Rew∣ > δ
w.l.o.g., then the regularisation in (3.7) contains at most one summand: If 1+δ (w,w′) = 1, i.e. Rew

is close to Rew′, then we have that

Å
w,w′ ∶= A − ⟨M(w)AM(Rew′ + siImw′)⟩⟨M(w)M(Rew′ + siImw′)⟩ E+ ,

whereas if 1−δ (w,w′) = 1, i.e. if Rew is close to −Rew′, then we have that

Å
w,w′ ∶= A − ⟨M(w)AE−M(−Rew′ + siImw′)⟩⟨M(w)M(−Rew′ + siImw′)⟩ E− ,

where we used thatM(w)E− = −E−M(−w) (see (2.19))
(ii) The cutoff functions in (3.6) satisfy the basic symmetry properties

1
±
δ (w,w′) = 1±δ (w̄,w′) = 1±δ(w, w̄′) = 1±δ (w̄, w̄′) .

However, Å is not symmetric in its two spectral parameters, i.e. Åw,w′ ≠ Åw′,w in general

9Note that the parameter δ > 0 is independent of the matrix sizeN .
10Putting the summation parameter τ at the second spectral parameterw′ (and not atw) is simply a free choice, which we made

here. More precisely, defining the regularisation as

˜̊
A

w,w′ ∶= A − ∑
τ=±

1
τs

δ (w,w
′)
⟨M(Rew + τ iImw)AM(Rew′ + iImw′)Eτs⟩
⟨M(Rew + τ iImw)EτsM(Rew′ + iImw′)Eτs⟩

Eτs

would equally work in our proofs (see Appendices A and B for details).
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(iii) For spectral parameters satisfying 1±δ (w,w′) > 0, it will be shown in Appendix B that the respective

denominators in (3.7) are bounded away from zero. In particular, the linear mapA ↦ Å is bounded
with a bound depending only on δ and ∥Λ∥.

(iv) Whenever it holds that 1±δ (w,w′) = 0 then also 1±δ′(w,w′) = 0 for every 0 < δ′ < δ. Conversely,
whenever it holds that 1±δ (w,w′) = 1 then also 1±δ′(w,w′) = 1 for every 0 < δ < δ′.

(v) We point out that the notion of regularity implicitly depends on κ and δ and hence also on the (norm
of the) deformation Λ.

Moreover, the regularisation defined above satisfies the following elementary properties. The iden-

tities in (3.10) and (3.9) are immediate from the definition, the perturbative statements are proven in

Appendix B.

Lemma 3.3. Fix a bounded deterministic deformation Λ ∈ CN×N and let A ∈ C2N×2N be an arbitrary
bounded deterministic matrix.

(i) Let w,w′ ∈C ∖R with Rew,Rew′ ∈Bκ . Then, we have the identities

(Åw,w′)∗ = ˚(A∗)w̄′,w̄ , Å
w,w′

E− = ˚(AE−)w,−w′

, E−Å
w,w′ = ˚(E−A)−w,w′

. (3.9)

(ii) Moreover, by definition it holds that

Å
w,w̄′ = Åw,w′

, (3.10)

and setting s ∶= − sgn(ImwImw′), we have the perturbative estimate11
Å

w̄,w′ = Åw,w′ +O(∣w − sw̄′∣ ∧ 1)Es +O(∣w + sw′∣ ∧ 1)E−s . (3.11)

(iii) Letw1,w
′
1,w2,w

′
2 ∈C∖R withRew1,Rew′1,Rew2,Rew′2 ∈Bκ as well as Imw1 ⋅Imw2 >

0 and Imw′1 ⋅ Imw′2 > 0 be spectral parameters. Then we have that

Å
w2,w

′
1 = Åw1,w

′
1 +O(∣w1 −w2∣ ∧ 1)E+ +O(∣w1 −w2∣ ∧ 1)E− , (3.12)

Å
w1,w

′
2 = Åw1,w

′
1 +O(∣w′1 −w′2∣ ∧ 1)E+ +O(∣w′1 −w′2∣ ∧ 1)E− . (3.13)

We can now state the bound on (3.1) for regular observables, which shall be proven in Section 4 as

an immediate corollary to a local for (3.1) given in Theorem 4.4 and the bound from Lemma 4.3.

Proposition 3.4. Fix a bounded deterministic Λ ∈ C
N×N , ǫ > 0, κ > 0, and let w1,w2 ∈ C with∣w1∣, ∣w2 ∣ ≤ N100 , Rew1,Rew2 ∈ Bκ, and ∣Imw1∣, ∣Imw2∣ ≥ N−1+ǫ . Moreover, let A1 ∈ C2N×2N

be a (w1,w2)-regular and A2 ∈ C
2N×2N a (w2,w1)-regular deterministic matrix, both satisfying∥A1∥, ∥A2∥ ≲ 1. Then we have

∣⟨G(w1)Åw1,w2
1 G(w2)Åw2,w1

2 ⟩∣ ≺ 1 . (3.14)

3.2. Estimating (3.1) for general observables. Armed with the correct regularisation, we can now

present a systematic analysis of ⟨G(w1)A1G(w2)A2⟩ from (3.1) for arbitrary bounded deterministic

matricesA1,A2 . DecomposingA1,A2 according to Definition 3.1 as

A1 = Åw1,w2
1 + ⟨⟨A1⟩⟩+w1,w2

E+ + ⟨⟨A1⟩⟩−w1,w2
E− ,

A2 = Åw2,w1
2 + ⟨⟨A2⟩⟩+w2,w1

E+ + ⟨⟨A2⟩⟩−w2,w1
E− ,

(3.15)

(where ⟨⟨⋅⟩⟩σw,w′ can be read off as the coefficients in (3.7)) and plugging (3.15) into (3.1), we find that

⟨G(w1)A1G(w2)A2⟩ =∑
σ,τ

⟨⟨A1⟩⟩σw1,w2
⟨⟨A2⟩⟩τw2,w1

⟨G(w1)EσG(w2)Eτ ⟩
+∑

σ

⟨⟨A1⟩⟩σw1,w2
⟨G(w1)EσG(w2)Åw2,w1

2 ⟩
+∑

τ

⟨⟨A2⟩⟩τw2,w1
⟨G(w1)Åw1,w2

1 G(w2)Eτ⟩
+ ⟨G(w1)Åw1,w2

1 G(w2)Åw2,w1
2 ⟩ .

(3.16)

11Note that the asymmetry between (3.11) and (3.10) stems from the asymmetry imposed in the definition of the regularisation,
namely by placing the summation index τ in (3.7) at the second spectral parameter.
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Which terms in (3.16) are effectively present depends on the coefficients ⟨⟨⋅⟩⟩σw,w′ , i.e. on the singular

components of A1,A2 . For terms with nonzero coefficients the following rule of thumb applies. De-

noting η ∶=min (∣Imw1∣, ∣Imw2∣) ≥ N−1+ǫ , the terms ⟨GEGE⟩ in the first line of (3.16) are bounded
by 1/η, the terms ⟨GEGÅ⟩ in the two middle lines of (3.16) are bounded by 1/√η, and ⟨GÅGÅ⟩ in
the last line is of order one (Proposition 3.4). This is in perfect agreement with the

√
η-rulementioned

in the Introduction (see also Remark 4.6 below). Some of these bounds are actually sharp for special

values ofw1,w2 , for example

⟨G(w)E+G(w̄)E+⟩ = ⟨ImG(w)⟩
η

∼
1

η
, or ⟨G(w)E−G(−w̄)E−⟩ = − ⟨ImG(w)⟩

η
,

where we used the chiral symmetry (2.16). In fact, two terms with στ = −1 in the first line of (3.16) are

identically zero by applying the chiral symmetry, followed by the resolvent identity and ⟨GE−⟩ = 0.

For a middle term in (3.16) we have

⟨G(w)E+G(w̄)Åw̄,w⟩ = 1

η
⟨ImG(w)Åw̄,w⟩ ≲ 1 + 1

Nη

1√
η
.

In the very last relation we treated ⟨G(w)Åw̄,w⟩ and ⟨G(w̄)Åw̄,w⟩ separately. In both cases we first

used Lemma 3.3 to adjust the regularisation to Åw,w and Åw̄,w̄ , respectively, to match the new single-

resolvent setup and then we applied the corresponding single-resolvent local law with regular observ-

able (see Theorem 4.5 below).

Note that the most critical estimate concerns the last line of (3.16), i.e. the regular part for both

observable matrices. The bound (3.14) is obtained from a local law with two resolvents and two regular
matrices, while the first and themiddle terms in (3.16) can be understood already from an improved local

law for one resolvent and one regular matrix (see Theorem 4.5 below) after applying resolvent identities

and adjusting the regularisation by Lemma 3.3. Furthermore, observe that the sizes of the first three

lines in (3.16) are sensitive tow1,w2 via the resolvent identities, for example

⟨G(w1)E+G(w2)E+⟩ = ⟨G(w1) −G(w2)⟩
w1 −w2

≲ 1

∣w1 −w2∣ , or ⟨G(w1)E−G(w2)E−⟩ ≲ 1

∣w1 +w2∣ ,
while the last line in (3.16) is typically order one.

Summarizing, the singular parts of ⟨G(w1)A1G(w2)A2⟩ can be explicitly computed (using single-

resolvent local laws) as explicit functions of w1,w2 , while the regular part remains of order one. A

combinationof our decomposition (3.7), the perturbation formulas fromLemma 3.3, and our single- and

two-resolvent local laws together with their explicit deterministic terms from the subsequent Section 4

provide an effective recipe to compute ⟨G(w1)A1G(w2)A2⟩ with high precision in all cases. We

refrain from formulating it as a comprehensive theorem due to the large number of cases.

3.3. Proof of the main results. Wewill first focus on the proof of Theorem 2.7 and turn to the proofs

of Theorem 2.2 and Theorem 2.4 afterwards.

3.3.1. Proof of Theorem 2.7. As a first step towards the proof of Theorem 2.7, we show that (2.24) indeed

follows from a bound similar to (3.14), whereG is replaced by ImG. The proof of the following simple

lemma is given after completion of the proof of Theorem 2.7.

Lemma 3.5. Fix a bounded deterministic Λ ∈ CN×N , ǫ > 0, κ > 0, and let B ∈ C2N×2N . Then, for any
bulk indices ∣i∣, ∣j∣ ≤ N , i.e. with γi, γj ∈Bκ, and η ≥ N−1+ǫ , we have

N ∣⟨wi,Bwj⟩∣2 ≺ (Nη)2⟨ImG(γi + iη)BImG(γj + 2iη)B∗⟩ . (3.17)

The same bound still holds without the factor of two in (3.17). However, we chose to have it, in order

to ensure that the spectral parameters of the two resolvents are always forced to be different.

Proof of Theorem 2.7. Having Lemma 3.5 at hand, we are left with estimating the rhs. of (3.17) for

B = A − ⟨ImM(γj)A⟩⟨ImM(γj)⟩ E+ −
⟨ImM(γj)E−A⟩⟨ImM(γj)⟩ E− (3.18)
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using Proposition 3.4. Note that the two terms in (2.24) carrying a δ-symbol arise from the orthogonality

relations ⟨wi,E±wj⟩ = δj,±i, following from the spectral symmetry described around (2.16).

We now write out ImG(w) = (G(w) −G(w̄))/(2i), such that (3.17) leaves us with four different
terms, each of which can be bounded individually. Since their treatment is completely analogous, we

focus on the exemplary term ⟨G(γi + iη)BG(γj − 2iη)B∗⟩ (3.19)

with the deterministic matrix B being defined in (3.18). We rely on the following simple perturbative

lemma, which follows from Lemma 3.3 by invoking Lemma B.4.

Lemma 3.6. Using the notation introduced in (3.7), the matrix B ∈C2N×2N from (3.18) satisfies

B = Åγi+iη,γj−2iη +O(∣γi − γj ∣ + η)E+ +O(∣γi + γj ∣ + η)E− ,
B
∗ = ˚(A∗)γj−2iη,γi+iη +O(∣γi − γj ∣ + η)E+ +O(∣γi + γj ∣ + η)E− . (3.20)

Hence, plugging (3.20) into (3.19), we get a sum of several terms, which can all be estimated separately.

For the ‘leading term’, we use Proposition 3.4 to get that

∣⟨G(γi + iη)Åγi+iη,γj−2iηG(γj − 2iη) ˚(A∗)γj−2iη,γi+iη⟩∣ ≺ 1 .
Two further representative terms are given by

O(∣γi ∓ γj ∣ + η) ⟨G(γi + iη)E±G(γj − 2iη)C⟩ ,
whereC ∈C2N×2N is some generic boundedmatrix. Now, by using (2.16), these terms can be rewritten

as

O(∣γi ∓ γj ∣ + η) ⟨G(γi + iη)G(±(γj − 2iη))E±C⟩ .
For either sign choice (due to the factor two), we cannowemploy a simple resolvent identityG(w1)G(w2) =[G(w1) −G(w2)]/(w1 −w2), leaving us with

O(∣γi − γj ∣ + η)
(γi ∓ γj) + (1 ± 2)iη ⟨[G(γi + iη) −G(±(γj − 2iη))]C⟩ ,

which is surely stochastically dominated by one bymeans of Theorem 2.6. Thus, collecting all the terms,

we find that ∣(3.19)∣ ≺ 1.
Finally, we choose η = N−1+ξ for an arbitrarily small ξ > 0, such that Lemma 3.5 withB as in (3.18)

yields Theorem 2.7. �

We conclude with giving a proof of Lemma 3.5.

Proof of Lemma 3.5. By spectral decomposition we write

⟨ImG(γi + iη)BImG(γj + 2iη)B∗⟩ = 1

2N
∑
k,l

2η2∣⟨wk,Bwl⟩∣2[(λk − γi)2 + η2][(λl − γj)2 + 4η2]
≻ ∣⟨wi,Bwj⟩∣2

Nη2
,

which proves (3.17). We point out that in the last inequality we used rigidity of the eigenvalues [2, 38]:

∣λi − γi∣ ≺ 1

N
, (3.21)

which holds for bulk indices as a standard consequence of the single-resolvent local law, Theorem 2.6.

�

3.3.2. Proof of Theorem 2.2. The bounds in (2.8a), (2.8b), and (2.8c) follow from Theorem 2.7 by choosing

A = (B 0

0 0
) , A = (0 0

0 B
) , and A = (0 0

B 0
) ,

respectively, and invoking (2.17)–(2.18). �
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3.3.3. Proof of Theorem 2.4. By the definition

H
z ∶= ( 0 X +Λ − z(X +Λ − z)∗ 0

)
it follows that µ ∈ Spec(X +Λ) if and only if λµ

1 = 0. Here by λz
i we denoted the eigenvalues ofHz .

We remark that Λ is omitted by the notation since it is fixed throughout the proof. In particular, using

the bound for products of two resolvents and two regularmatrices in (3.14), we will now prove the lower

bound in (2.12) for the overlap of left and right eigenvectors corresponding to eigenvalues µ which lies

in the bulk of the spectrum ofX +Λ.
Proof of Theorem 2.4. Define

F ∶= (0 0

1 0
) ∈C2N×2N

,

then by (3.14) we conclude

sup
z∈bulk

⟨ImG
z(iη)F ImG

z(iη)F ∗⟩ ≺ 1 , (3.22)

where the supremum is taken over the bulk as given in Definition 2.3. Here we used that F is regular in

the sense of (3.7); this immediately follows from the fact thatF is (block) off–diagonal and ImM(iη) is
(block) diagonal (see LemmaB.1). We nowwant to show that if we choose z = µi to be a bulk eigenvalue

of X + Λ the upper bound (3.22) implies a lower bound on Oii. To make the notation simpler, from

now on we denote µ = µi .

Consider the non-Hermitian left/right–eigenvectors l,r, with corresponding eigenvalue µ, defined

as in (2.9) and set

P ∶= ⎛⎝
l l
∗

∥l∥2 0

0 rr∗

∥r∥2

⎞
⎠ .

Clearly P is a rank two orthogonal projection whose range lies in the kernel ofHµ, recalling that up

to scalar multiples the non-Hermitian eigenvectors l,r coincide with some singular vectors u,v of

X +Λ−µ, respectively, forming an eigenvectorw = (u,v) in the kernel ofHµ. Note thatKer(Hµ)
has dimension two if µ is a simple eigenvalue, but in general the multiplicity of µ and the multiplicity

of λµ
1 = 0 may differ. Let Q be the orthogonal projection onto the kernel ofHµ, then P ≤ Q. Then,

almost surely, by spectral decomposition (and by the spectral symmetry ofHµ)

ImG
µ(iη) = Q

η
+ ∑

i∶λ
µ
i
≠0

η(λµ
i )2 + η2 (

u
µ
i

v
µ
i

)(uµ
i

v
µ
i

)∗ ≥ P
η
.

By (3.22) we thus obtain

1 ≻ sup
z∈bulk

⟨ImG
z(iη)F ImG

z(iη)F ∗⟩ ≻ 1

η2
⟨PFPF ∗⟩ = ∣⟨l,r⟩∣2

Nη2∥r∥2∥l∥2 ,
which, by (2.11), implies

Oii =∥r∥2∥l∥2 ≻ 1

Nη2
.

Choosing η = N−1+ǫ/2 , this concludes the proof.
�

4. Local laws with regular observables

The goal of the present section is to establish the key Proposition 3.4 by proving an averaged local law

for a product of two resolvents (of the Hermitisation (2.15)) in the bulk of the scDos ρwith regular (recall
Definition 3.1 and see Definition 4.2 below) deterministic matricesA1,A2 in between. Throughout the

rest of this paper, we consider the case of several spectral parameters w1,w2, ... and fixed bounded

deformationsΛ1 = Λ2 = ... ≡ Λ ∈CN×N , which we continue to omit from the notation.
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Using the abbreviations Gi ∶= G(wi) ∶= GΛ(wi) (and analogously for Mi), the deterministic

approximation to the resolvent chain

G1B1⋯Bk−1Gk

for arbitrary deterministicB1, ...,Bk
12 is denoted by

M(w1,B1, ...,Bk−1 ,wk) (4.1)

and defined recursively in the length k of the chain.

Definition 4.1. Fix k ∈N and letw1, ...,wk ∈C∖R be spectral parameters. As usual, the corresponding
solutions to the MDE (2.20) are denoted byM(wj), j ∈ [k]. Then, for deterministic matricesB1, ...,Bk−1

we recursively define

M(w1,B1, ...Bk−1 ,wk) = (B1k)−1[M(w1)B1M(w2, ...,wk) (4.2)

+ ∑
σ=±

k−1

∑
l=2

σM(w1)⟨M(w1, ...,wl)Eσ⟩EσM(wl, ...,wk)] ,
where we introduced the shorthand notation

Bmn ≡ B(wm,wn) = 1 −M(wm)S[⋅]M(wn) (4.3)

for the so-called stability operator, discussed later in Appendix B.

Note that the recursion (4.2) is well defined, since on the rhs. of (4.2), there are onlyM(wm, ...,wn)
appearing for which the number of spectral parameters is strictly smaller than on the lhs. of (4.2), i.e.n−
m+1 < k. Wemay call these formulas (4.2) recursive Dyson equations as they provide us with the correct
deterministic quantity for longer resolvent chains. As an example, we have that

M(w1,B1,w2) = B−112 [M1B1M2] =M1X12[B1]M2 , (4.4)

where B−112 is the inverse stability operator (4.3) and X12 = (1 − S[M1 ⋅M2])−1 . We remark thatM

satisfies several different recursions besides (4.2); they are presented in Lemma D.1 (see also [26, Lemma

5.4] for a simpler setup of Wigner matrices). The equivalence of these recursions will be proved via the

so-calledmeta-argument, see e.g. [31].
As already mentioned above, we are aiming at local laws for expressions of the form

⟨G1A1⋯GkAk⟩ (4.5)

in the averaged case, or (G1A1 ⋯AkGk+1)
xy

(4.6)

in the isotropic case, where the deterministic matricesA1, ...,Ak are assumed to be regular.
The general concept of regularity depending on two spectral parametersw andw′ has already been

introduced in Definition 3.1. In the following definition we tailor this concept to observables in chains

(4.5) and (4.6). It basically says that observableAj , located betweenGj = G(wj) andGj+1 = G(wj+1)
in these chains will naturally be regularised using the spectral parameterswj and wj+1 .

Definition 4.2. (Regular observables in chains)

Fixκ > 0 and let δ = δ(κ, ∥Λ∥) > 0 be small enough (see (3.5) and (4.22)). Consider one of the two expressions
(4.5) or (4.6) for some fixed length k ∈N and bounded matrices ∥Ai∥ ≲ 1 and let w1, ...,wk+1 ∈C ∖R be
spectral parameters with Rewi ∈Bκ . For any j ∈ [k], analogously to (3.6), we denote

1
±
δ (wj ,wj+1) ∶= φδ(Rewj ∓Rewj+1) φδ(Imwj) φδ(Imwj+1) (4.7)

and sj ∶= − sgn(ImwjImwj+1), where, here and in the following, in case of (4.5), the indices are understood
cyclically modulo k.

12Wewill use the the notational convention, that the letterB denotes arbitrary (generic)matrices, whileA is reserved for regular
matrices, in the sense of Definition 4.2.
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(a) For i ∈ [k] we define the regular component or regularisation of Ai from (4.5) or (4.6) (w.r.t. the
pair of spectral parameters (wi,wi+1)) as

Åi ∶= Åwi,wi+1
i . (4.8)

(b) Moreover, we call Ai regular (w.r.t. (wi,wi+1)) if and only if Åi = Ai.

For example, in case of (4.5) for k = 1 with spectral parameterw1 ∈ C ∖R satisfyingRew1 ∈ Bκ,∣Rew1∣ ≤ δ/4 and ∣Imw1∣ ≤ δ/2 (recall (3.5) and (4.7)), the regular component ofA1 is given by

Å1 ∶= A1 − ⟨ImM1A1⟩⟨ImM1⟩ E+ − ⟨M1A1M1E−⟩⟨M1E−M1E−⟩E− . (4.9)

We emphasise, that our notation ⋅̊ for the regular component of Ai does not have an overall fixed

meaning but depends on the spectral parameters of the resolvents ‘surrounding’ the deterministic ma-

trixAi under consideration, i.e.

⟨⋯GiAiGi+1 ⋯ ⟩ or (⋯GiAiGi+1 ⋯ )
xy
,

or in case of (4.5) for k = 1 the single spectral parameter involved. However, if we aim at specifying the

spectral parameters defining the operation ⋅̊ , we add them (or their indices) as a subscript, i.e. write

Å
wi,wi+1
i ≡ Åi,i+1

i ≡ Åi ≡ A○i ≡ A○i,i+1i ≡ A○wi,wi+1
i ,

as done in Definition 3.1, and do not use imprecise notation Åi.

The just explained caveats are in stark contrast to the case of Wigner matrices [24, 28, 29], where

the regular component of a matrix A is simply its traceless part, i.e. Å = A − ⟨A⟩, irrespective of the
spectral parameters involved. Apart from this independence of the location in the spectrum, there is

a one further important difference to our case, which we already mentioned in Section 3: For Wigner

matrices, the condition for A being regular is one-dimensional and hence restricts A to a (N2 − 1)-
dimensional subspace ofCN×N (the traceless matrices), whereas in our case, the regularity condition is

two-dimensional (if 1σ
δ (⋅, ⋅) = 1) and hence restricts a regular matrixA to a ((2N)2 −2)-dimensional

subspace ofC2N×2N , which depends on the ‘surrounding’ spectral parameters.

We now give bounds on the size of the deterministic term M(w1,B1, ...,Bk−1 ,wk) from (4.1),

where allBi are regular in the sense of Definition 4.2. The proof of this lemma is presented in Appen-

dix D.

Lemma 4.3. (Bounds onM , see [28, Lemma 2.4])

Fix κ > 0. Let k ∈ [4] and w1, ...,wk+1 ∈ C ∖R be spectral parameters with Rewj ∈ Bκ. Then, for
bounded regular deterministic matrices A1, ...,Ak (in the sense of Definition 4.2), we have the bounds

∥M(w1,A1, ...,Ak ,wk+1)∥ ≲
⎧⎪⎪⎨⎪⎪⎩

1

η⌊k/2⌋
if η ≤ 1

1

ηk+1 if η > 1 , (4.10)

∣⟨M(w1,A1, ...,Ak−1 ,wk)Ak⟩∣ ≲
⎧⎪⎪⎨⎪⎪⎩

1

η⌊k/2⌋−1
∨ 1 if η ≤ 1

1

ηk if η > 1 , (4.11)

for the deterministic approximation (4.1) of a resolvent chain, where η ∶=minj ∣Imwj ∣.
For the presentation of our main results, we would only need (4.10) and (4.11) for k ∈ [2] from the

previous lemma. However, the remaining bounds covered by Lemma 4.3 will be instrumental in our

proofs of Theorems 4.5 and 4.4 below (see Sections 5 and 6).

The main result of the present section and most important input for our proofs in Section 3 is the

following averaged local law in the bulk of the spectrum for two resolvents and regular matrices.

Theorem 4.4. (Local laws with two regular matrices)

Fix a bounded deterministic Λ ∈ CN×N , ǫ > 0 and κ > 0. Then, for spectral parameters w1,w2,w3 ∈ C
satisfying maxj ∣wj ∣ ≤ N100 , Rewj ∈ Bκ and η ∶= minj ∣Imwj ∣ ≥ N−1+ǫ , deterministic vectors x,y
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with ∥x∥, ∥y∥ ≲ 1, and any regular deterministic matricesA1,A2 ∈C2N×2N (cf. Definition 4.2), we have
the averaged local law

∣⟨G1A1G2A2 −M(w1,A1,w2)A2⟩∣ ≺
⎧⎪⎪⎨⎪⎪⎩

1√
Nη

if η ≤ 1
1

Nη3 if η > 1 (4.12a)

and the isotropic law

∣⟨x, (G1A1G2A2G3 −M(w1,A1,w2,A2,w3))y⟩∣ ≺
⎧⎪⎪⎨⎪⎪⎩

1

η
if η ≤ 1

1√
Nη4

if η > 1 . (4.12b)

Together with (4.11) for k = 2, this proves Proposition 3.4. Moreover, as a byproduct of our proof of

Theorem 4.4, we obtain the following optimal local laws with a single regular matrix.

Theorem 4.5. (Optimal local laws with one regular matrix)

Fix a bounded deterministic Λ ∈ CN×N , ǫ > 0 and κ > 0. Then, for spectral parameters w1,w2 ∈ C
satisfying maxj ∣wj ∣ ≤ N100 , Rewj ∈ Bκ and η ∶= minj ∣Imwj ∣ ≥ N−1+ǫ , deterministic vectors x,y
with ∥x∥, ∥y∥ ≲ 1, and any regular deterministic matrix A1 (cf. Definition 4.2), we have the optimal

averaged local law

∣⟨(G1 −M1)A1⟩∣ ≺
⎧⎪⎪⎨⎪⎪⎩

1

Nη1/2 if η ≤ 1
1

Nη2 if η > 1 (4.13a)

and the optimal isotropic local law

∣⟨x, (G1A1G2 −M(w1,A1,w2))y⟩∣ ≺
⎧⎪⎪⎨⎪⎪⎩

1√
Nη2

if η ≤ 1
1√
Nη3

if η > 1 . (4.13b)

Remark 4.6. We have several comments.

(i) The above local laws are in agreement with the
√
η-rule first established for Wigner matrices in [28]:

Every regular deterministic matrix Ai reduces both the size of the deterministic approximation and
the error term by a factor

√
η.

(ii) The error terms in Theorem 4.4 dealing with two regular matrices can still be improved by a factor
1/√Nη, as shown in [28]. A similar analysis could have been conducted here, but we refrain from
doing so, as it is not needed for our main results from Section 2. However, the error bounds in (4.13)

with one regular matrix are in fact optimal.
(iii) Given Theorem 2.6, and Theorems 4.4–4.5, it is possible to deduce similar bounds for averaged and

isotropic chains as in (4.12), where not both matrices A1,A2 are regular (see (3.16)).

In the rest of this paper, we give a detailed proof of Theorem 4.4 in the much more involved η ≤ 1
regime. For η > 1, the bound simply follows by induction on the number of resolvents in chain by in-

voking the trivial ∥M(w)∥ ≲ 1/∣Imw∣. The detailed argument has been carried out in [28, Appendix B]

for the case of Wigner matrices. However, at a certain technical point (within the proof of the master
inequalities in Proposition 4.9 and the reduction inequalities in Lemma 4.10), the proof uses Theorems 4.4

and 4.5 (and even its analogues for longer chains) for the η > 1 regime. But the master and reduction

inequalities are not needed for proving the above estimates in the η > 1 regime, hence the argument is

not circular. With partial exception in Appendix D, where we prove Lemma 4.3, throughout the rest of

this paper we assume thatminj ∣Imwj ∣ =∶ η ≤ 1.
4.1. Basic control quantities and proof of Theorems 4.4 and 4.5. Our strategy for proving Theo-

rem 4.4 (and thereby Theorem 4.5 as a byproduct) is to derive a system of master inequalities (Proposi-
tion 4.9) for the errors in the local laws by cumulant expansion, then use an iterative scheme to gradually

improve their estimates. The cumulant expansion introduces longer resolvent chains, potentially lead-

ing to an uncontrollable hierarchy, so our master inequalities are complemented by a set of reduction
inequalities (Lemma 4.10) to estimate longer chain in terms of shorter ones. We have used a similar strat-

egy in [28, 29] for Wigner matrices, but now many new error terms due to regularisations need to be

handled.
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Before entering the detailed proof, we explain the main mechanism of the new type of error terms.

Cumulant expansions applied to chains . . . GiAiGi+1 . . . with regular Ai’s introduce more resolvent

factors, for example . . . GiGiAiGi+1 . . . or . . . GiE−GiAiGi+1 . . . without introducing more A’s.

MultipleG factors without intermediateA’s appear which we wish to reduce to fewerG factors using

resolvent identities or contour integral representations; in the example above we will use

GiGi = G(wi)2 = 1

2πi
∫

Γ

G(z)(z −wi)2 dz, (4.14)

whereΓ is an appropriate contour (see Lemma 5.1). When this formula is inserted into the chain,we have

. . . G(z)AiGi+1 . . ., i.e. Ai is not regular anymorewith respect to the neighboring spectral parameters(z,wi+1) since wi has been changed to z. We need to regularise Ai to the new situation. Fortunately,

the regularisation is Lipschitz continuous by Lemma 3.3, so roughly speaking we make an error of

order ∣z−wi∣whenwe regulariseAi from (wi,wi+1) to (z,wi+1). This error exactly compensates the

higher power of z−wi in the denominator in (4.14), making eventually the adjustment of regularisations

harmless in the estimates. We need to meticulously implement this strategy for longer chains and also

taking into account the chiral symmetry to reduceGiE−Gi in chains like . . . GiE−GiAiGi+1 . . .. The

precise formof the error terms inLemma 3.3 is essential. It is remarkable that the signs appearing in (3.11),

(3.12), and (3.13) exactly match those that arise in the denominators of the contour integral formulas

like (4.14). We now start the actual proof.

As the basic control quantities in the sequel of the proof, we introduce the normalised differences

Ψ
av
k (wk,Ak) ∶= Nηk/2∣⟨G1A1⋯GkAk −M(w1,A1, ...,wk)Ak⟩∣ , (4.15)

Ψ
iso
k (wk+1,Ak,x,y) ∶=√Nηk+1 ∣(G1A1⋯AkGk+1 −M(w1,A1, ...,Ak ,wk+1))

xy
∣ (4.16)

for k ∈N, where we used the short hand notations

Gi ∶= G(wi) , η ∶=min
i
∣Imwi∣ , wk ∶= (w1, ...,wk) , Ak ∶= (A1, ...,Ak) .

The deterministicmatrices ∥Ai∥ ≤ 1, i ∈ [k], are assumed to be regular (i.e.,Ai = Åi, see Definition 4.2)

and the deterministic counterparts

M(w1,A1, ...,Ak−1 ,wk)
used in (4.15) and (4.16) (see also (4.1)) are given recursively in Definition 4.1.

For convenience, we extend the above definitions to k = 0 by
Ψ

av
0 (w) ∶= Nη∣⟨G(w) −M(w)⟩∣ , Ψ

iso
0 (w,x,y) ∶=√Nη∣(G(w) −M(w))xy

∣
and observe that

Ψ
av
0 +Ψiso

0 ≺ 1 (4.17)

is the usual single-resolvent local law (in the bulk) from Theorem 2.6, where here and in the following

the arguments ofΨ
av/iso
k shall occasionally be omitted. We remark that the index k counts the number

of regular matrices in the sense of Definition 4.2.

Throughout the entire argument, let ǫ > 0 and κ > 0 be arbitrary but fixed, and let
D
(ǫ,κ) ∶= {w ∈C ∶ Rew ∈Bκ , N

100 ≥ ∣Imw∣ ≥ N−1+ǫ} (4.18)

be the target spectral domain, where the κ-bulk Bκ has been introduced in (2.6). This target spectral

domainD(ǫ,κ) will be reached by shrinking a larger initial spectral domain

D
(ǫ0,κ0) ∶= {w ∈C ∶ Rew ∈Bκ0 , N

100 ≥ ∣Imw∣ ≥N−1+ǫ0} (4.19)

many times, say (L − 1) times, during our whole argument, where L = L(ǫ) is an N-independent

positive integer to be determined below (see Remark 4.12). In (4.19), we set ǫ0 ∶= ǫ/2 and chose the initial
bulk parameter

κ0 = κ0(ǫ, κ) = κ

L(ǫ) > 0 (4.20)
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The justmentioned shrinkingof domainswill be conducted alongside the decreasing family (D(ǫ0,κ0)
ℓ )ℓ∈[L]

of spectral domains, defined via

D
(ǫ0,κ0)
ℓ ∶= {w ∈C ∶ Rew ∈Bℓκ0

, N
100 ≥ ∣Imw∣ ≥ ℓN−1+ǫ0} ⊂D(ǫ,κ) . (4.21)

D
(ǫ,κ)

N−1+ǫ ∼N−1+ǫ0

D
(ǫ0,κ0)

D
(ǫ0,κ0)
2

D
(ǫ0,κ0)
3

∼ κ2/3

∼ κ

-2 2

Rew

Imw

Figure 2. Depicted are the target spectral domain (4.18), the initial spectral domain

(4.19) and four intermediate domains from the family (4.21). The solid black curve

represents the symmetric scDos ρ for the perturbation Λ = −z with ∣z∣ slightly
less than one (see Example 2.5). Close to a regular edge of the scDos, the horizontal

distance between two domains scales like κ2/3 . Near an (approximate) cusp, the

scaling agrees with the linear lower bound given in (2.23).

Finally, the cut-off parameter δ > 0 used in the definition of the regular component of an observable

(see (3.5) and (4.8) in Definition 4.2) shall be chosen by the following two requirements: First, it has to be

much smaller than the initial bulk-parameter κ0 from (4.20), i.e.

0 < δ ≪ cκ0 , (4.22)

where c > 0 is the same constant as introduced in (2.23). Second, it has to be small enough such that the

denominators in (4.8) (see also Appendix B) as well as in Lemmas 5.5, 5.7, and E.1 are uniformly bounded

away from zero – in case that 1σ
δ (wi,wi+1) = 1. Note that these requirements also depend on the

deformationΛ ∈CN×N (but only via the norm ∥Λ∥ ≲ 1) as it determines the scDos ρ.

Definition 4.7. (Uniform bounds in domains)

Let ǫ > 0 and κ > 0 as above and let k ∈N. We say that the bounds

∣⟨G(w1)B1 ⋯G(wk)Bk −M(w1,B1, ...,wk)Bk⟩∣ ≺ Eav ,
∣(G(w1)B1 ⋯ BkG(wk+1) −M(w1,B1, ...,Bk ,wk+1))

xy
∣ ≺ E iso (4.23)

hold (ǫ, κ)-uniformly for some deterministic control parameters Eav/iso = Eav/iso(N,η), depending only
onN and η ∶=mini ∣Imwi∣, if the implicit constant in (4.23) are uniform in bounded deterministic matrices∥Bj∥ ≤ 1, deterministic vectors ∥x∥, ∥y∥ ≤ 1, and admissible spectral parameters wj ∈ D(ǫ,κ) satisfying
1 ≥ η ∶=minj ∣Imwj ∣.

Similarly, we use the phrase that a bound holds (ǫ0, κ0, ℓ)-uniformly (or simply ℓ-uniformly), if the

above statement is true withD
(ǫ0,κ0)
ℓ in place ofD(ǫ,κ).

Moreover, we may allow for additional restrictions on the deterministic matrices. For example, we may
talk about uniformity under the additional assumption that some (or all) of the matrices are regular (in the
sense of Definition 4.2).

Note that (4.23) is stated for a fixed choice of spectral parameterswj in the left hand side, but it is in

fact equivalent to an apparently stronger statement, when the same bound holds with a supremumover
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the spectral parameters (with the same constraints). More precisely, if E iso ≥ N−C for some constant

C > 0, then (4.23) implies

sup
w1,...,wk+1

∣(G(w1)B1 ⋯BkG(wk+1) −M(w1,B1, ...,Bk ,wk+1))
xy
∣ ≺ E iso (4.24)

(and analogously for the averaged bound), where the supremum is taken over all choices of wj ’s in

the admissible spectral domainD(ǫ,κ) orD
(ǫ0,κ0)
ℓ . This bound follows from (4.23) by a standard grid

argument (see, e.g., the discussion after [28, Def. 3.1]). Throughout the entire paper, we will frequently

use the equivalence between (4.23) and (4.24), e.g. when integrating such bounds over some spectral

parameters as done in Sections 5 and 6.

We can now formulate our main results of the present section, Theorem 4.4 and Theorem 4.5, in the

language of our basic control quantitiesΨ
av/iso
k .

Lemma 4.8. (Estimates onΨ
av/iso
1 andΨ

av/iso
2 ) For any ǫ > 0 and κ > 0 we have

Ψ
av
1 +Ψiso

1 ≺ 1 and Ψ
av
2 +Ψiso

2 ≺√Nη
(ǫ, κ)-uniformly in regular matrices (i.e. for spectral parameterswj ∈D(ǫ,κ) with 1 ≥ η ∶=minj ∣Imwj ∣).
Proof of Theorems 4.4 and 4.5. These immediately follow from Lemma 4.8. �

The rest of the proof is structured as follows: First, in Section 4.2, we state the master inequalities

and corresponding reduction inequalities on theΨ
av/iso
k parameters, which we then use in Section 4.3 to

prove Lemma 4.8. Afterwards, in Section 5, we prove the master inequalities and, finally, the proof of

the reduction inequalities is presented in Section 6.

4.2. Master inequalities and reduction lemma. We now state the relevant part of a non-linear infi-

nite hierarchy of coupled master inequalities forΨav
k andΨiso

k . In fact, for our purposes, it is sufficient

to have only the inequalities for k ∈ [2], but with fairly more effort (despite closely following the argu-

ments in Section 5) it is possible to obtain analogous estimates for general k ∈N.

Proposition 4.9. (Master inequalities) Assume that

Ψ
av/iso
j ≺ ψav/iso

j , j ∈ [4] , (4.25)

ℓ-uniformly (i.e. for spectral parameters wj ∈ D(ǫ0,κ0)
ℓ and 1 ≥ minj ∣Imwj ∣) in regular matrices. Then

it holds that

Ψ
av
1 ≺ 1 + ψ

av
1

Nη
+ ψ

iso
1 + (ψav

2 )1/2(Nη)1/2 + (ψiso
2 )1/2(Nη)1/4 , (4.26a)

Ψ
iso
1 ≺ 1 + ψ

iso
1 + ψav

1(Nη)1/2 +
(ψiso

2 )1/2(Nη)1/4 , (4.26b)

Ψ
av
2 ≺ 1 + (ψav

1 )2 + (ψiso
1 )2 +ψav

2

Nη
+ ψ

iso
2 + (ψav

4 )1/2(Nη)1/2 + (ψiso
3 )1/2 + (ψiso

4 )1/2(Nη)1/4 , (4.26c)

Ψ
iso
2 ≺ 1 +ψiso

1 + ψ
av
1 ψ

iso
1 + (ψiso

1 )2
Nη

+ ψ
iso
2 + (ψiso

1 ψiso
3 )1/2(Nη)1/2 + (ψiso

3 )1/2 + (ψiso
4 )1/2(Nη)1/4 , (4.26d)

now (ℓ + 1)-uniformly (i.e. for spectral parameters wj ∈D(ǫ0,κ0)
ℓ+1 with 1 ≥ η ∶=minj ∣Imwj ∣) in regular

matrices.

As shown in the above proposition, resolvent chains of length k are estimated by resolvent chains

up to length 2k. In order to avoid the indicated infinite hierarchy of master inequalities with higher

and higher k indices, we will need the following reduction lemma.

Lemma 4.10. (Reduction inequalities) Assume that Ψ
av/iso
n ≺ ψav/iso

n holds for 1 ≤ n ≤ 4, ℓ-uniformly
(i.e. for spectral parameters wj ∈ D(ǫ0,κ0)

ℓ with 1 ≥ η ∶= minj ∣Imwj ∣) in regular matrices (cf. Defini-
tion 4.7). Then we have

Ψ
av
4 ≺ (Nη)2 + (ψav

2 )2 , (4.27)
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on the same domain. Furthermore, we have

Ψ
iso
3 ≺ Nη (1 + ψiso

2√
Nη
)(1 + ψav

2

Nη
)1/2 ,

Ψ
iso
4 ≺ (Nη)3/2 (1 + ψiso

2√
Nη
)(1 + ψav

2

Nη
)

(4.28)

again uniformly in wj ∈D(ǫ0,κ0)
ℓ and in regular matrices.

4.3. Proof of Lemma 4.8. Within the proof, we repeatedly use a simple argument, which we call iter-
ation.

Lemma 4.11. (Iteration) For every D > 0, ν > 0, and α ∈ (0,1), there exists some K = K(D,ν,α),
such that whenever (i)X ≺ ND onD

(ǫ0,κ0)
1 and (ii)X ≺ x onD

(ǫ0,κ0)
ℓ for some ℓ ∈N, implies that

X ≺ A + x
B
+ x1−α

C
α on D

(ǫ0,κ0)
ℓ+1

for some constants B ≥ Nν and A,C > 0, it also holds that
X ≺ A +C on D

(ǫ0,κ0)
ℓ+K .

We can now turn to the proof of Lemma 4.8.

Proof of Lemma 4.8. Assume that

Ψ
av/iso
j ≺ ψav/iso

j , j ∈ [4] ,
ℓ-uniformly, for some fixed ℓ > 0, i.e. it holds on the domain D

(ǫ0,κ0)
ℓ . Then, by (4.26a)–(4.26d), we

immediately obtain

Ψ
av
1 +Ψiso

1 ≺ 1 + ψav
1 +ψiso

1(Nη)1/2 +
(ψav

2 )1/2 + (ψiso
2 )1/2(Nη)1/4

Ψ
av
2 +Ψiso

2 ≺ 1 +ψiso
1 + (ψav

1 )2 + (ψiso
1 )2

Nη
+ ψ

av
2 + ψiso

2(Nη)1/2
+ (ψav

4 )1/2(Nη)1/2 +
(ψiso

1 ψiso
3 )1/2(Nη)1/2 + (ψiso

3 )1/2 + (ψiso
4 )1/2(Nη)1/4

(4.29)

on the domainD
(ǫ0,κ0)
ℓ+1 . Then, plugging the first line of (4.29) into the second line and using iteration

in both lines, we get

Ψ
av
1 +Ψiso

1 ≺ 1 + (ψav
2 )1/2 + (ψiso

2 )1/2(Nη)1/4 ,

Ψ
av
2 +Ψiso

2 ≺ 1 + (ψav
4 )1/2√
Nη

+ (ψav
2 )1/4 + (ψiso

2 )1/4(Nη)1/8 ⋅ (ψiso
3 )1/2(Nη)1/2 +

(ψiso
3 )1/2 + (ψiso

4 )1/2(Nη)1/4 ,

(4.30)

on the domain D
(ǫ0,κ0)
ℓ+K , for some K as in Lemma 4.11. We now use the reduction inequalities from

Lemma 4.10 in the second line of (4.30):

Ψ
av
1 +Ψiso

1 ≺ 1 + (ψav
2 )1/2 + (ψiso

2 )1/2(Nη)1/4
Ψ

av
2 +Ψiso

2 ≺ (Nη)1/2 + ψav
2√
Nη
+ (Nη)1/4(ψiso

2 )1/2 + (ψav
2 )1/2 + (ψav

2 ψiso
2 )1/2(Nη)1/4 ,

+ ((Nη)1/4 + (ψav
2 )1/4 + (ψiso

2 )1/4(Nη)1/8 )(1 + (ψiso
2 )1/2(Nη)1/4 +

(ψav
2 )1/4(Nη)1/8 +

(ψiso
2 )1/2(ψav

2 )1/4(Nη)3/8 ) ,
(4.31)

on the domainD
(ǫ0,κ0)
ℓ+K . Next, using iteration once again in the second line of (4.31), we obtain

Ψ
av
1 +Ψiso

1 ≺ 1 + (ψav
2 )1/2 + (ψiso

2 )1/2(Nη)1/4 , Ψ
av
2 +Ψiso

2 ≺ (Nη)1/2
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on the domainD
(ǫ0,κ0)
ℓ+K+K′

, for someK′ as in Lemma 4.11. We point out that here we used Schwarz and

Young inequalities for several terms. Finally, using iteration one last time we conclude

Ψ
av
1 +Ψiso

1 ≺ 1 , Ψ
av
2 +Ψiso

2 ≺ (Nη)1/2
on the domainD

(ǫ0,κ0)
ℓ+K+K′+K′′

, for someK′′ as in Lemma 4.11. This concludes the proof. �

Remark 4.12. We observe that in every application of Lemma 4.11 during the proof of Lemma 4.8, the

parameter D is uniformly bounded by, say, D ≤ 10, as follows by estimating every resolvent in Ψ
av/iso
k

by norm and using the trivial 1/η-bound on inverse of the stability operator in the iterative definition of
M(w1, ...,wk) given in Definition 4.1. A further quick inspection of the above proof shows, that α can be
chosen as fixed α = 1/2. Finally, the parameter ν is lower bounded by (some universal positive constant

times) ǫ, sinceNη ≥Nǫ/2 by construction of the initial domain (4.19). Hence, the constantsK ,K′, andK′′

only depend on ǫ and therefore also the maximal number L = L(ǫ) of domain shrinkings.
5. Proof of the master inequalities, Proposition 4.9

Before going into the proofs of the master inequalities, we state a simple lemma, which will fre-

quently be used in the following. Recall that the deformation Λ ∈ CN×N is fixed and hence omitted

from the notation.

Lemma 5.1. (Integral representations for products of resolvents)

Let k ∈ N and w1, ...,wk ∈ C ∖ R be spectral parameters, whose imaginary parts have equal sign,
i.e. sgn(Imw1) = ... = sgn(Imwk) =∶ τ . Then, for any J ⊂ R being a union of compact intervals

such that Rewi ∈ J̊ (the interior) for all i ∈ [k] and 0 < η̃ < η ∶= minj ∣Imwj ∣, we have the integral
representation

k

∏
j=1

G(wj) = 1

2πi
∫

Γ
G(z) k

∏
j=1

1

z −wj

dz , (5.1)

where the contour Γ from (5.1) is defined as (see Figure 3)

Γ ≡ Γτ
η̃(J) ∶=

⎧⎪⎪⎨⎪⎪⎩
∂(J × [iη̃, i∞)) if τ = +
∂(J × (−i∞,−iη̃]) if τ = − (5.2)

and the boundary is parameterised in counter-clockwise orientation.

Proof. This easily follows from residue calculus. �

Re z

Im z

Figure 3. Depicted is the scenario from Lemma 5.1 with five spectral parameters

represented as dots in the upper half plane. Moreover, we indicated the union of

compact intervals J on the real axis and the contour Γ as described in (5.2). Note

that one of the three intervals constituting J does not contain any Rewj .

We recall the definition of the second order renormalisation, denoted by underline, from [24]. For

functions f(W ), g(W ) of the random matrixW (see (2.15)), we define

f(W )Wg(W ) ∶= f(W )Wg(W )− Ẽ[(∂W̃ f)(W )W̃g(W )+ f(W )W̃ (∂W̃ g)(W )] , (5.3)
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where ∂W̃ denotes the directional derivative in the direction of

W̃ ∶= ( 0 X̃

X̃∗ 0
) ,

where X̃ is a complex Ginibre matrix that is independent ofW . The expectation is taken w.r.t. the

matrix X̃ . Note that, ifW itself consists of a complex Ginibre matrixX , then Ef(W )Wg(W ) = 0,
while forX with a general distribution this expectation is independent of the first two moments ofX .

In other words, the underline renormalises the product f(W )Wg(W ) to second order. We remark

that underline (5.3) is a well-defined notation, if the ‘middle’W to which the renormalisation refers is

unambiguous. This is always be the case in all our proofs, since the functions f, g will be products of

resolvents, never involving explicitly monomials inW .

We note that

ẼW̃RW̃ = 2⟨RE2⟩E1 + 2⟨RE1⟩E2 =∑
σ

σ⟨REσ⟩Eσ = S[R]
and furthermore, that the directional derivative of the resolvent is given by

∂W̃G = −GW̃G.

For example, in the special case f(W ) = 1 and g(W ) = (W + Λ̂ −w)−1 = G, we thus have

WG =WG + S[G]G
by definition of the underline in (5.3).

Using this underline notation in combinationwith the identityG(W+Λ̂−w) = E+ and the defining
equation (2.20) forM , we have

G =M −MWG +MS[G −M]G =M −GWM +GS[G −M]M . (5.4)

Recall that ⟨GE−⟩ = 0 (see below (2.16)) which immediately yields that S[G] = ∑σ σ⟨GEσ⟩Eσ = ⟨G⟩.
Moreover, we have that S[M] = ⟨M⟩, as follows from (2.17)–(2.18), and hence S[⋅] effectively acts like
a trace onG andM , i.e.

S[G −M] = ⟨G −M⟩ . (5.5)

Now, similarly to [28], the key idea of the proof of Proposition 4.9 is using (5.4) for some Gj in a

chain G1A1⋯AkGk+1 and extending the renormalisation (5.3) to the whole product at the expense

of adding resolvent products of shorter length. This will be done for each of the four estimates from

Proposition 4.9 separately and presented in an underlined lemma in the beginning of each of the follow-
ing subsections. Afterwards, the renormalisation of the whole product will be handled by cumulant

expansion, exploiting that its expectation vanishes up to second order. While the proofs of the un-

derlined lemmas for Ψ
av/iso
1 are presented in detail, we defer the analogous arguments for Ψ

av/iso
2 to

Appendix E.

5.1. Proof of the first master inequality (4.26a). Letw ≡ w1 be a spectral parameter inD
(ǫ0,κ0)
ℓ+1 (in

particular in the bulk of the scDos, recall (4.21)) andA ≡ A1 a (w,w)-regularmatrix (cf. Definition 4.2).

We use the notationw = e + iη and we assume without loss of generality (by conjugation withE−, see

(2.16)) that 1 ≥ η > 0. We also assume that (4.25) holds (in this subsection we will need it only for Ψav
1

andΨav
2 ).

Lemma 5.2. (Representation as full underlined)

For any regular matrixA = Å we have that

⟨(G −M)Å⟩ = −⟨WGÅ
′⟩ +O≺(Eav1 ) (5.6)

for some other regular matrix A′ = Å′, which linearly depends on A (see (5.21) for the precise formula for
A′). For the error term in (5.6), we used the shorthand notation

E
av
1 ∶= 1

Nη1/2
(1 + ψav

1

Nη
) . (5.7)
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Having this approximate representation of ⟨(G−M)Å⟩ as a full underlined term at hand, we turn

to the proof of (4.26a) via a (minimalistic) cumulant expansion.

Proof of (4.26a). Let p ∈N. Then, starting from (5.6), we obtain

E∣⟨(G −M)A⟩∣2p
= ∣−E⟨WGA

′⟩⟨(G −M)A⟩p−1⟨(G −M)∗A∗⟩p∣ +O≺((Eav1 )2p) (5.8)

≲E ∣∑σ σ⟨GEσGA
′EσGA⟩∣ + ∣∑σ σ⟨G∗EσGA

′EσG
∗A∗⟩∣

N2
∣⟨(G −M)A⟩∣2p−2

+ ∑
∣l∣+∑(J∪J∗)≥2

EΞ
av
1 (l, J, J∗)∣⟨(G −M)A⟩∣2p−1−∣J∪J∗ ∣ +O≺((Eav1 )2p) ,

where Ξav
1 (l, J, J∗) is defined as
Ξ

av
1 ∶= N−(∣l∣+∑(J∪J∗)+3)/2∑

ab

Rab∣∂l(GA′)ba∣∏
j∈J

∣∂j⟨GA⟩∣ ∏
j∈J∗

∣∂j⟨G∗A∗⟩∣ (5.9)

and the summation in the last line of (5.8) is taken over tuples l ∈ Z2
≥0 and multisets of tuples J,J∗ ⊂

Z
2
≥0 ∖ {(0,0)}. Moreover, we set ∂(l1,l2) ∶= ∂l1

ab∂
l2
ba, ∣(l1, l2)∣ = l1 + l2,∑J = ∑j∈J ∣j ∣, and used the

shorthand notation

Rab ∶= 1(a ≤N,b ≥ N + 1 or b ≤ N,a ≥ N + 1)
for a rescaled cumulant. In the remainder of the proof, we need to analyze the rhs. of the inequality

derived in (5.8). We begin with the third line and study the terms involving Ξav
1 from (5.9) afterwards.

Before going into the proof, we note that, due to the cumulant expansion in (5.8), there are chains

of resolvents G and deterministic matrices A appearing, where some of the A’s are not necessarily
regular w.r.t. the spectral parameters of the surroundingG’s. The principal idea is to decompose such

A with the aid of Lemma 3.3 and carefully track the resulting errors. As a rule of thumb, potentially

small denominators resulting from resolvent identities or the integral representation in Lemma 5.1 are

balanced with the linear perturbative estimates from Lemma 3.3. See also Remark 5.3 below.

Gaussian contribution: third line of (5.8). In order to do so, we need to analyze in total four terms,

each of which carries a factor of

⟨GEσGA
′
EσGA⟩ or ⟨G∗EσGA

′
EσG

∗
A
∗⟩ , for σ = ± .

Since their treatment is very similar, we focus on the two exemplary terms

(i) ⟨GGA′GA⟩ and (ii) ⟨G∗GA′G∗A∗⟩ . (5.10)

In the analysis of the Gaussian contribution in Section 5.2, we will discuss the analogs of the other two

terms in more detail.

First term. For the first term in (5.10), we apply the integral representation from Lemma 5.1 toGG with

τ = + , J = Bℓκ0
, and η̃ = ℓ

ℓ + 1η ,
for which we recall thatw ∈D(ǫ0,κ0)

ℓ+1 , i.e. in particular η ≥ (ℓ+ 1)N−1+ǫ0 and hence η̃ ≥ ℓN−1+ǫ0 . In
particular, Γ ≡ Γτ

η̃(J) ⊂D(ǫ0,κ0)
ℓ . Now, we split the contour Γ in three parts,13 i.e.

Γ = Γ1 + Γ2 + Γ3 . (5.11)

As depicted in Figure 4, the first part of the contour consists of the entire horizontal part ofΓ. The sec-

ond part,Γ2 , covers the vertical components up to ∣Im z∣ ≤ N100 . Finally,Γ3 consists of the remaining

part with ∣Im z∣ >N100 .

Now, the contribution coming from Γ3 can be estimated with a trivial norm bound on G. For

z ∈ Γ2 , we use that 1
±
δ (z,w) = 0 for every w ∈ D

(ǫ0,κ0)
ℓ+1 (recall (2.23) and (4.22)) and hence every

13In the case of several w1, ..., wk, the second part might require a further decomposition: If the spectral parameters of the
resolvents which are not involved in such an integral representation have spectral parameters with imaginary parts of absolute value
greater than one, we need to split Γ2 according to ∣Imz∣ ≤ 1 and ∣Imz∣ > 1. While the former will be treated exactly as Γ2 here,
the latter shall be estimated by means of the η > 1-laws, which we discussed after Remark 4.6.
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2

3

D
(ǫ0,κ0)
ℓ+1

D
(ǫ0,κ0)
ℓ

Γw
i

iN100

Re z

Im z

Figure 4. The contourΓ is split into three parts (see (5.11)). In case ofmultiple spec-

tral parameters, the second part might require a further decomposition at the level

indicated by the dashed horizontal line (see Footnote 13). Depicted is the situation,

where the bulkBℓκ0
consists of two components.

matrix is (z,w)-regular. Hence, after splitting the contour integral and bounding each contribution as
just described, we find, with the aid of Lemma 4.3,

∣⟨GGA′GA⟩∣ ≺ (1 + ψav
2

Nη
) + ∫

Bℓκ0

∣⟨G(x + iη̃)A′G(e + iη)A⟩∣
(x − e)2 + η2 dx . (5.12)

Next, we decomposeA = Å = Åe+iη,e+iη andA′ = Å′ = ˚(A′)e+iη,e+iη according to Lemma 3.3 as

Å
e+iη,e+iη = Åe+iη,x+iη̃ +O(∣x − e∣ + η)E+ +O(∣x − e∣ + η)E− ,

˚(A′)e+iη,e+iη = ˚(A′)x+iη̃,e+iη, +O(∣x − e∣ + η)E+ +O(∣x − e∣ + η)E− .
Plugging this into (5.12), we obtain several terms contributing to the integral. By means of Lemma 4.3,

the leading term accounts for

∫
Bℓκ0

∣⟨G(x + iη̃) ˚(A′)x+iη̃,e+iηG(e + iη)Åe+iη,x+iη̃⟩∣
(x − e)2 + η2 dx ≺ 1

η
(1 + ψav

2

Nη
) .

The error terms can be dealt with by simple resolvent identities in combination with the usual single-

resolvent local law, Theorem 2.6, proving them to be bounded by η−1 . Indeed, for a generic B ∈
C

2N×2N , we consider the exemplary term

∫
Bℓκ0

∣⟨G(x + iη̃)E+G(e + iη)B⟩∣ ∣x − e∣ + η(x − e)2 + η2 dx

≲∫
Bℓκ0

∣⟨(G(x + iη̃) −G(e + iη))B⟩∣
(x − e)2 + η2 dx ≺ 1

η
.

Second term. The second term in (5.10) is much simpler than the first. After writing GG∗ = ImG/η, it
suffices to realise that, by means of Lemma 3.3,

A
′ = ˚(A′)e+iη,e−iη , ˚(A′)e−iη,e−iη = A′ +O(∣e∣)E− , and A

∗ = ˚(A∗)e−iη,e±iη
in order to bound

∣⟨G∗GA′G∗A∗⟩∣ ≺ 1

η
(1 + ψav

2

Nη
) + ∣e∣

η

∣⟨[G(−e + iη) −G(e − iη)]A∗E−⟩∣
∣e∣ + η ≺ 1

η
(1 + ψav

2

Nη
)

with the aid of Lemma 4.3, the chiral symmetry (2.16), a resolvent identity and Theorem 2.6.

This finishes the estimate for the Gaussian contribution from the third line of (5.8), for which we have

shown that

1

N2
∑
σ

(∣⟨GEσGA
′
EσGA⟩∣+ ∣⟨G∗EσGA

′
EσG

∗
A
∗⟩∣) ≺ 1

N2η
(1 + ψav

2

Nη
) . (5.13)
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We are now left with the terms from the last line (5.8) resulting from higher order cumulants.

Higher order cumulants and conclusion. The terms stemming fromhigher order cumulants are es-

timated in Section 5.5, the precise bound being given in (5.71a). Indeed, plugging (5.13) and (5.71a) into (5.8)

we obtain

E∣⟨(G −M)A⟩∣2p ≺ (Eav1 )2p
+

p

∑
m=1

[ 1

Nη1/2
(1 + ψiso

1 + (ψav
2 )1/2(Nη)1/2 + (ψiso

2 )1/8(Nη)1/8 )]
m (E ∣⟨(G −M)A⟩∣2p)1−m/2p

and get the appropriate estimate E ∣ . . . ∣2p using Young inequalities. Since p was arbitrary, it follows

that

Ψ
av
1 ≺ 1 + ψav

1

Nη
+ ψ

iso
1 + (ψav

2 )1/2(Nη)1/2 + (ψiso
2 )1/4(Nη)1/8 .

The bound given in Proposition 4.9 is an immediate consequence after a further trivial Young inequality.

�

Remark 5.3. Although the proof of the first master inequality (4.26a) is rather short, it already revels a
general strategy for dealing with a generic (not strictly) alternating chain

⋯GGAGAGE−AGE−GA⋯ (5.14)

of resolvents G and deterministic matrices A.

(i) Apply resolvent identites and the integral representation from Lemma 5.1 in order to reduce a product
of resolvents to a linear combination (discrete or continuous, respectively). For terms of the form
GE−G instead ofGG this additionally requires an application of the chiral symmetry (2.16).

(ii) In the resulting strictly alternating chain, decompose every deterministic A according to the regu-
larisation from Definition 4.2 w.r.t. the spectral parameters of its surrounding resolvents by using
Lemma 3.3.

(iii) Estimate the regular parts coming from this decomposition in terms ofΨ
av/iso
k ≺ ψav/iso

k . Carefully
track the resulting errors stemming from the other parts.

These steps shall be applied repeatedly until the entire chain (5.14) has been examined. The first two items in
the above list a purely mechanical. However, the third step is non-trivial and requires careful analysis on a
case-by-case basis.

We have already mentioned that, as a rule of thumb, potentially small denominators resulting from Step
(i) are balanced with the linear perturbative numerators from Step (ii).

It remains to give a proof of Lemma 5.2.

Proof of Lemma 5.2. Similarly as in (5.6), we suppress the indices ofG ≡ G1 ,M ≡M1 etc.

We start with the first identity in (5.4), such that, after defining the one-body stability operator

B ∶= 1 −MS[⋅]M
we find

B[G −M] = −MWG +MS[G −M](G −M)
and consequently, by inversion, multiplication by A = Å (in the sense of (4.8), see also (4.9)) and taking

a trace

⟨(G −M)A⟩ = −⟨WGX [A]M⟩ + ⟨S[G −M](G −M)X [A]M⟩ , (5.15)

where we introduced the linear operator

X [B] ∶= ((B∗)−1[B∗])∗ = (1 − S[M ⋅ M])−1[B] for B ∈C2N×2N
.

Then, it is important to note that the condition 1
+
δ ⟨ImMA⟩ = 0 (the first of the two imposed

via (4.9); recall the definition of the cutoff function 1
+
δ from (3.6) and (4.7)), is stable under the linear

operationA ↦X [A]M .
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Lemma 5.4. For a generic B ∈C2N×2N , we find

⟨X [B]MImM⟩ = ⟨BB−1[MImM]⟩ = i

2

⟨BImM⟩
⟨ImM⟩ +O(η) . (5.16)

Proof. Using (B.10), we compute

B
−1[MImM] = B−1[M2 −MM∗]

2i
= i

2

ImM

η + ⟨ImM⟩ +
1

2i

1 − ⟨MM∗⟩
1 − ⟨M2⟩ M

2
.

Now, by means of Lemma B.4 and Lemma B.5, we find that

∣1 − ⟨MM
∗⟩∣ = O(η) and ∣1 − ⟨M2⟩∣ ≳ 1 , respectively. �

Recall from (5.5) that S[G −M] = ⟨G −M⟩. Therefore, by means of the usual averaged local

law, Theorem 2.6, which in particular shows that ∣⟨WGB⟩∣ ≺ 1

Nη
for arbitrary ∥B∥ ≲ 1 (see also

Appendix C and [38]), we can write (5.15) as

⟨(G −M)A⟩ = − ⟨WG(X [A]M)○⟩ + ⟨G −M⟩⟨(G −M)(X [A]M)○⟩
− 1−δ c−(X [A]M)⟨WGE−⟩ +O≺(N−1) , (5.17)

where in the underlined term, we used that the E+ component of the regularisation of X [A]M is

negligible thanks to Lemma 5.4 and the regularity ofA, and we introduced the short hand notation

c−(X [A]M) ∶= ⟨MX [A]MME−⟩⟨ME−ME−⟩ .

Next, with the aid ofWG = I − Λ̂G +wG and using ⟨GE−⟩ = 0 from (5.5), we undo the underline

in the second to last term, such that we infer

⟨WGE−⟩ = −⟨GE−Λ̂⟩ = −⟨(G −M)E−Λ̂⟩ = −⟨(G −M)(E−Λ̂)○⟩ .
In the second equality, we used that ⟨ME−Λ̂⟩ = 0, which follows by a simple computation using the

explicit form ofM given in (2.17)–(2.18). For the last equality, we note that

(E−Λ̂)○ = E−Λ̂ − 1+δ ⟨ImME−Λ̂⟩⟨ImM⟩ E+ − 1−δ ⟨ME−Λ̂ME−⟩⟨ME−ME−⟩ E− = E−Λ̂ ,
which again follows after a simple computation using the fact that Λ̂ is off-diagonal together with (2.17)–

(2.18).

We can now write (5.17) for A = Å = (E−Λ̂)○ = E−Λ̂ and solve the resulting equation for ⟨(G −
M)E−Λ̂⟩. Plugging this back into (5.17) yields
⟨(G −M)A⟩ = − ⟨WG(X [A]M)○⟩ + ⟨G −M⟩⟨(G −M)(X [A]M)○⟩ +O≺(N−1)

+ 1
−
δ c−(X [A]M)

1 − 1−δ c−(X [E−Λ̂]M)[ − ⟨WG(X [E−Z]M)○⟩ (5.18)

+ ⟨G −M⟩⟨(G −M)(X [E−Z]M)○⟩ +O≺(N−1)] .
Since ∥X [Å]∥ ≲ 1 (see Lemma B.6), the only thing left to check is, that the denominator in (5.18) is

bounded away from zero.

Lemma 5.5. For small enough δ > 0, we have that
∣1 − 1−δ (w,w) c−(X [E−Λ̂]M)∣ ≳ 1 .

Proof. The statement is trivial for1−δ(w,w) = 0 andwe hence focus on the casewhereλ ∶= 1−δ (w,w) ∈(0,1]. First, we note thatX [E−Λ̂] = E−Λ̂, which follows from the explicit form ofM given in (2.17)–

(2.18) using the fact that Λ̂ is purely off-diagonal. Next, we use theMDE (2.20), the chiral symmetry (2.19),

and Lemma B.4 (a) to infer

1 − c−(X [E−Λ̂]M) = 1 − ⟨ME−Λ̂MME−⟩⟨ME−ME−⟩ = 1

2
[1 − w +m

m
⟨M2⟩] .
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Now, specialising tow = iη with sufficiently small η, we find that, to leading order,

Re [1 − η + Imm

Imm
⟨M2⟩] ∼ Re [1 − ⟨M2⟩] = 1 − ⟨MM

∗⟩ + 2⟨(ImM)2⟩ ≥ 2⟨ImM⟩2 ≳ 1 (5.19)

by direct computation. Using Lipschitz continuity of this expression in w, this principal lower bound

onRe [1 − c−(X [E−Λ̂]M)] of order one persists after a small perturbation ofw allowing for a non-

zero real part, but as long as λ = 1−δ (w,w) > 0 for some δ > 0 small enough. Hence, we conclude the

lower bound

∣1 − λc−(X [E−Λ̂]M)∣ ≥ (1 − λ)1 + λRe [1 − c−(X [E−Λ̂]M)] ≳ 1 (5.20)

for the convex combination, by separately considering smaller and larger values of λ ∈ (0,1]. �

From the expansion (5.18) it is apparent, that the main terms for understanding the size of ⟨(G −
M)A⟩ are the underlined ones, the rest carrying additional ⟨G −M⟩-factors, hence they will become

negligible errors. In fact, summarizing our investigations, we have shown that

⟨(G −M)Å⟩ = −⟨WGÅ
′⟩ +O≺(Eav1 ) ,

where we used the shorthand notation

Å
′ ∶= (X [Å]M)○ + 1

−
δ c−(X [Å]M)

1 − 1−δ c−(X [E−Λ̂]M)(X [E−Λ̂]M)
○

(5.21)

in the underlined term. Using the usual averaged local law (4.17) and (4.25), we collected all the error

terms from (5.18) in Eav1 , defined in (5.7). �

5.2. Proof of the second master inequality (4.26b). Let wj ∈ D(ǫ0,κ0)
ℓ+1 for j ∈ [2] be spectral pa-

rameters and A1 a regular matrix w.r.t. the pair of spectral parameters (w1,w2) (see Definition 4.2).

By conjugation withE−, we will assume w.l.o.g. that Imw1 > 0 and Imw2 < 0. Moreover, we use the

notations ej ≡ Rewj , ηj ∶= ∣Imwj ∣ for j ∈ [2] and define 1 ≥ η ∶=minj ∣Imwj ∣. We also assume that

(4.25) holds.

Lemma 5.6. (Representation as full underlined)

For ∥x∥, ∥y∥ ≤ 1 and any (w1,w2)-regular matrixA1 = Å1, we have that

(G1Å1G2 −M(w1, Å1,w2))
xy
= −(G1Å

′
1WG2)

xy
+O≺(E iso1 ) (5.22)

for some (w1,w2)-regular matrix A′1 = Å′1, which linearly depends on A1 = Å1 (see (5.54)). For the error
term in (5.22), we used the shorthand notation

E
iso
1 ∶= 1√

Nη2
(1 + ψav

1(Nη)1/2 + ψ
iso
1

Nη
) . (5.23)

Note that unlike in Section 5.1, now in (5.22) the second resolvent G2 was expanded instead of G1

rendering theW factor in the middle of the underlined term. This prevents the emergence of resolvent

chains in the proof of (4.26b), which are ‘too long’ to be handled within our hierarchical framework of

master inequalities (e.g., a chain involving four resolvents would appear in Ξ̃iso
1 defined below).

Having this approximate representation of (G1Å1G2 −M(w1, Å1,w2))
xy

as a full underlined

term at hand, we turn to the proof of (4.26b) via a (minimalistic) cumulant expansion.

Proof of (4.26b). Let p ∈ N. Then, starting from (5.22) and using the same notations as in the proof of

(4.26a), we obtain

E∣(G1Å1G2 −M(w1, Å1,w2))
xy
∣2p (5.24)

≲E Ξ̃
iso
1 ∣(G1Å1G2 −M(. . .))

xy
∣2p−2

+ ∑
∣l∣+∑(J∪J∗)≥2

EΞ
iso
1 (l, J, J∗)∣(G1Å1G2 −M(. . .))

xy
∣2p−1−∣J∪J∗ ∣ +O≺((E iso1 )2p) ,
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where

Ξ̃
iso
1 ∶=∑σ [∣(G1Å

′
1EσG1Å1G2)

xy
(G1EσG2)

xy
∣ + ∣(G1Å

′
1EσG2)

xy
(G1Å1G2EσG2)

xy
∣]

N

+ ∑σ [∣(G1Å
′
1EσG

∗
2(Å1)∗G∗1)xx

(G∗2EσG2)
yy
∣ + ∣(G1Å

′
1EσG

∗
1)xx

(G∗2(Å1)∗G∗1EσG2)
yy
∣]

N

and Ξiso
1 (l, J, J∗) is defined via
Ξ

iso
1 ∶= N−(∣l∣+∑(J∪J∗)+1)/2∑

ab

Rab∣∂l[(G1Å
′
1)xa(G2)

by
]∣ (5.25)

×∏
j∈J

∣∂j(G1Å1G2)
xy
∣ ∏
j∈J∗

∣∂j(G∗2(Å1)∗G∗2)yx
∣ .

In the remainder of the proof, we need to analyze the rhs. of the inequality derived in (5.24). Following

the general strategy outlined in Remark 5.3, we beginwith the second line and study the terms involving

Ξiso
1 from (5.25) afterwards.

Gaussian contribution: third line of (5.24). In order to do so, following Remark 5.3, we need to ana-

lyze in total eight terms, each of which carries one of the summands in the definition of Ξ̃iso
1 as a factor.

Since their treatment is very similar, we focus on the two exemplary terms

(i) (G1Å
′
1E−G1Å1G2)

xy
(G1E−G2)

xy
, (ii) (G1Å

′
1E−G

∗
1)xx

(G∗2(Å1)∗G1E−G2)
yy
. (5.26)

In the analysis of the Gaussian term in Section 5.1 we discussed analogs of the above terms with the

choice σ = +.
Term (i) in (5.26). For the first term, we decompose, similarly to Lemma 3.3,

(Å′1)1,2E− = ((Å′1)1,2E−)○1,1 +O(∣e1 + e2∣ + ∣η1 − η2∣)E+ +O(∣e1 + e2∣ + ∣η1 − η2∣)E− . (5.27)

Inserting this into the first term in (5.26) and using Lemma 4.3, we find

∣(G1Å
′
1E−G1Å1G2)

xy
∣ ≺ 1

η
(1 + ψiso

2√
Nη
) + (∣e1 + e2∣ + ∣η1 − η2∣)∑

σ

∣(G1EσG1Å1G2)
xy
∣ .
(5.28)

In the last term, we focus on σ = −, while σ = + can be dealt with by Lemma 5.1. In fact, using (2.16) and

a resolvent identity, we obtain

∣(G1E−G1Å1G2)
xy
∣ = ∣ 1

w1

([G(−w1) −G(w1)]Åw1,w2
1 G(w2))(E−x)y∣ ≺ 1

η2
(1 + ψiso

1√
Nη
) ,

where in the last step we used Lemma 4.3 and the trivial approximation

Å
−w1,w2
1 = Åw1,w2

1 +O(1)E+ +O(1)E− .
For the second factor in the first term in (5.26), we use (2.16) and employ the integral representation

from Lemma 5.1 with

τ = + , J = Bℓκ0
, and η̃ = ℓ

ℓ + 1η ,
for which we recall that wj ∈ D(ǫ0,κ0)

ℓ+1 , i.e. in particular η ≥ (ℓ + 1)N−1+ǫ0 and hence η̃ ≥ ℓN−1+ǫ0 .
After splitting the contour integral and estimating the contribution as described around (5.11), we find,

with the aid of Lemma 4.3 and absorbing logarithmic corrections into ‘≺’, that
∣(G1E−G2)

xy
∣ ≺ 1 + ∫

Bℓκ0

∣(G(x + iη̃))
x(E−y)

∣
∣(x − e1 − i(η1 − η̃)) (x + e2 − i(η2 − η̃))∣dx

≺ 1 + 1∣e1 + e2∣ + η1 + η2 (5.29)
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where in the last step we used the usual single resolvent local law from Theorem 2.6. Notice the key

cancellation of the ∣e1 + e2∣ factor in (5.28) and (5.29). Collecting all the estimates, we have shown that

∣(5.26) (i) ∣ ≺ 1

η2
(1 + ψiso

1√
Nη
+ ψiso

2√
Nη
) . (5.30)

Term (ii) in (5.26). In the first factor in the second term in (5.26), we again employ the decomposition (5.27)

to find

∣(G1Å
′
1E−G

∗
1)xx

∣ ≺ 1

η1/2
(1 + ψiso

1√
Nη
) + ∣e1 + e2∣ + ∣η1 − η2∣

η
(5.31)

with the aid of Theorem 2.6 and Lemma 4.3 as well as a resolvent identity and Lemma 5.1 for theE+ and

E− in (5.27), respectively.

In the second factor, similarly to (5.29) above, we use Lemma 5.1 together with the decomposition

(Åw1,w2
1 )∗ = ˚(A∗1)w̄2,w̄1 = ˚(A∗1)w̄2,w1 = ˚(A∗1)w̄2,x+iη̃ +∑

σ

Oσ(∣x − e1∣ + ∣η1 − η̃∣)Eσ

from Lemma 3.3 for arbitrary x to find

∣(G∗2(Å1)∗G1E−G2)
yy
∣ ≺ 1

η1/2
(1 + ψiso

1√
Nη
)

+ ∫
Bℓκ0

∣(G(w̄2) ˚(A∗1)w̄2,x+iη̃
G(x + iη̃))

y(E−y)
∣

∣(x − e1 − i(η1 − η̃)) (x + e2 − i(η2 − η̃))∣dx

+ ∫
Bℓκ0

∑σ ∣(G(w̄2)EσG(x + iη̃))
y(E−y)

∣
∣x + e2 − i(η2 − η̃)∣ dx (5.32)

≺ 1

η1/2
(1 + ψiso

1√
Nη
)(1 + 1

∣e1 + e2∣ + η1 + η2 ) +
1

η
.

Now, combining (5.31) and (5.32), we obtain

∣(5.26) (ii) ∣ ≺ 1

η2
(1 + ψiso

1√
Nη
)2 . (5.33)

This finishes the estimate for the Gaussian contribution from the third line of (5.24), for which we have

shown that

Ξ̃
iso
1 ≺ 1

Nη2
(1 + (ψiso

1 )2
Nη

+ ψiso
2√
Nη
) (5.34)

as easily follows by combining (5.30) with (5.33) and using a Schwarz inequality.

We are now left with the terms from the last line (5.24) resulting from higher order cumulants.

Higher order cumulants and conclusion. The estimate stemming from higher order cumulants is

given in (5.71b). Then, plugging (5.34) and (5.71b) into (5.24), we find, similarly to Section 5.1, that

Ψ
iso
1 ≺ 1 + ψiso

1

Nη
+ ψ

iso
1 +ψav

1(Nη)1/2 +
(ψiso

2 )1/2(Nη)1/4 +
(ψiso

2 )1/4(Nη)1/8 .
The bound given in Proposition 4.9 is an immediate consequence after a trivial Young inequality. �

It remains to give a proof of Lemma 5.6. This ismuchmore involved than for the previous underlined

Lemma 5.2. The proof of Lemma 5.2 crucially used that the orthogonality ⟨ImMA⟩ = 0 is (almost)

preserved under the operationA ↦ X [A]M (see Lemma 5.4). This is simply not available here, since

we deal with two spectral parametersw1,w2 .

Proof of Lemma 5.6. We denote A1 ≡ Å1 , except we wish to emphasise A1 being regular. Just as in

Section 5.1, we start with

G2 =M2 −M2WG2 +M2S[G2 −M2]G2 ,



34 EIGENVECTOR OVERLAPS FOR NON-HERMITIAN RANDOM MATRICES

such that we get

G1Ã1G2 = G1Ã1M2 −G1Ã1M2WG2 +G1Ã1M2S[G2 −M2]G2

for Ã1 = X12[A1] and A1 = Å1 (note that ∥X12[Å1]∥ ≲ 1 by Lemma B.6), where we introduced the

linear operator

X12[B] ∶= (1 − S[M1 ⋅ M2])−1[B] for B ∈C2N×2N
. (5.35)

Extending the underline to the whole product, we obtain

G1Ã1G2 =M1Ã1M2 + (G1 −M1)Ã1M2 −G1Ã1M2WG2

+G1Ã1M2S[G2 −M2]G2 +G1S[G1Ã1M2]G2 ,

from which we conclude that

G1(Ã1 − S[M1Ã1M2])G2 =M1Ã1M2 + (G1 −M1)Ã1M2 −G1Ã1M2WG2

+G1Ã1M2S[G2 −M2]G2 +G1S[(G1 −M1)Ã1M2]G2

and thus

G1A1G2 =M1X12[A1]M2 + (G1 −M1)X12[A1]M2 −G1X12[A1]M2WG2 (5.36)

+G1X12[A1]M2S[G2 −M2]G2 +G1S[(G1 −M1)X12[A1]M2]G2 .

We note that ∥X12[Å1]∥ ≲ 1 by means of Lemma B.6.

Then, we need to further decomposeX12[A1]M2 in the last three terms in (5.36) as

X12[A1]M2 = (X12[A1]M2)○ +∑
σ

1
σ
δ cσ(X12[A1]M2)Eσ , (5.37)

where we suppressed the spectral parameters (and the relative sign of their imaginary parts, which has

been fixed by Imw1 > 0 and Imw2 < 0) in the notation for the linear functionals cσ(⋅) on C
2N×2N

defined as

c+(B) ∶= ⟨M1BM2⟩⟨M1M2⟩ and c−(B) ∶= ⟨M1BM
∗
2E−⟩⟨M1E−M∗
2E−⟩ . (5.38)

Plugging (5.37) into (5.36) we findG1A1G2 to equal

M1X12[A1]M2 + (G1 −M1)X12[A1]M2 −G1(X12[A1]M2)○WG2 (5.39)

+G1(X12[A1]M2)○S[G2 −M2]G2 +G1S[(G1 −M1)(X12[A1]M2)○]G2

+∑
σ

1
σ
δ cσ(X12[A1]M2) [−G1EσWG2 +G1EσS[G2 −M2]G2 +G1S[(G1 −M1)Eσ]G2] .

Recall that the regular component is defined w.r.t. the pair of spectral parameters (w1,w2). In partic-

ular, (X12[A1]M2)○ = (X12[A1]M2)○1,2 in the last term in the second line of (5.39) is not regular as
defined via the conditions with one resolvent (4.9).

In the last line of (5.39) we now undo the underline and find the bracket [⋯] to equal (the negative
of)

G1EσWG2 +G1EσS[M2]G2 +G1S[M1Eσ]G2

=G1Eσ +G1(Eσ(w2 − Λ̂ + S[M2]) + S[M1Eσ])G2

=G1Eσ −G1(EσM
−1
2 − S[M1Eσ])G2 =∶ G1Eσ −G1ΦσG2 ,

where we usedWG2 = E+ + w2G2 − Λ̂G2 in the first step and the MDE (2.20) in the second step.

Moreover, we introduced the shorthand notation

Φσ ∶= Eσ
1

M2

− S[M1Eσ] . (5.40)

From the expansion (5.39) it is apparent (and it can also be checked by hand using the explicit form

of (5.40)) that

M1Eσ =M1(EσM
−1
2 )M2 =M1X12[Φσ]M2 =M(w1,Φσ ,w2) ,
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where in the last step we used (4.4). This finally yields thatG1A1G2 equals

M(w1,A1,w2) + (G1 −M1)X12[A1]M2 −G1(X12[A1]M2)○WG2 (5.41)

+G1(X12[A1]M2)○S[G2 −M2]G2 +G1S[(G1 −M1)(X12[A1]M2)○]G2

+∑
σ

1
σ
δ cσ(X12[A1]M2) [−(G1 −M1)Eσ + (G1ΦσG2 −M(w1,Φσ,w2))] .

The last term in the last line of (5.41) requires further decomposition of Φσ from (5.40) (completely

analogous to (5.37) and (5.38)) as

Φσ = Φ̊σ +∑
τ

1
τ
δ cτ(Φσ)Eτ .

Using the explicit form ofΦσ , we further observe that

cτ(Φσ) ∼ δσ,τ and cτ(X12[Φσ]M2) ∼ δσ,τ . (5.42)

Therefore, by means of the first relation in (5.42), the expansion (5.41) can be carried out further as

M(w1,A1,w2) + (G1 −M1)X12[A1]M2 −G1(X12[A1]M2)○WG2 (5.43)

+G1(X12[A1]M2)○S[G2 −M2]G2 +G1S[(G1 −M1)(X12[A1]M2)○]G2

+∑
σ

1
σ
δ cσ(X12[A1]M2) [ − (G1 −M1)Eσ + (G1Φ̊σG2 −M(w1, Φ̊σ,w2))

+ cσ(Φσ)(G1EσG2 −M(w1,Eσ,w2))] .
Next, we write (5.43) for both,A1 = Å1 = Φ̊+ andA1 = Å1 = Φ̊− , and solve the two resulting linear

equations for G1Φ̊±G2 −M(w1, Φ̊±,w2). Observe that by means of the second relation in (5.42) the

original system of linear equations boils down to two separate ones. Thus, plugging the solutions for

G1Φ̊±G2 −M(w1, Φ̊±,w2) back into (5.43) we arrive at
G1A1G2 =M(w1,A1,w2) + (G1 −M1)X12[A1]M2 −G1(X12[A1]M2)○WG2 (5.44)

+G1(X12[A1]M2)○S[G2 −M2]G2 +G1S[(G1 −M1)(X12[A1]M2)○]G2

+∑
σ

1
σ
δ cσ(X12[A1]M2)

1 − 1σ
δ cσ(X12[Φ̊σ]M2) [(G1 −M1)X12[Φ̊σ]M2 −G1(X12[Φ̊σ]M2)○WG2

+G1(X12[Φ̊σ]M2)○S[G2 −M2]G2 +G1S[(G1 −M1)(X12[Φ̊σ]M2)○]G2

− (G1 −M1)Eσ + cσ(Φσ)(G1EσG2 −M(w1,Eσ,w2))] .
We now need to check that the denominators in (5.44) are bounded away from zero.

Lemma 5.7. For small enough δ > 0, we have that
∣1 − 1σ

δ (w1,w2) cσ(X12[Φ̊σ]M2)∣ ≳ 1 for σ = ± .
Proof. The statements are trivial for 1σ

δ (w1,w2) = 0 and we hence focus on cases where λσ ∶=
1
σ
δ (w1,w2) ∈ (0,1]. First, we compute

1 − c+(X12[Φ̊+]M2) = ⟨M1⟩ ⟨M1M2M2⟩⟨M1M2⟩2 and (5.45)

1 − c−(X12[Φ̊−]M2) = ⟨M1E−M
∗
2M

−1
2 E−⟩ + ⟨M1⟩⟨M1E−M

∗
2E−⟩

1 + ⟨M1E−M2E−⟩
⟨M1E−M2M

∗
2E−⟩⟨M1E−M∗

2E−⟩2
for arbitrary spectral parametersw1,w2 . Recall that we assumed the two spectral parameters to be on

different halfplanes, i.e. s1 = − sgn(Imw1Imw2) = +, hence we shall specialise (i) the first expression
in (5.45) tow2 = w̄1 and (ii) the second expression in (5.45) tow2 = −w1 .
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In this case, for the first expression in (5.45), using Lemma B.4 and ImM1Imw1 > 0, we obtain
∣1 − c+(X12[Φ̊+]M2)∣ = ∣⟨M1⟩ ⟨ImM1M

∗
1 ⟩⟨ImM1⟩2 (⟨ImM1⟩ + Imw1)∣ ≥ ⟨ImM1⟩2 ≳ 1 (5.46)

in the bulk of the spectrum. This principal lower bound of order one persists after a small perturbation

of w2 around the special case w2 = w̄1, but as long as λ
+ = 1 (for some δ > 0 small enough), which

proves the claim for σ = + and λ+ = 1. A further direct computation by estimating real and imaginary

part of 1− c+(X12[Φ̊+]M2) instead of its absolute value in (5.46), similarly to (5.19) shows that also the

convex combination (1 − λ+)1 + λ+[1 − c+(X12[Φ̊+]M2)]
is bounded away from zero (in absolute value), by separately considering small and large values of λ+ ∈(0,1). For the second expression in (5.45), the argument is similar and hence omitted. �

Next, we take the scalar product of (5.44) with twodeterministic vectorsx,y satisfying ∥x∥, ∥y∥ ≤ 1.
In the resulting expression,there are two particular terms, namely the ones of the form

(G1S[(G1 −M1)Å1,2
1 ]G2)

xy
and (5.47)

cσ(X12[Å1,2
1 ]M2)cσ(Φσ)(G1EσG2 −M(w1,Eσ,w2))

xy
, (5.48)

whose direct (naive) estimates are 1/(Nη2) and 1/η, respectively, and thus do notmatch the target size.

Hence, they have to be discussed in more detail. In our notation, we emphasised that the regularisation

is defined w.r.t. the spectral parameters (w1,w2), i.e., in particular,A○1 = A○1,21 .

Estimating (5.47). For the term (5.47), we expand

(G1S[(G1 −M1)Å1,2
1 ]G2)

xy
=∑

σ

σ⟨(G1 −M1)Å1,2
1 Eσ⟩(G1EσG2)

xy
(5.49)

and observe that, by definition of ⋅○ in (4.8), we have, similarly to Lemma 3.3 (see also (5.27)),

Å
1,2
1 Eσ = (Å1,2

1 Eσ)○1,1 +O(∣e1 − σe2∣ + ∣η1 − η2∣)E+ +O(∣e1 − σe2∣ + ∣η1 − η2∣)E− . (5.50)

Now, in the second term in (5.49) for σ = + and Eσ = E+, we use a resolvent identity and the usual
isotropic local law (4.17) to estimate it as

∣(G1G2)
xy
∣ ≺ 1 + 1

∣e1 − e2∣ + η1 + η2 . (5.51)

Furthermore, in the second term in (5.1) for σ = − and Eσ = E−, we employ the integral represen-

tation from Lemma 5.1 in combination with the usual isotropic local law (4.17) (see also (5.29)) to infer

∣(G1E−G2)
xy
∣ ≺ 1 + 1

∣e1 + e2∣ + η1 + η2 . (5.52)

Combining (5.51) and (5.52) with the decomposition (5.50) and the usual averaged local law (4.17), we find

that (5.49) can be bounded by

∑
σ

(∣⟨(G1 −M1)(Å1,2
1 Eσ)○1,1⟩∣ + ∣e1 − σe2∣ + ∣η1 − η2∣

Nη1
)(1 + 1∣e1 − σe2∣ + η1 + η2 ) .

Using the definition of Ψav
1 in (4.15) and the apriori bound Ψav

1 ≺ ψav
1 , this immediately implies the

estimate

∣(5.47)∣ ≺ 1

Nη
+ 1√

Nη

ψav
1(Nη)1/2 . (5.53)

Estimating (5.48). For the term (5.48), we first note that the two prefactors cσ(X12[A○1,21 ]M2) and
cσ(Φσ) are bounded. However, in each of the two cases σ = ±, the bound on one of the prefactors
needs to be improved: In the first case, σ = +, we use (B.11) and compute

c+(Φ+) = ⟨M1⟩(1 − ⟨M1M2⟩)
⟨M1M2⟩ = O(∣e1 − e2∣ + η1 + η2)
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from (5.38) and (5.40). Combining this with the bound

∣(G1G2 −M(w1,E+,w2))
xy
∣ ≺ ( 1√

Nη1
+ 1√

Nη2
) ⋅ 1∣e1 − e2∣ + η1 + η2

which is obtained completely analogous to (5.51), we conclude that (5.48) for σ = + can be estimated by

1/√Nη (recall η ∶= min{η1, η2}). Similarly, in the second case, σ = −, we perform a computation

similar to the one leading to (5.16) and use (B.11) in order to obtain that c−(X12[Å1,2
1 ]M2) equals

i

2

⟨M1Å
1,2
1 M∗

2E−⟩⟨M1E−M∗
2E−⟩ +

1

2i

⟨M1Å
1,2
1 M2E−⟩⟨M1E−M∗

2E−⟩
1 + ⟨M1E−M

∗
2E−⟩

1 + ⟨M1E−M2E−⟩ = O(∣e1 + e2∣ + η1 + η2)
Combining this with the bound

∣(G1E−G2 −M(w1,E−,w2))
xy
∣ ≺ 1√

Nη
⋅ 1∣e1 + e2∣ + η1 + η2

which is obtained completely analogous to (5.52), we conclude that (5.48) can be estimated by 1/√Nη –
now in both cases σ = ±.
Conclusion. Summarizing our investigations, we have shown that

(G1Å1G2 −M(w1, Å1,w2))
xy
= −(G1Å

′
1WG2)

xy
+O≺(E iso1 ) ,

where we used the shorthand notation

Å
′
1 ∶= (X12[Å1]M2)○ +∑

σ

1
σ
δ cσ(X12[Å1]M2)

1 − 1σ
δ cσ(X12[Φ̊σ]M2)(X12[Φ̊σ]M2)○ (5.54)

in the underlined term. Combining (5.53) and the bound on (5.48) established above with the usual single

resolvent local laws (4.17) and the bounds on deterministic approximations in Lemma 4.3, we collected

all the error terms from (5.44) in (5.23). �

5.3. Proof of the third master inequality (4.26c). Letwj ∈D(ǫ0,κ0)
ℓ+1 for j ∈ [2] be spectral parame-

ters andA1 a regularmatrix w.r.t. (w1,w2) andA2 a regular matrixw.r.t. (w2,w1) (see Definition 4.2).
By conjugation withE−, we again assume w.l.o.g. that Imw1 > 0 and Imw2 < 0. Just as in Section 5.2,
we use the notations ej ≡ Rewj , ηj ∶= ∣Imwj ∣ for j ∈ [2] and define 1 ≥ η ∶= minj ∣Imwj ∣. We also

assume that (4.25) holds.

Lemma 5.8. (Representation as full underlined)

For any (w1,w2)-regular matrixA1 = Å1 and (w2,w1)-regular matrix A2 = Å2, we have that

⟨(G1Å1G2 −M(w1, Å1,w2))Å2⟩ = −⟨WG1Å1G2Å
′
2⟩ +O≺(Eav2 ) (5.55)

for some (w2,w1)-regular matrixA′2 = Å′2, which linearly depends on A2 = Å2 (analogously to (5.54), see
(E.18) for an explicit formula). For the error term in (5.55), we used the shorthand notation

E
av
2 ∶= 1

Nη
(1 + (ψav

1 )2
Nη

+ ψ
av
2

Nη
) . (5.56)

Note that similarly to Lemma 5.2 but contrary to Lemma 5.6, we again expanded the first resolvent

G1. Otherwise, the proof of Lemma 5.8, given in Appendix E, is very similar to the one of Lemma 5.6.

We only mention that the quadratic error (ψav
1 )2 stems from terms of the form

⟨S[G1Å
1,2
1 G2](G2 −M2)Å2,1

2 ⟩ ,
appearing in the analogue of (5.44) (see (E.9) in Appendix E). Having the approximate representation

(5.55), we turn to the proof of (4.26c) via cumulant expansion of the full underlined term.

Proof of (4.26c). Let p ∈N. Starting from (5.6), we obtain, as in the proofs of (4.26a) and (4.26b),

E∣⟨(G1Å1G2 −M(w1, Å1,w2))Å2⟩∣2p (5.57)

≲E Ξ̃
av
2 ∣⟨(G1Å1G2 −M(. . .))Å2⟩∣2p−2
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+ ∑
∣l∣+∑(J∪J∗)≥2

EΞ
av
2 (l, J, J∗)∣⟨(G1Å1G2 −M(. . .))Å2⟩∣2p−1−∣J∪J∗ ∣ +O≺((Eav2 )2p) ,

where

Ξ̃
av
2 ∶= 1

N2
∑
σ

∣⟨G1Å1G2Å2G1EσG1Å1G2Å
′
2Eσ⟩∣ +⋯

with the other terms being analogous, just 1 and 2 in the first half G1Å1G2Å2G1 of the chain inter-

changed or the entire half taken as adjoint, and Ξav
2 (l, J, J∗) is defined as

Ξ
av
2 ∶= N−(∣l∣+∑(J∪J∗)+3)/2∑

ab

Rab∣∂l(G1Å1G2Å
′
2)ba∣ (5.58)

×∏
j∈J

∣∂j⟨G1Å1G2Å2⟩∣ ∏
j∈J∗

∣∂j⟨G∗2Å∗2G∗1Å∗1⟩∣ .
As in Sections 5.1 and 5.2, in the remainder of the proof, we need to analyze the rhs. of (5.57). We begin

with the second line and study the terms involving Ξav
2 from (5.58) afterwards.

Gaussian contribution: second line of (5.57). Along the principal strategy outlined in Remark 5.3, we

need to analyze in total eight terms, each of which carries one of the summands in the definition of Ξ̃av
2

as a factor. Since their treatment is very similar, we focus on the exemplary term

⟨G1Å
w1,w2
1 G2Å

w2,w1
2 G1G1Å

w1,w2
1 G2(Å′2)w2,w1⟩ . (5.59)

Now, we representG1G1 via the integral representation from Lemma 5.1 with

τ = + , J = Bℓκ0
, and η̃ = ℓ

ℓ + 1η ,
for which we recall that w ∈ D(ǫ0,κ0)

ℓ+1 , i.e. in particular η ≥ (ℓ + 1)N−1+ǫ0 and hence η̃ ≥ ℓN−1+ǫ0 .
After splitting the contour integral and bounding the individual contributions as described in (5.11), we

obtain, with the aid of Lemma 4.3,

∣(5.59)∣ ≺ 1

η2
(1 + ψav

4

Nη
) + ∫

Bℓκ0

∣⟨G1Å
w1,w2
1 G2Å

w2,w1
2 G(x + iη̃)Åw1,w2

1 G2(Å′2)w2,w1⟩∣
(x − e1)2 + η21 dx .

Next, we decompose Åw2,w1
2 and Åw1,w2

1 in the integrand as

Å
w2,x+iη̃
2 = Åw2,w1

2 +∑
σ

Oσ(∣x − e1∣ + ∣η1 − η̃∣)Eσ

Å
x+iη̃,w2
1 = Åw1,w2

1 +∑
σ

Oσ(∣x − e1∣ + ∣η1 − η̃∣)Eσ .
(5.60)

While the properly regularised term contributes an η−2(1+ψav
4 /(Nη))-error, a typical cross term

shall be estimated as

∫
Bℓκ0

∣⟨G1Å
w1,w2
1 G2Å

w2,x+iη̃
2 [G(x + iη̃) −G2](Å′2)w2,w1⟩∣

(∣x − e1∣ + η1) (∣x − e2∣ + η2) ≺ 1

η2
(1 + ψiso

2√
Nη
) (5.61)

where in the second step we wrote out the averaged trace and estimated each summand in isotropic

form with the aid of Lemma 4.3, using ψiso
2 instead of ψav

3 .

Finally, for ‘error× error’-type terms are bounded by η−2 , simply by using a trivial Schwarz inequal-

ity in combination with a Ward identity and the usual local law from Theorem 2.6 to infer

∣⟨G1B1G2B2∣ ≤√⟨G1B1B∗1G
∗
1⟩⟨G2B2B∗2G

∗
2⟩ ≤ 1

η

√⟨ImG1B1B∗1 ⟩⟨ImG2B2B∗2 ⟩ ≺ 1

η
,

which is valid for arbitrary bounded matrices ∥B1∥, ∥B2∥ ≲ 1.
This finishes the estimate for the Gaussian contribution from the second line of (5.57), for which,

collecting the above estimates, we have shown that

Ξ̃
av
2 ≺ 1

N2η2
(1 + ψiso

2√
Nη
+ ψ

av
4

Nη
) . (5.62)

We are now left with the terms from the last line of (5.57) resulting from higher order cumulants.
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Higher order cumulants and conclusion. The estimate stemming from higher order cumulants is

given in (5.71c) in Section 5.5. Then, plugging (5.62) and (5.71c) into (5.57), we find, similarly to Section 5.1,

that

Ψ
av
2 ≺ 1 + (ψav

1 )2 + (ψiso
1 )2 +ψav

2

Nη
+ ψ

iso
2 + (ψav

4 )1/2(Nη)1/2 + (ψiso
2 )1/2(Nη)1/4 +

(ψiso
3 )3/8 + (ψiso

4 )3/8(Nη)3/16 .

The bound given in Proposition 4.9 is an immediate consequence after a trivial Young inequality. �

5.4. Proof of the fourthmaster inequality (4.26d) . Letwj ∈D(ǫ0,κ0)
ℓ+1 for j ∈ [3] be spectral parame-

ters andA1 a regularmatrix w.r.t. (w1,w2) andA2 a regular matrixw.r.t. (w2,w3) (see Definition 4.2).
By conjugation withE−, we will assume w.l.o.g. that Imw1 > 0, Imw2 < 0, and Imw3 > 0. As before,
we use the notations ej ≡ Rewj , ηj ∶= ∣Imwj ∣ for j ∈ [3] and define 1 ≥ η ∶= minj ∣Imwj ∣. We also

assume that (4.25) holds.

Lemma 5.9. (Representation as full underlined)

For ∥x∥, ∥y∥ ≤ 1 and any (w1,w2)-regular matrix A1 = Å1 and (w2,w3)-regular matrix A2 = Å2,
we have that

(G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3))
xy
= −(G1Å

′
1WG2Å2G3)

xy
+O≺(E iso2 ) (5.63)

for some other (w1,w2)-regular matrix A′1 = Å′1, which linearly depends on A1 = Å1 (analogously to
(5.54), see (E.33) for an explicit formula). For the error term in (5.63), we used the shorthand notation

E
iso
2 ∶= 1√

Nη3
(1 +ψiso

1 + ψ
av
1 ψiso

1

Nη
+ ψ

iso
2

Nη
) . (5.64)

Note that similarly to (5.22), we again expanded the second resolvent. The proof of Lemma 5.9, given

in Appendix E, is very similar to the one of Lemma 5.6. We only mention that the errors carrying

ψiso
1 ψav

1 and ψiso
1 stem from terms of the form

(G1S[(G1 −M1)A○1,21 ]G2Å2G3)
xy

and

cσ(X12[Å1]M2)cσ(Φσ)(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))
xy
,

respectively, appearing in the analogue of (5.44) (see (E.24) and (E.26) in Appendix E). Having the repre-

sentation (5.63) we turn to the proof of (4.26d) via cumulant expansion of the underlined term.

Proof of (4.26d). Let p ∈N. Then, starting from (5.63), we obtain

E∣(G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3))
xy
∣2p (5.65)

≲E Ξ̃
iso
2 ∣(G1Å1G2Å2G3 −M(. . .))

xy
∣2p−2 +O≺((E iso1 )2p)

+ ∑
∣l∣+∑(J∪J∗)≥2

EΞ
iso
2 (l, J, J∗)∣(G1Å1G2Å2G3 −M(. . .))

xy
∣2p−1−∣J∪J∗ ∣ ,

where

Ξ̃
iso
2 ∶=∑σ∑3

j=1 ∣(G1Å
′
1EσGjÅj . . . G3)

xy
(G1Å1 . . . Åj−1GjEσG2Å2G3)

xy
∣

N

+ ∑σ∑3
j=1 ∣(G1Å

′
1EσG

∗
j Å
∗
j−1 . . . Å

∗
1G
∗
1)xx

(G∗3 . . . Å∗jG∗jEσG2Å2G3)
yy
∣

N

and Ξiso
2 (l, J, J∗) is defined as
Ξ

iso
2 ∶= N−(∣l∣+∑(J∪J∗)+1)/2∑

ab

Rab∣∂l[(G1Å
′
1)xa(G2Å2G3)

by
]∣ (5.66)

×∏
j∈J

∣∂j(G1Å1G2Å2G3)
xy
∣ ∏
j∈J∗

∣∂j(G∗3Å∗2G∗2Å∗1G∗2)yx
∣ .

We need to analyze the rhs. of the inequality derived in (5.65). We begin with the second line.
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Gaussian contribution: second line of (5.65).FollowingRemark 5.3, we need to analyze in total twelve

terms, each of which carries one of the summands in the definition of Ξ̃iso
2 as a factor. Again, using

Lemma 3.3 for the A’s, we pick two exemplary terms

(G1Å
w1,w2
1 G2Å

w2,w3
2 G3E−G2Å

w2,w3
2 G3)

xy
(G1

˚(A′1)w1,w2
E−G3)

xy
(5.67)

(G1(Å′1)w1,w2G
∗
2(Å∗1)w̄2,w̄1G

∗
1)xx

(G∗3 ˚(A∗2)w̄3,w̄2

G
∗
2G2Å

w2,w3
2 G3)

yy
(5.68)

which shall be treated in more detail. The other terms are analogous and hence omitted.

The term (5.67). In the first factor, we use (2.16), Lemma 3.3, Lemma 4.3 and Lemma 5.1 with parameters

τ = + , J =B(ℓ+ 1
2
)κ0

, and η̃ = 2ℓ

2ℓ + 1η ,

(in order to have some flexibility before approaching the boundary of the domainD
(ǫ0,κ0)
ℓ ) to bound

it as

∣(G1Å
w1,w2
1 G2Å

w2,w3
2 G3E−G2Å

w2,w3
2 G3)

xy
∣ ≺ 1

η3/2
(1 + ψiso

3√
Nη
)

+ ∫
B
(ℓ+ 1

2
)κ0

∣(G1Å
w1,w2
1 G2Å

w2,w3
2 G(x + iη̃) ˚(E−A2)−w2,w3

G3)
xy
∣

(∣x − e3∣ + η3) (∣x + e2∣ + η2) dx .

Next, we decompose Åw2,w3
2 and ˚(E−A2)−w2,w3

according to the integration variable with the

aid of Lemma 3.3 (iii), analogously to (5.60). This leaves us with four terms, which shall be estimated

separately. While the fully regularised term gives

1

η3/2
(1 + ψiso

3√
Nη
)(1 + 1∣e2 + e3∣ + η2 + η3 ) ,

the cross terms can be estimated as

1

η2
(1 + ψiso

2√
Nη
) ,

analogously to (5.61). As an exemplary error term, we consider

∫
B
(ℓ+ 1

2
)κ0

∣(G1Å
w1,w2
1 G2E+G(x + iη̃)E−G3)

xy
∣dx (5.69)

and use Lemma 5.1 with new parameters

τ = − , J = Bℓκ0
, η̃ = ℓ

ℓ + 1η ,
to find, dropping the integration domains for ease of notation,

∣(5.69)∣ ≺ 1

η1/2
(1 + ψiso

1√
Nη
) + ∫ dx∫ dy

∣(G1Å
w1,w2
1 G(y − iη̃))

x(E−y)
∣

(∣y − e2∣ + η2) (∣y + x∣ + η) (∣y + e3∣ + η3)
≺ 1

η3/2
(1 + ψiso

1√
Nη
)(1 + 1∣e2 + e3∣ + η2 + η3 ) ,

where in the last step we used Lemma 3.3 for decomposing Åw1,w2
1 accordingly, and Lemma 4.3.

This finishes the bound on the first factor in (5.67). The second factor can easily be estimated as

∣(G1
˚(A′1)w1,w2

E−G3)
xy
∣ ≺ 1

η1/2
(1 + ψiso

1√
Nη
) + ∣e2 + e3∣ + η2 + η3

η

using (2.16), Lemma 3.3, and Lemma 4.3. Notice the cancellation of ∣e2 + e3∣ between the two factors.
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The term (5.68). For the first factor in (5.68), we realise that (Å′1)w1,w2 = (Å′1)w1,w̄2 , which without

approximation immediately yields that

∣(G1(Å′1)w1,w2G
∗
2(Å∗1)w̄2,w̄1G

∗
1)xx

∣ ≺ 1

η
(1 + ψiso

2√
Nη
)

with the aid of Lemma 4.3.

In the second factor, we apply a Ward identity to G∗2G2 and again use that the regularisation is

insensitive to complex conjugation in the second spectral parameter. In this way, and decomposing

Å
w2,w3
2 = Åw̄2,w3

2 +O(∣e2 − e3∣ + ∣η2 − η3∣)E+ +O(∣e2 + e3∣ + ∣η2 − η3∣)E−
by means of Lemma 3.3 (ii), we find that the second factor is stochastically dominated by

1

η2
(1 + ψiso

1 +ψiso
2√

Nη
) .

This finishes the estimate for the Gaussian contribution from the second line of (5.65), for which,

collecting the above estimates, we have shown that

Ξ̃
iso
2 ≺ 1

Nη3

⎡⎢⎢⎢⎢⎣(1 +
ψiso

3√
Nη
)(1 + ψiso

1√
Nη
) + (1 + ψiso

1 +ψiso
2√

Nη
)2⎤⎥⎥⎥⎥⎦ . (5.70)

We are now left with the terms from the last line of (5.65) resulting from higher order cumulants.

Higher order cumulants and conclusion. The estimate stemming from higher order cumulants is

given in (5.71d) in Section 5.5. Then, plugging (5.70) and (5.71d) into (5.65), we find, similarly to Section 5.1,

that

Ψ
iso
2 ≺ 1 + ψiso

1 + ψ
av
1 ψiso

1 + (ψiso
1 )2 +ψiso

2

Nη
+ ψ

iso
2 + (ψiso

1 ψiso
3 )1/2(Nη)1/2 + (ψiso

3 )3/8 + (ψiso
4 )3/8(Nη)3/16

The bound given in Proposition 4.9 is an immediate consequence after a trivial Young inequality. �

5.5. Contributions from higher order cumulants. The goal of the present section is to estimate the

terms originating from higher order cumulants in (5.8), (5.24), (5.57), and (5.65). In order to do so, we

assume that (4.25) holds.

Lemma 5.10. For any J,J∗ ⊂ Z2
≥0 ∖ {(0,0)}, l ∈ Z2

≥0 with ∣l∣ +∑(J ∪ J∗) ≥ 2 it holds that

(Ξav
1 )1/(1+∑(J∪J∗)) ≺ 1

Nη1/2
(1 + ψiso

1(Nη)1/2 + (ψ
iso
2 )1/4(Nη)1/8 ) , (5.71a)

(Ξiso
1 )1/(1+∑(J∪J∗)) ≺ 1√

Nη2
(1 + ψiso

1(Nη)1/2 +
(ψiso

2 )1/4(Nη)1/8 ) , (5.71b)

(Ξav
2 )1/(1+∑(J∪J∗)) ≺ 1

Nη
(1 + (ψiso

1 )2
Nη

+ ψiso
2(Nη)1/2 +

(ψiso
3 )3/8 + (ψiso

4 )3/8(Nη)3/16 ) , (5.71c)

(Ξiso
2 )1/(1+∑(J∪J∗)) ≺ 1√

Nη3
(1 + (ψiso

1 )2
Nη

+ ψiso
2(Nη)1/2 +

(ψiso
3 )3/8 + (ψiso

4 )3/8(Nη)3/16 ) . (5.71d)

For k = 1,2, l ∈ Z2
≥0 and a multiset J ⊂ Z

2
≥0 ∖ {(0,0) } we now define slightly (notationally)

simplified versions of Ξ
av/iso
k , namely

Ξ
av
k (l, J) ∶= N−(∣l∣+∑J+3)/2∑

ab

∣∂l((GA)k−1GA′)ba∣∏
j∈J

∣∂j ⟨(GA)k⟩∣ , (5.72)

Ξ
iso
k (l, J) ∶= N−(∣l∣+∑J+1)/2∑

ab

∣∂l[(GA)xa(G(AG)k−1)by]∣∏
j∈J

∣∂j((GA)kG)xy ∣ , (5.73)

where ∑J ∶= ∑j∈J ∣j ∣, ∣(j1, j2)∣ ∶= j1 + j2 and ∂(j1,j2) ∶= ∂j1
ab∂

j2
ba . Here, for notational simplicity,

we do not carry the dependence on the spectral parameters of the resolvents but assume that implicitly



42 EIGENVECTOR OVERLAPS FOR NON-HERMITIAN RANDOM MATRICES

each resolvent has its own spectral parameter and that each A is correctly regularised with respect to

its neighboring resolvents. In particular compared to (5.9), (5.25), (5.58), and (5.66), it is not necessary to

distinguish the sets J,J∗ .

Proof of Lemma 5.10. Throughout the proof, we denote φk ∶= ψiso
k /√Nη. The naive estimate for the

derivatives simply is

∣∂l((GA)k−1GA′)ba∣ ≺ η−(k−1)/2(1 + φk−1) ,
∣∂j ⟨(GA)k⟩∣ ≺ 1

Nηk/2
∑

k1+k2+⋯=k

∏
i

(1 + φki
) (5.74)

due to (4.10) and recalling (4.16). Using (5.74) in (5.72) we obtain

∣Ξav
1 ∣ ≺ (Nη1/2)−1−∣J ∣N(2−∣l∣−∑J)√

Nη (1 + φ1)∣J ∣ ,
∣Ξav

2 ∣ ≺ (Nη)−1−∣J ∣N(2−∣l∣−∑J)√
Nη (1 + φ1)(1 + φ2 + φ2

1)∣J ∣ ,
∣Ξiso

1 ∣ ≺ (√Nη)−1−∣J ∣η1+∣J ∣/2N(4−∣l∣+∣J ∣−∑J)/2(1 + φ1)∣J ∣ ,
∣Ξiso

2 ∣ ≺ (√Nη3/2)−1−∣J ∣η1+∣J ∣/2N(4−∣l∣+∣J ∣−∑ J)/2(1 + φ1)(1 + φ2 + φ2
1)∣J ∣ ,

(5.75)

and therefore have proved (5.71a) and (5.71c) in all cases except ∣l∣ +∑J = 2 and (5.71b) and (5.71d) in all

cases except ∣l∣ + ∑J − ∣J ∣ < 4. For the remaining cases we need a more refined estimate using the

followingWard lemma:

Lemma 5.11. Let x be any deterministic vector of bounded norm, let w1, . . . ,wk ∈ D(ǫ0,κ0)
ℓ+1 be spectral

parameters and A1, . . . ,Ak deterministic matrices of bounded norm. Then for Gi = G(wi) it holds that
1

N
∑
a

∣(G1Å
w1,w2
1 ⋯Åwk−1,wk

k−1 GkAk)xa∣ ≺ 1√
Nη

1

η(k−1)/2
(1 + φ1 +⋯+ φ2k)1/2 ,

which improves upon the term-wise bound by a factor of (Nη)−1/2 at the expense of replacing 1 + φk by
1 +√φ1 +⋯+ φ2k .

The proof of the aboveWard lemma is largely based on yet another more general estimate.

Lemma 5.12. Let x,y be normalised vectors, let w1, . . . ,wk+1 ∈ D(ǫ0,κ0)
ℓ+1 be spectral parameters and

A1, . . . ,Ak be deterministic matrices of bounded norm such that a of them are regular, i.e. Åwi,wi+1
i = Ai

for all i ∈ I for some I ⊂ [k] of cardinality a. Then withGi = G(wi) it holds that
∣(G1A1G2⋯AkGk+1)xy ∣ ≺ 1

ηk−a/2
(1 + φ1 +⋯+ φa) . (5.76)

We defer the proof of Lemma 5.12 to the end of this section.

Proof of Lemma 5.11. By Cauchy-Schwarz and the norm bound on the middleAk we have

( 1
N
∑
a

∣(G1Å
w1,w2
1 ⋯Åwk−1,wk

k−1 GkAk)xa∣)2

≲ 1

N
(G1Å

w1,w2
1 ⋯Åwk−1,wk

k−1 GkG
∗
kÅ

w̄k,w̄k−1
k−1 ⋯Åw̄2,w̄1)

1 G
∗
1)

xx

≺ 1

Nηk
(1 + φ1 +⋯+ φ2k)

due to Lemma 5.12 for 2k resolvents and a = 2k − 2 regularisedA-matrices. �

The rest of the proof is split into several cases.

Treatment of (5.71a) and (5.71c) for ∣l∣ + ∑J = 2: For the case ∣l∣ + ∑J = 2 we either have ∣l∣ ∈ {0,2 }
or ∑J = 1 = ∣J ∣. In the former case an off-diagonal resolvent is guaranteed to be present in the

first factor of (5.72) (by parity) and in the latter case the second factor consists of a single off-diagonal
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resolvent chain. In either case we may use Lemma 5.11 to gain a factor of 1/√Nη compared to (5.74)

and obtain

∣Ξav
1 ∣ ≺ (Nη1/2)−1−∣J ∣(1 + φ1)(∣J ∣−1)+(1 + φ1 + 1(∣J ∣ ≥ 1)φ1/2

2 ) ,
∣Ξav

2 ∣ ≺ (Nη)−1−∣J ∣(1 + φ2
1 + φ2)(∣J ∣−1)+(1 + φ3

1 + φ3/2
2 + 1(∣J ∣ ≥ 1)(φ3 + φ4)3/4) , (5.77)

where we used the fact that for ∣J ∣ = 0 only a single factor of (1 + φ1) needs to be replaced by a

factor of (1 + (φ1 + φ2)1/2) for Ξav
2 and no factor needs to be replaced for Ξav

1 . Moreover, we used

φ1(φ3 + φ4)1/2 + φ2
1φ

1/2
2 ≲ φ3

1 + φ3/2
2 + (φ3 + φ4)3/4 by a simple Young inequality. Now (5.77)

implies (5.71a) and (5.71c) by another simple Young inequality.

Treatment of (5.71b) and (5.71d) for ∣l∣+∑J − ∣J ∣ ∈ {2,3 }: In this case we can simply use Lemma 5.11 for

the two resolvent chains in the first factor of (5.73) involving x,y to gain a factor of (Nη)−1 compared

to (5.74) at the expense of replacing 1 + φ1 by 1 + φ1/2
1 + φ1/2

2 in case of Ξiso
2 which proves (5.71b) and

(5.71d) in this case.

Treatment of (5.71b) and (5.71d) for ∣l∣+∑J − ∣J ∣ = 0: In this case we necessarily have ∣l∣ = 0 and ∣J ∣ ≥ 2
and ∣j ∣ = 1 for all j ∈ J . In particular all factors of (5.73) consist of two resolvent chains evaluated in(x, a), (y, b) or (x, b), (y, a), respectively. This allows to use Lemma 5.11 four times (twice for the

a- and twice for the b-summation) to gain a factor of (Nη)−2 compared to (5.74) at the expense of

replacing

one factor of (1 + φ1) by (1 + (φ1 + φ2)1/2)
in case of Ξiso

1 and

one factor of (1+φ1)(1+φ2
1 +φ2) by (1+ (φ1 +φ2)1/2)(1+φ1 +φ2 + (φ3 +φ4)1/2) (5.78)

in case of Ξiso
2 . This concludes the proof in case of Ξiso

1 and together with

(1 + (φ1 + φ2)1/2)(1 + φ1 + φ2 + (φ3 + φ4)1/2) ≲ 1 + (φ1 + φ2)3/2 + (φ3 + φ4)3/4
also in case of Ξiso

2 .

Treatment of (5.71b) and (5.71d) for ∣l∣ +∑J − ∣J ∣ = 1: In this case we necessarily have ∣J ∣ ≥ 1 and either∣l∣ = 0 or ∣j ∣ = 1 for all j ∈ J . In either case we can use Lemma 5.11 twice for the first factor and

once for some other factor in (5.73) to gain a factor of (Nη)−3/2 compared to (5.74) at the expense of

replacing (5.78) in case of Ξiso
1 and

one factor of (1+φ1)(1+φ2
1+φ2) by (1+(φ1+φ2)1/2)((1+φ1)(1+φ1+φ2)1/2+(φ3+φ4)1/2)

in case of Ξiso
2 . Together with

(1 + (φ1 + φ2)1/2)((1 + φ1)(1 + φ1 + φ2)1/2 + (φ3 + φ4)1/2) ≲ 1 + (φ3 + φ4)3/4 + φ3/2
2 + φ2

1

this concludes the proof also in this case. �

It remains to give the proof of Lemma 5.12.

Proof of Lemma 5.12. The proof is via induction, i.e. we assume that (5.76) has been established for re-

solvent chains of up to k resolvents. For k + 1 resolvents and a = k, i.e. in case when all deterministic

matrices are regular, the claim follow by definition of ψiso
k . Therefore we may assume that some Aj

is not regular which we decompose into its regular component Å
wj ,wj+1

j and a linear combination of

E±. By linearity it thus suffices to check (5.76) for the casesAj = E±, and moreover, by chiral symmetry

GjE−Gj+1 = −E−G(−wj)E+Gj+1 and Åwj−1,wjE− = Åwj−1,−wj (recall Lemma 3.3) the estimate

forE− follows from the estimate forE+ upon replacingwj by −wj . Therefore it suffices to check (5.76)

in caseAj = E+.
If sj = − sgn(ImwjImwj+1) = +, i.e. the adjacent spectral parameters lie in opposite half-planes,

then we use the resolvent identity to write

Aj−1GjE+Gj+1Aj+1Gj+2 = Aj−1
Gj −Gj+1

wj −wj+1
Aj+1Gj+2 .
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We discuss each of the two resulting summands separately. For the summand involvingGj+1 , ifAj−1

was not counted as regularised, i.e. j−1 /∈ I , then the claim follows by induction and the trivial estimate∣wj − wj+1 ∣ ≥ η since k has been reduced by one, while a has been preserved. On the other hand, if

Aj−1 was correctly regularised, then we use Lemma 3.3 to write

Å
wj−1,wj

j−1 = Åwj−1,w̄j

j−1 = Åwj−1,wj+1

j−1 +O(∣w̄j −wj+1 ∣)E+ +O(∣w̄j −wj+1∣)E− . (5.79)

Inserting (5.79) intoAj−1Gj+1Aj+1Gj+2/(wj−wj+1) the claimed bound follows from induction since

for the Å
wj−1,wj+1

j−1 -term a has been preserved and k has been reduced by one compensating for ∣wj −
wj+1∣ ≥ η, while for E± both k, a have been reduced by one and ∣w̄j − wj+1∣/∣wj −wj+1 ∣ ≤ 1. Next,
for the summand involvingGj , the argument is completely analogous, apart from the two error terms

in

Å
wj ,wj+1

j+1 = Åwj ,wj+2

j+1 +O(∣wj − w̄j+1∣ + ∣wj − sj+1wj+2 ∣)Esj+1 (5.80)

+O(∣wj − w̄j+1∣ + ∣wj + sj+1w̄j+2 ∣)E−sj+1 ,
appearing for anAj+1 = Åwj+1,wj+2

j+1 , which has been correctly regularised. Here, we applied Lemma 3.3

and denoted, as usual, sj+1 = − sgn(Imwj+1Imwj+2). Now, for the error terms, we assume that the

second summand in eachO(...) is non-zero (otherwise we are back to (5.79)) and argue by induction:

Indeed, using (2.16) and applying a resolvent identity, we find

∣wj − w̄j+1∣ + ∣wj − sj+1wj+2 ∣
wj −wj+1

GjEsj+1Gj+2 (5.81)

= ∣wj − w̄j+1 ∣ + ∣wj − sj+1wj+2∣(wj −wj+1) (wj − sj+1wj+2)sj+1(G(wj) −G(sj+1wj+2))Esj+1 ,

such that, in the resulting chain we have reduced k by two and a by one, and the prefactor in (5.81) is

bounded by 1/η. The argument for the second error in (5.80) is completely analogous, after realizing

that (∣wj − w̄j+1∣ + ∣wj + sj+1w̄j+2 ∣)/(∣wj −wj+1∣ ∣wj + sj+1wj+2 ∣) ≤ 1/η.
On the contrary, if sj = − sgn(ImwjImwj+1) = −, i.e. the adjacent spectral parameters lie the

same half-plane (without loss of generality the upper one), then we use the integral representation from

Lemma 5.1 to write

Aj−1GjE+Gj+1Aj+1 = 1

2πi
∫

Γ

Aj−1G(z)Aj+1(z −wj)(z −wj+1) dz , (5.82)

where Γ is an appropriately chosen contour. If j − 1, j + 1 /∈ I , i.e. bothAj−1,Aj+1 were not counted

as regularised, then the claim follows by induction and estimating the integral by η−1 (up to log factors)

since k has been reduced by one, and a has been preserved. On the other hand, if bothAj−1,Aj+1 were

counted as regularised, then we use Lemma 3.3 to write them as

Å
wj−1,wj

j−1 = Åwj−1,z

j−1 +O(∣wj − z∣)E+ +O(∣wj − z∣)E− ,
Å

wj+1,wj+2

j+1 = Åz,wj+2

j+1 +O(∣wj+1 − z∣)E+ + +O(∣wj+1 − z∣)E− . (5.83)

The resulting term with Å
wj−1,z

j−1 , Å
z,wj+2

j can be estimated by induction since k has been reduced by

one, a has been preserved and the integral may be estimated by η−1 . The other terms with either one

or twoE± can also be estimated by induction since the integral is at most logarithmically divergent, k

has been reduced by one and a by at most two. Finally, if in (5.82) one of Aj−1,Aj+1 were counted as

regularised, then we use the relevant expansion from (5.83), so that for the resulting term with Å, k has

been reduced by one, and a has been preserved, so that the η−1 estimate on the integral is affordable.

The other term with E± can also be estimated by induction with both a, k reduced by one, and the

integral being at most logarithmically divergent. This concludes the proof. �

6. Proof of the reduction inequalities, Lemma 4.10

During the proof of Lemma 4.10, we will heavily rely on the following integral representation for

the absolute value ∣G∣ of a resolvent (see also [28, Lemma 5.1]).
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Lemma 6.1. (Integral representation for the absolute value of a resolvent)

Let w = e + iη ∈C ∖R. Then the absolute value of the resolvent G(w) can be represented as
∣G(e + iη)∣ = 2

π
∫
∞

0
ImG(e + i√η2 + s2) ds√

η2 + s2 . (6.1)

Proof. This immediately follows from the functional calculus forH and the identity

1∣x − iη∣ = 1

iπ
∫
∞

0
( 1

x − i(η2 + s2)1/2 −
1

x + i(η2 + s2)1/2 )
ds√
η2 + s2 . �

Proof of Lemma 4.10. To keep the notation simpler within this proof we may often denote

Ai = Åi = Åwi,wi+1
i ,

i.e. sometimes we drop the spectral parameterswi = ei + iηi .
We start with the proof of (4.27), for which, similarly to [28, Lemma 3.6], we get

Ψ
av
4 ≲ Nη +N2

η
2 (⟨∣G1∣A1∣G2∣A∗1⟩⟨∣G2∣A2∣G3∣A∗2⟩⟨∣G3∣A3∣G4∣A∗3⟩⟨∣G4∣A4∣G1∣A∗4⟩)1/2 , (6.2)

by Lemma 4.3, spectral decomposition, and a Schwarz inequality. Next, we use (6.1) to write

⟨∣G1∣A1∣G2∣A∗1⟩ = 4

π2 ∬
∞

0
⟨ImG(w1,s)Åw1,w2

1 ImG(w2,t)(Åw1,w2
1 )∗⟩ dsdt√

η21 + s2
√
η22 + t2

,

(6.3)

where we defined wi,s ∶= ei + i
√
η2i + s2 . The very large s, t–regimes in (6.3) can be easily shown

to be negligible (e.g. see [28, Proof of Lemma 5.1]), i.e. even if not stated explicitly we assume that

the upper integration limit can be replaced by N100 . Additionally, we can restrict to the case when

η ∶= minj ∣Imwj ∣ ≤ 1, when this is not the case we use the local law in the regime η > 1 from

Theorems 4.4–4.5 (see [28, Proof of Lemma 5.1] for a detailed argument). We remark that this argument

is not circular since in the proof of the local law for η > 1 sketched below Remark 4.6 one does not use

the reduction inequalities in (4.27)–(4.28).

In order to estimate the rhs. of (6.3) we write ImG = 1

2i
(G − G∗) for both ImG to obtain four

terms with two resolvents; to keep the presentation concise we only present the estimate for one of

them. From now onwe only consider only the term ⟨∣G1∣A1∣G2∣A∗1⟩, the bound for all the other terms

in the last line of (6.2) is completely analogous and so omitted. In the following we will often use the

approximations from Lemma 3.3 (omitting the trivial ∧1 in the errors for notational simplicity):

Å
w1,w2 = Åw1,s,w2,t +O(∣√η21 + s2 − η1∣ + ∣√η22 + t2 − η2∣)E+

+O(∣√η21 + s2 − η1∣ + ∣√η22 + t2 − η2∣)E− ,
(Åw1,w2)∗ = (Å∗)w2,t,w1,s +O(∣e1 − e2∣ +√η21 + s2 +√η22 + t2)E+

+O(∣e1 + e2∣ +√η21 + s2 +√η22 + t2)E− .
(6.4)

We point out that when taking the adjoint of the first formula to arrive at the second we used that for

any w1,w2 it holds (Åw1,w2)∗ = (Å∗)w2,w1 , see Lemma 3.3. Recall that within this proof we always

assume that η ≤ 1. From now on for the error terms we will always use the bounds

∣√η21 + s2 − η1∣ ≲ s , √
η21 + s2 ≤ η1 + s , (6.5)
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and a similar bound with η1, s replacedwith η2, t. The first bound is not optimal for small η1 , but good

enough for our estimates. Then using (6.4) we write

∬
∞

0
⟨G(w1,s)Åw1,w2

1 G(w2,t)(Åw1,w2
1 )∗⟩ dsdt√

η21 + s2
√
η22 + t2

=∬ ∞

0
⟨G(w1,s)Åw1,s,w2,t

1 G(w2,t)(Å∗1)w2,t,w1,s⟩ dsdt√
η21 + s2

√
η22 + t2

+ ∑
σ∈{+,−}

∬
∞

0
⟨G(w1,s)EσG(w2,t)(Å∗1)w2,t,w1,s ⟩O(η1 + η2 + s + t) dsdt√

η21 + s2
√
η22 + t2

+ ∑
σ∈{+,−}

∬
∞

0
⟨G(w1,s)Åw1,s,w2,t

1 G(w2,t)Eσ⟩O(η1 + η2 + s + t) dsdt√
η21 + s2

√
η22 + t2

+ ∑
σ,τ∈{+,−}

∬
∞

0
⟨G(w1,s)EσG(w2,t)Eτ ⟩O(η21 + η22 + s2 + t2) dsdt√

η21 + s2
√
η22 + t2

+∬
∞

0
⟨G(w1,s)[∑

σ

Oσ(∣e1 − σe2∣)Eσ]G(w2,t)(Å∗1)w2,t,w1,s⟩ dsdt√
η21 + s2

√
η22 + t2

+∬
∞

0
⟨G(w1,s)Åw1,s,w2,t

1 G(w2,t)[O(∣e1 − e2∣)E+ +O(∣e1 + e2∣)E−]⟩ dsdt√
η21 + s2

√
η22 + t2

+∬
∞

0
⟨G(w1,s)[∑

σ

Oσ(∣e1 − σe2∣)Eσ]G(w2,t)[∑
τ

Oτ(∣e1 − τe2∣)Eτ ]⟩ dsdt√
η21 + s2

√
η22 + t2

.

(6.6)

We now estimate the terms in the rhs. of (6.6) one by one. In the following estimates we will always

omit logN-factors. We start withRRRRRRRRRRR∬
∞

0
⟨G(w1,s)Åw1,s,w2,s

1 G(w2,t)(Å∗1)w2,t,w1,s ⟩ dsdt√
η21 + s2

√
η22 + t2

RRRRRRRRRRR ≺ 1 +
ψav

2

Nη
,

which readily follows by the definition of Ψav
2 in (4.15) and from the assumptionΨav

2 ≺ ψav
2 . For the

third to the fifth line in (6.6) we use the boundRRRRRRRRRRR∬
∞

0
⟨G(w1,s)EσG(w2,t)B⟩O(η1 + η2 + s + t) dsdt√

η21 + s2
√
η22 + t2

RRRRRRRRRRR
≺∬ ∞

0

⎛
⎝

1√
η21 + s2

∧ 1√
η22 + t2

⎞
⎠[η1 + η2 + s + t]

dsdt√
η21 + s2

√
η22 + t2

≲ 1 ,
(6.7)

for any deterministic norm bounded matricesB and for σ ∈ {+,−}. For the fifth line of (6.6) we used
the bound (s2 + t2)∧ 1 ≤ (s+ t)∧ 1 (recall that ∧1 is omitted in the error terms in (6.6) for notational

simplicity). Note that here we used:

∣⟨G(w1,s)EσG(w2,t)B⟩∣ ≺ 1√
η21 + s2

∧ 1√
η22 + t2

, (6.8)

which holds uniformly in matrices with ∥B∥ ≲ 1. We point out that to obtain the bound (6.8) we used

spectral decomposition of the resolvents and that ⟨wi,Eσwj⟩ = δi,σj to bound

∣⟨G(w1,s)EσG(w2,t)B⟩∣ = ∣ 1

2N
∑
i

⟨wi,Bwσi⟩(λi −w1,s)(λi − σw2,t) ∣
≲ 1

N
∑
i

1∣λi −w1,s∣∣λi − σw2,t∣
≺ 1∣Imw1,s∣ ∨ ∣Imw2,t∣ ,

where in the last inequality we used the single resolvent local law.
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Finally, for the last three lines in (6.6) we use that for any norm bounded matrix B, by resolvent

identity, we have (recall thatE+ = I )
∣⟨G(w1,s)BG(w2,t)⟩∣ ≺ 1∣w1,s −w2,t∣ , ∣⟨G(w1,s)BG(w2,t)E−⟩∣ ≺ 1∣w1,s +w2,t∣ , (6.9)

which after the integration in (6.6) gives a bound of order one, as a consequence of

∣e1 ± e2∣∣w1,s ±w2,t ∣ ≲ 1 .
Note that here it is important that the error terms in (6.6) involving ∣e1 −e2∣ are always multiplied with

the matrixE+, while errors of order ∣e1 + e2∣ are in the direction ofE−.
Combining the computations in (6.6)–(6.9) we conclude that

∣⟨∣G1∣A1∣G2∣A∗1⟩∣ ≺ 1 + ψav
2

Nη
, (6.10)

which, after plugging it in the rhs. of (6.2), clearly implies (4.27) .

For (4.28) forΨiso
3 , we find

Ψ
iso
3 ≲

√
Nη +Nη2((G1A1∣G2∣A∗1G∗1)xx

(G∗4A∗3 ∣G3∣A3G4)
yy
⟨∣G2∣A2∣G3∣A∗2⟩)1/2 , (6.11)

again by Lemma 4.3, spectral decomposition, and a Schwarz inequality. Then, using again the integral

representation (6.1), we find that

(G1A1∣G2∣A∗1G∗1)xx
= 2

π
∫
∞

0
(G1A1ImG(w2,s)A∗1G∗1)xx

ds√
η22 + s2

,

recalling the notation w2,s = e2 + i√η22 + s2. The estimate for this term is fairly similar to the one in

(6.3), hence we present only the main differences and skip the details; actually the current case is easier

since we now have only one ∣G∣.
After splitting ImG = 1

2i
(G −G∗) and handling both terms separately, we can write, similarly to

(6.6) and using (6.4)–(6.5), the following approximation:

∫
∞

0
(G1A1G(w2,s)A∗1G∗1)xx

ds√
η22 + s2

= ∫ ∞

0
(G1Å

w1,w2,s

1 G(w2,s)(Å∗1)w2,s,w1G
∗
1)xx

ds√
η22 + s2

+ E .
(6.12)

Here E is an error coming from all the errors in (6.4). For the first term in the second line of (6.12) we

use the boundRRRRRRRRRRR∫
∞

0
(G1Å

w1,w2,s

1 G(w2,s)(Å∗1)w2,s,w1G
∗
1)xx

ds√
η22 + s2

RRRRRRRRRRR ≺
1

η
(1 + ψiso

2√
Nη
) , (6.13)

which follows by the definition of Ψiso
2 . For the error term we do not write the details, since once we

replace (6.8)–(6.9) with (hereB,B1,B2 are deterministic norm bounded matrices)

∣(G1B1G(w2,s)B2G
∗
1)xx

∣ ≤ (G1B1B
∗
1G

∗
1)1/2xx

(G1B
∗
2G(w2,s)G(w2,s)∗B2G

∗
1)1/2xx

≺ 1

η
√
η22 + s2

∣(G1EσG(w2,s)BG∗1)xx
∣ ≺ 1

η∣w1 −w2,s∣ ,
(6.14)

respectively, the estimate

∣E ∣ ≺ 1

η
(6.15)
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follows completely analogously. The estimates (6.14) follow by repeated applications of the resolvent

identity (after commutingEσ withG in case of the second formula), the trivial bound ∥G∥ ≤ 1/η and
the single resolvent local law. Combining, (6.13)–(6.15) we conclude

∣(G1A1∣G2∣A∗1G∗1)xx
∣ ≺ 1

η
(1 + ψiso

2√
Nη
) . (6.16)

The bound in (6.16), together with (6.10) to estimate the averaged term in (6.11), concludes the proof (4.28)

forΨiso
3 .

Analogously to (6.11), forΨiso
4 we find that

Ψ
iso
4 ≲

√
Nη +Nη5/2((G1A1∣G2∣A∗1G∗1)xx

(G∗5A∗4 ∣G4∣A4G5)
yy
⟨∣G2∣A2G3A3∣G4∣A∗3G∗3A∗2⟩)1/2

≲√Nη +N3/2
η
5/2((G1A1∣G2∣A∗1G∗1)xx

(G∗5A∗4 ∣G4∣A4G5)
yy
)1/2

× (⟨∣G2∣A2∣G3∣A∗2⟩⟨∣G3∣A3∣G4∣A∗3⟩⟨∣G4∣A∗3 ∣G3∣A3⟩⟨∣G3∣A∗2 ∣G2∣A2⟩)1/4
where in the last inequality we used spectral decomposition and a bound as in [28, Proof of Lemma 3.6]

to bound the trace with four G’s and four A’s in terms of a product of traces containing only two G’s

and twoA’s. Finally, using the bounds (6.10), (6.16), we conclude the proof of (4.28) forΨiso
4 as well. �

Appendix A. Motivating derivations of the regularisation

In this appendix, we shall motivate and derive the regularisation (3.2) introduced in Definition 3.1

by considering two basic examples. We also use these examples to present two different approaches

to guess the right regularisation. Before the details, we give an informal summary of these two model

calculations.

First, in Section A.1, we compute

E ∣⟨WG(iη)A⟩∣2, (A.1)

which is the leading contribution to ⟨(G−M)B⟩ in the single-resolvent local law, withA = X [B]M ,

see (5.15). We will show that, in order to be able to reduce its naive size 1/(Nη)2 to the target 1/(N2η),
we need that ⟨A,V±⟩ = 0, i.e. we need A ∈ C2N×2N to be orthogonal to two certain directions V± in

C
2N×2N . For simplicity, we chose the spectral parameterw = iη to be on the imaginary axis, assuming

that 0 ∈ Bκ for some κ > 0. In this case, both cutoff functions (4.7) in the actual definition of the

regularisation satisfy 1±δ (iη, iη) = 0 for η > 0 small enough. Hence, at least a posteriori, we really catch
both directions V± and not only one. This calculation is rather foundational and unambiguously reveals

two directions V±, for which we need that ⟨A,V±⟩ = 0, in order to reduce the naive size of (A.1).
Second, in Section A.2, we consider the averaged chain with two resolvents

⟨GΛ1(w1)A1G
Λ2(w2)A2⟩ , (A.2)

where the resolvents are even allowed to have generally different14 deformations,Λ1 andΛ2 . LetM1 ∶=
MΛ1(w1) andM2 ∶=MΛ2(w2). For simplicity, we will assume that the stability operators

Bm(∗)n(∗) ∶= 1 −M (∗)
m S[⋅]M (∗)

n , m,n ∈ [2] , (A.3)

for all constellations of adjoints, have at most one critical eigenvalue βm(∗)n(∗) which is not of order
one (with associated right and left eigenvectorsRm(∗)n(∗) and Lm(∗)n(∗) , respectively, cf. (B.16) later).

As we will show in Lemma B.5 (c), this is the case, e.g., if Λ ≡ Λ1 = Λ2 and Rew1,Rew2 ∈ BΛ
κ , and

actually remains true for other more general randommatrix models with a flat [2] self-energy operator
S[⋅]. Recall that S[⋅] is flat if

c⟨R⟩ ≤ S[R] ≤ C⟨R⟩ (A.4)

for some constants c,C > 0 and any positive semi-definite matrixR ≥ 0.
Again, the main question is what special propertyA1,A2 must have so that (A.2) be smaller than its

naive size of order 1/η obtained from a simple Schwarz inequality. Similarly to (A.1), we could directly

14All results in the current paper concern theΛ1 = Λ2 case; the generalisationΛ1 ≠ Λ2 is mentioned only to stress that our
method is also valid beyond the scope of the current paper.
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compute the second moment of the corresponding underline term (see Lemma 5.8), but for pedagogical

reason we present an alternative argument. Quite pragmatically, we start the usual proof via cumulant

expansion for a bound on (A.2) and find that certain deterministic terms are too big for generalA1,A2 .

We shall see that there exist twomatrices Ṽ± ∈C2N×2N (which turn out to be certain right eigenvectors

Rm(∗)n(∗) of (A.3), see (A.15) and (A.18) later), such that, if ⟨Ai, Ṽ±⟩ = 0, these critical terms are smaller.

This suggests a pragmatic ansatz of the form (3.2) on the regularisation. We will observe that, for the

situationΛ1 = Λ2 andw1 = w2 = iη, the expressions for Ṽ± in fact coincidewith those for V± obtained
in Section A.1. Notice that the imaginary part of the single-resolvent setup leading to (A.1) is a special

case of the two-resolvent setup (A.2) since

Im ⟨GB⟩ = ⟨(ImG)B⟩ = η⟨GBG∗E+⟩
for self-adjoint B. Hence the regularity of B tested against ImG(iη) is the same as the regularity of

B betweenG(iη) andG∗(iη) = G(−iη). This shows, at least in this special case, that the foundational
and the pragmatic approaches lead to the same regularisation. Similar conclusion about the equivalence

of both approaches holds in general.

Finally, in Section A.3, motivated by the previous tandem of foundational and pragmatic computa-

tions in Sections A.1 and A.2, respectively, we list generally valid (i.e. for arbitrary w1,w2 also away

from the imaginary axis) explicit formulas for the directions V± regularising (A.2) in case that Λ1 = Λ2 .

These explicit formulas are identical to those used in the regularisation introduced in Definition 3.1.

A.1. Variance calculation of (A.1). In the following, we simply writeG = G(iη) for ease of notation.
Then, using a cumulant expansion and neglecting cumulants of order at least three (or assuming that

X is Ginibre), one gets

E∣⟨WGA⟩∣2 = 1

N
∑
ab

RabE⟨∆ab
GA⟩∂ba⟨A∗G∗W ⟩

= 1

N
∑
ab

RabE⟨∆ab
GA⟩⟨GA∗G∗∆ba⟩ (A.5)

+ 1

N2
∑
abcd

RabRcdE⟨∆ab
G∆

dc
GA⟩⟨A∗G∗∆ba

G
∗
∆

cd⟩
= 1

N2
∑
σ

σE⟨EσGAEσA
∗
G
∗⟩ + 1

N2
∑
στ

στE⟨EσG
∗
EτGA⟩⟨EσGEτ(GA)∗⟩ .

The rescaled cumulant Rab ∶= Nκ(ab, ba) has been introduced below (5.9) and∆ab ∈ C2N×2N con-

tains only one non-zero entry at position (a, b), i.e. (∆ab)cd = δacδbd .
As we will show, the cumulant expansion (A.5) yields that (up to a constant)

E ∣⟨WGA⟩∣2 ≈ E ∣⟨ImGA⟩∣2
(Nη)2 + E ∣⟨ImGAE−⟩∣2

(Nη)2 +O ( 1

N2η
) . (A.6)

Indeed, the first summand in the last line of (A.5) is estimated by 1/(N2η), the target size, with the aid
of a trivial Schwarz inequality and a Ward identity using Theorem 2.6. By writing out the summation

in the last summand, we get in total four terms. Since their treatment is very similar, we focus on two

exemplary terms with σ = τ = + (analogous to σ = τ = −) and σ = −τ = − (analogous to σ = −τ = +).
For the former, we apply a Ward identity and find it to be given by

E ∣⟨ImGA⟩∣2
(Nη)2 , (A.7)

which, without any further information on A, using that ⟨GA⟩ ∼ 1 from Theorem 2.6, is too big,

compared to the targeted 1/(N2η)-size. However, this drastically improves if ⟨ImM,A⟩ = 0 (recall

that ImM is self adjoint): Since ⟨(G −M)A⟩ and ⟨WGA⟩ are roughly of the same size (see (5.15)), the

contribution (A.7) basically becomes a lower-order correction. We have thus identified the first of the

two directions V±, to whichA has to be orthogonal to in order to reduce the naive size of (A.1), namely

V+ = α+ ImM for some non-zero α+ ∈C . (A.8)
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The latter case, σ = −τ = −, is slightly more involved due to the asymmetry of the two factors in

the last summand in the last line of (A.5): For the first factor, again a Ward identity is sufficient. In the

second factor, we use (2.16) together with the integral representation [28, Eq. (3.14)]

G
∗
G
∗ = ∫

R

ImG(x + iη/2)
(x + iη/2)2 dx ,

similar to Lemma 5.1, in the approximate form G∗G∗ ∼ ImG/η. This follows (at least as an effective

upper bound) by replacing the Cauchy kernel in the integral

∣⟨G∗G∗E−A∗⟩∣ ≤ ∫
R

∣⟨ImG(x + iη/2)E−A∗⟩∣
x2 + (η/2)2 dx ∼

ImG(iη)
η

by a δ-distribution. Overall, this leaves us (roughly) with

E ∣⟨ImGAE−⟩∣2
(Nη)2 (A.9)

for the second case. Hence, arguing for (A.9) completely analogous as done for (A.7), we find the second

direction V−, to whichA has to be orthogonal to, in order to reduce the naive size of (A.1), namely

V− = α− ImME− for some non-zero α− ∈C . (A.10)

We point out that the first term in (A.6) would have worked in the exact same way also for spectral

parameters w = e + iη with e ≠ 0. However, the second direction V− would not have been visible in

this scenario, since the second term in (A.6) would have been replaced by (at least for an upper bound)

E ∣⟨ImG(e + iη)AE−⟩∣2
N2η (∣e∣ + η) + E ∣⟨ImG(e + iη)AE−⟩⟨ImG(−e + iη)E−A∗⟩∣

N2η (∣e∣ + η) .

A.2. General structural regularisation in (A.2). We begin with the general rather structural regular-
izing decomposition of a matrixA (recall (3.2)), which shall be conducted as (dropping the tilde, which

has been temporarily introduced below (A.3))

A
○ ≡ Å ∶= A − ⟨V+,A⟩U+ − ⟨V−,A⟩U− (A.11)

for some Uσ, Vσ ∈ C
2N×2N to be determined but subject to the conditions ⟨Vσ,Uτ ⟩ = δσ,τ and⟨Uσ,Uσ⟩ = 1. We point out, that the following calculations are largely insensitive to the form of the

self-energy operatorS[⋅] (but see Footnote 15) and hence the conclusions forUσ and Vσ derived in this

section are valid beyond our concrete model (up to the fact that, due to the chiral symmetry (2.16), the

regularisation involves a two-dimensional projection).

The goal of the present subsection is to show that V± must be chosen as certain right eigenvectors

Rm(∗)n(∗) of (A.3). This follows by expanding (A.2) and identifying several terms, whose size is too big

for general deterministic matrices. Now, these terms can be neutralised, if ⟨Ai,Rm(∗)n(∗)⟩ = 0 for

certain right eigenvectors. However, as already mentioned in Section 3, for the directions U± there are

a priori no further constraints or conditions (apart from orthogonality and normalisation). Hence, as it

turns out to be convenient for our proofs, we will choose thematricesUσ in such a way, that a resolvent

identity, i.e. the transformation of a product into a difference,

G
Λ1(w1)UσG

Λ2(w2) ≈ (GΛ1(w1) −GΛ2(σw2))Uσ ,

can be applied (here, the symbol ‘≈’ neglects lower order terms). Finally, the condition ⟨Vσ,Uτ ⟩ = δσ,τ
will guarantee that the regularisation is idempotent, i.e. (Å)○ = Å. Note that our general ansatz (A.11) is
restricted to the non-degenerate situation, where Uσ and Vσ are non-orthogonal, ⟨Vσ,Uσ⟩ ∼ 1. This
is guaranteed for our concrete model with deformations Λ1 = Λ2 (see Section A.3) but requires some

non-trivial arguments in more general cases.

Although the regularisation is inherently two-dimensional (at least for our model), we also define

Å
σ = A○σ ∶= A − ⟨Vσ,A⟩Uσ , σ ∈ {+,−} ,
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and refer toA○σ as theσ-regular component (orσ-regularisation) ofA and to ⟨Vσ,A⟩Uσ as itsσ-singular

component. Note that (A○+)○− = (A○−)○+ = Å, since ⟨Vσ,Uτ ⟩ = δσ,τ .
As usual, we use the common notation ηi ∶= ∣Imwi∣ for i ∈ [2] and abbreviate (see (3.8))

si ∶= − sgn(ImwiImwi+1) , i ∈ [2] , (A.12)

where the indices are understood cyclically modulo 2 (cf. Definition 4.2). This means that, in particular,

s1 = s2 due to the short length of the chain (A.2). In the following, we will drop the arguments by

writing, e.g.,M1 = MΛ1(w1) and G2 = GΛ2(w2). Moreover, we take A1 = Å1 and A2 = Å2 to be

regular, i.e. orthogonal to some yet to be specified V±.

Now, by means of

G1 =M1 −M1WG1 +M1S[G1 −M1]G1 ,

we immediately find

G1A1G2 =M1A1G2 −M1WG1A1G2 +M1S[G1 −M1]G1A1G2 ,

from which we conclude that

B12[G1A1G2] =M1A1M2 +M1A1(G2 −M2) −M1WG1A1G2

+M1S[G1 −M1]G1A1G2 +M1S[G1A1G2](G2 −M2) .
This implies

⟨(G1A1G2 −MA1
12 )A2⟩ = ⟨M1A1(G2 −M2)X21[A2]⟩ − ⟨M1WG1A1G2X21[A2]⟩

+ ⟨M1S[G1 −M1]G1A1G2X21[A2]⟩
+ ⟨M1S[G1A1G2](G2 −M2)X21[A2]⟩

where we defined

M
A1
12 ∶= B−112 [M1A1M2] =M1X12[A1]M2 =M(w1,A1,w2) (A.13)

(recall (4.4) and Definition 4.1) and used the shorthand notation

Xmn[B] = ((B∗nm)−1[B∗])∗ = (B−1m∗n∗)∗[B] , B ∈C2N×2N
.

The adjoint of Bnm is understood with respect to the standard (normalised) inner product ⟨S,T ⟩ ∶=⟨S∗T ⟩ for S,T ∈C2N×2N , which is given by

B
∗ ≡ B∗(w1,w2)[⋅] ∶= 1 − S[(M(w1))∗ ⋅ (M(w2))∗] . (A.14)

So far, the regularisation of A1 and A2 has been rather structural. To make it more concrete, we

must allow Vσ andUσ to be potentially different depending on which of theAi is regularised. In order

to do so, we also temporarily introduce the additional index i, referring to the consideredAi. That is,

we will write Vσ,i instead of Vσ .

The matrices Vsi,i (recall (A.12) for the definition of si) shall be determined by requiring that

∥MA1
12 ∥ = ∥M1X 12[A1]M2∥ ≲ ∥A1∥ for i = 1 and ∥X21[A2]∥ ≲ ∥A2∥ for i = 2 ,

meaning that the (adjoint of the) stability operator has a bounded inverse on regular observables (i.e. sub-

tracting the si-singular component amounts to removing the ‘bad direction’ of the stability operators

X12 andX12 , respectively). From this condition, we find the characterisation ofVs1,1 andVs2,2 , namely

Vs1,1 = R1∗2∗ = (R21)∗ and Vs2,2 = R2∗1∗ = (R12)∗ , (A.15)

up to a normalisation constant, which can be specified only after determiningUσ (recall that ⟨Vσ,Uτ ⟩ =
δσ,τ and ⟨Uσ,Uσ⟩ = 1). Recall from (A.3), that we denote byRm(∗)n(∗) andLm(∗)n(∗) the (normalised)

right and left eigenvectors ofBm(∗)n(∗) corresponding to the (potentially) critical eigenvalue βm(∗)n(∗) .
Indeed, in order to verify that (A.15) is the right choice for Vsi,i, we use the decomposition

Xmn = (B−1m∗n∗)∗ = 1

β̄m∗n∗
∣Lm∗n∗⟩ ⟨Rm∗n∗ ∣ +O(1) , (A.16)
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whereO(1) is a shorthand notation for a linear operatorE ∶C2N×2N
→C

2N×2N satisfying ∥E[B]∥ ≲∥B∥. This linear operator is represented by a contour integration of the form
1

2πi
∮ dz

z − B∗
m∗n∗

where the contour encircles all non-critical eigenvalues ofB∗m∗n∗ and remains at an order one distance

from the entire spectrum. Note that for general non-Hermitian operators the resolvent (z−B∗m∗n∗)−1
would not necessarily be bounded (independently ofN ) just because z iswell away from the eigenvalues.

However, the explicit form ofS (see (2.21)) implies15 thatB∗m∗n∗ = 1+T whereT is a rank-two operator.

For such operators elementary linear algebra shows that

∥ 1

z −B∗
m∗n∗

∥ ≲ [dist(z,Spec(B∗m∗n∗))]−2,
i.e. the non-Hermitian instability only affects a two-dimensional subspace.

Using (A.16) we find

X12[Ås1
1 ] = 1

β̄1∗2∗
(⟨R1∗2∗ ,A1⟩ − ⟨Vs1,1,A1⟩⟨R1∗2∗ ,Us1,1⟩)L1∗2∗ +O(1)[A1]

for the decomposition ofA1 and

X21[Ås2
2 ] = 1

β̄2∗1∗
(⟨R2∗1∗ ,A2⟩ − ⟨Vs2,2,A2⟩⟨R2∗1∗ ,Us2,2⟩)L2∗1∗ +O(1)[A2] ,

for the decomposition ofA2. This implies that for (⋯) to be vanishing for every Åsi
i , the matrix Vsi,i

has to be chosen according to (A.15) (recall ⟨Vσ,i,Uτ,i⟩ = δσ,τ ).16 Overall, subtracting the si-singular

component already accounts for removing the ‘bad direction’ of a involved stability operator and thus

– in particular – reduces the naive size of the deterministic approximation (A.13).

However, removing the si-singular component is not sufficient: Although ⟨Vsi,i,U−si ,i⟩ = 0 and

thus U−si,i is si-regular, we observe that

⟨G1U−s1,1G2U−s2,2⟩ (A.17)

still (potentially) has large fluctuations: In our concrete i.i.d. model, take z ≡ z1 = z2 (to be suppressed
from the notation) and w ≡ w1 = −w2 with e = Rew1 and η = Imw1 > 0 w.l.o.g., which implies that

s1 = s2 = + and Uσ = Eσ for σ = ± (see the discussion below (3.4)). In this situation, we use (2.16) and

thus (A.17) takes the form

⟨G(e + iη)E−G(−e − iη)E−⟩ = −⟨G(e + iη)G(e + iη)⟩ .
By construction of Vsi,i, the corresponding deterministic approximation (A.13) is bounded by one, but

this is dominated by the fluctuation of order 1/(Nη2) in the relevant small regime η ∼ N−1+ǫ . This

example shows again, what we have already established in Section A.1: For our concrete model, at least

close to the imaginary axis, the regularisation (3.2) is necessarily a two-dimensional operation.
For determining the other directions V−si,i, we note that the regularisation should be designed

in such a way, that it covers also the cases where one (or both) of the resolvents G1,G2 are taken

as an adjoint (see, e.g., (5.10) and (6.10)). Hence, requiring that the same arguments leading to (A.15)

should also be followed for (i) ⟨G1A1G
∗
2A2⟩ and (ii) ⟨G∗1A1G2A2⟩ (considering ⟨G∗1A1G

∗
2A2⟩would

again lead to a conclusion for Vsi,i as the relative sign of imaginary parts is preserved), we find that

V−s1,1 = (R2∗1)∗ and V−s2,2 = (R12∗)∗ in case (i), and V−s1,1 = (R21∗)∗ and V−s2,2 = (R1∗2)∗ in
case (ii). In general, the right eigenvectors for these two cases are not the same. However, as pointed

out in Footnote 16, there is a certain tolerance in choosing the V±. Therefore, within this tolerance and

15This is the only place in Section A.2 where the special form of S is currently used. For more generalS operator an appropriate
generalisation of the symmetrised (saturated) self-energy operator [2, Def. 4.5] to two different spectral parameters is needed, see [47,
Eq. (2.30)] in the commutative case.

16In case that Λ1 = Λ2 , by the lower bound (B.15), the choices in (A.15) not necessarily have to be made exact, but tolerate an
error of the order given in the rhs. of (B.15). Having such a tolerance might be important if one treats theΛ1 ≠ Λ2 case (contrary to
Λ1 = Λ2 as done in this paper) and still has to satisfy the constraints ⟨Vσ , Uτ ⟩ = δσ,τ and ⟨Uσ, Uσ⟩ = 1.
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in order to have a consistent and conceptually simple choice, we take V−s1,1 from case (i) and V−s2,2
from case (ii), i.e.

V−s1,1 = R1∗2 = (R2∗1)∗ and V−s2,2 = R2∗1 = (R1∗2)∗ . (A.18)

Here, in both situations the spectral parameter being the right neighbour of Ai receives a complex

conjugate. In comparison, if we took V−s1,1 from case (ii) and V−s2,2 from case (i), we would have

ended up with the alternative regularisation from Footnote 10, where the left neighbor of Ai received

a complex conjugate. Again, the relations in (A.18) are understood up to a normalizing constant, which

can be specified only after determining Uσ .

Now, it is very important to observe that, for our concretemodel withΛ1 = Λ2 andw1 = w2 = iη (in
particular, s1 = s2 = −), our choices forV± in (A.15) and (A.18) agreewith those in (A.8) and (A.10) obtained
from a variance calculation with only a single resolvent. This follows from the explicit formulas for the

critical right eigenvector given later in (B.16), Lemma B.4 (a), and (2.19)

A.3. Explicit formulas for our concrete model and Λ1 = Λ2. In this subsection, we will give ex-

plicit formulas forV± andU± for our concretemodelwith one fixeddeformationΛ. In fact, forΛ1 = Λ2 ,

the so far unspecified matricesUσ can be characterised by requiring that, jointly with the symmetry re-

lationE−G
z(−w)E− = −Gz(w), a resolvent identity can be applied toG2UσG1 . This yields, together

with the normalisation ⟨Uσ,Uσ⟩ = 1, that17
U+ = E+ and U− = E− .

The singular (or critical) eigenvectors of the stability operators characterizing Vsi,i can also be ex-

plicitly calculated. Using (A.15) and (A.18), we infer, bymeans of (B.16) and the normalisation/orthogonality

condition ⟨Vσ,i,Uτ,i⟩ = δσ,τ , that
Vs1,1 = M2Es1M1⟨M2Es1M1Es1⟩ , V−s1,1 = M∗

2E−s1M1⟨M∗
2E−s1M1E−s1⟩ ,

Vs2,2 = M1Es2M2⟨M1Es2M2Es2⟩ , V−s2,2 = M∗
1E−s2M2⟨M∗

1E−s2M2E−s2⟩ ,
(A.19)

matching the definition of the regularisation given in (4.8) and (3.7). The normalisation is obvious and

the orthogonality readily follows from (2.19) in combination with Lemma B.4.

Finally, we remark that in order to define the regularisation (3.7) and work with (A.15) and (A.18), it is

not necessary to have the explicit forms for Vσ,i at hand. Instead, the single instance of relevant explicit
formulas is the proof of Theorem 2.7, more precisely, the bound in Proposition 3.4, where one needs that

for ∣Imw1∣ ∼ N−1+ǫ , e.g., (R1∗1)∗ is close to ImM1 (up to a normalisation). But this is true beyond

our model, as easily follows after taking the imaginary part of the general matrix Dyson equation (see

[39])

− 1

M
= w −A + S[M] , Imw ⋅ ImM > 0

with self-adjointmatrix of expectations A = A∗ and (flat) self-energy operator S[⋅]. In fact, this yields
(1 −MS[⋅]M∗)(ImM) = (Imw)MM

∗
,

i.e. for ∣Imw∣ ≪ 1 very small, ImM is an approximate right eigenvector of the stability operator

1 −MS[⋅]M∗ corresponding to the critical eigenvalue (recall the discussion below (A.3)).

Appendix B. Properties of the MDE and the stability operator: Proof of Lemma 3.3

In the first part of this appendix, we derive several elementary properties of the MDE

− 1

M
= w − Λ̂ + S[M] , w ∈C ∖R , (B.1)

17Note that the assignment of ± is a priori not determined, but we chose it in that way. This is also reflected in (A.15) and (A.18).
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(recall (2.20)) and its unique solutionM (under the usual constraint ImM ⋅Imw > 0) where the operator
S was given in (2.21) and Λ̂ ∈ C2N×2N is from (2.2). Afterwards, in the second part, we turn to the

associated two-body stability operator

B ≡ B(w1,w2)[⋅] ∶= 1 −M(w1)S[⋅]M(w2) (B.2)

and its adjoint B∗ (see (A.14)). Moreover, we also explain the relation between the regularisation from

Definition 3.1 and the stability operator.

Finally, after proving and combining LemmasB.1 and B.4 with LemmaB.6 onM andB, respectively,

we will complete the proof of Lemma 3.3.

B.1. The Matrix Dyson Equation (B.1) and its solution. Existence and uniqueness of the solution

M =M(w) to (B.1) with ImM ⋅Imw > 0 has already been shown in [44]. By [2, Prop. 2.1], this solution
can also be represented as the Stieltjes transform of a compactly supported semi-definite matrix-valued

probability measure onR, which has the immediate consequence that ∥M(w)∥ ≤ ∣Imw∣−1 .
Lemma B.1. LetM be the unique solution to (B.1) and write its 2 × 2-block representation as

M = (M11 M12

M21 M22
) . (B.3)

Then we have the following:

(a) The average trace ⟨M⟩ coincides with the solution m of (2.4), ⟨M(w)⟩ = m(w), and the blocks
in (B.3) are given by (2.17)–(2.18). We haveM∗(w) =M(w̄).

(b) The solution has a continuous extension to the real line from the upper half plane, denoted by
M(e) ∶= limη↓0M(e + iη); the limit from the lower half plane is M∗(e). The self-consistent
density of states of the MDE, defined as ρ(e) = 1

π
⟨ImM(e)⟩, is identical to the free convolution

of µΛ̂ ⊞ µsc from (2.3). Both ρ and its Stieltjes transform m are Hölder continuous with a small
universal exponent c, i.e.

∣ρ(e1) − ρ(e2)∣ ≤ C ∣e1 − e2∣c, e1, e2 ∈R,
and ∣m(w1) −m(w2)∣ ≤ C′∣w1 −w2∣c, w1,w2 ∈C+, (B.4)

where C,C′ depend only on ∥Λ∥.
(c) We have the chiral symmetry

E−M(w) = −M(−w)E− . (B.5)

In particular, for purely imaginary spectral parameter, w = iImw, it holds that m = iImm as
well as M11 = iImM11 and M22 = iImM22. Moreover, the off-diagonal blocks of ImM are
vanishing on the imaginary axis.

(d) Fix κ > 0. For any spectral parameter in the κ-bulk, w ∈C ∖R with Rew ∈Bκ, we have

∥M(w)∥ ≤ C(κ, ∥Λ∥) (B.6)

for some constant depending only on κ and an upper bound on the norm ∥Λ∥. Moreover, ρ(e) is
real analytic onBκ with derivatives controlled uniformly

max{∣∂k
ρ(e)∣ ∶ e ∈Bκ} ≤ C(k,κ, ∥Λ∥) (B.7)

with a constant C(k,κ, ∥Λ∥) for any k ∈N.

Proof. For part (a), a direct computation shows thatM from (B.3) with the blocks given in (2.17)–(2.18)

indeed solves (B.1) if m is replaced with ⟨M⟩ in these formulas. The calculation uses the simple ob-

servation that ⟨M11⟩ = ⟨M22⟩ from (2.18), hence S[M] = ⟨M⟩. Furthermore, the MDE also implies

that ⟨M⟩ solves (2.4), but this equation has a unique solution by the theory of free convolutions with a
semicircular density, hencem = ⟨M⟩. FinallyM∗(w) = M(w̄) follows from m̄(w) = m(w̄). This
proves (a).

For part (b), since S[M] = ⟨M⟩, we observe thatM solves

− 1

M
= w − Λ̂ + ⟨M⟩ ,
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which is exactly the MDE for a deformed Wigner matrix model.18 The point is that the Hermitised

H from (2.15) does not satisfy the uniform lower bound in the flatness condition on the self-energy

operator, i.e. S[T ] ≥ c⟨T ⟩ does not hold in general. Nevertheless, for the purpose of computingM we

can replaceH with the deformedWignermodelW+Λ̂with self-energy givenS[T ] = ⟨T ⟩ andwhich is
flat. Thus we can use several results from the analysis of the MDE with flatness condition. The Hölder-

continuity of the scDos was proven in [2, Prop. 2.2], which easily extends to the Hölder-continuity of

its Stieltjes transform m, see e.g. [1, Lemma A.7]. In particular ⟨M(w)⟩ extends continuously to the

real line and thus the scDos ρ(e) ∶= 1

π
⟨ImM(e)⟩ = 1

π
Imm(e) is well defined. Since it has the same

Stieltjes transform as the free convolution (2.3) by part (a), we proved that the scDos defined via MDE is

the same as the free convolution (2.3).

The continuous extension ofM (and not only its trace) requires an additional argument. For any

open interval I ∈R define

∥M∥I ∶= sup{∥M(e + iη)∥ ∶ e ∈ I, η > 0} .
Suppose for some open I ∈R we have ∥M∥I <∞, then we have the Lipschitz continuity

∥M(w1) −M(w2)∥ ≤ ∥M∥2I ∣w1 −w2∣ , Rew1,Rew2 ∈ I
following from the resolvent identity applied toM(w) = (Λ̂ −w −m)−1 . ThusM(w) continuously
extends to any e ∈ I .

So the key question for the extension (and for many other results on the MDE) is the boundedness∥M∥I <∞. In the bulk spectrum, i.e. for any e ∈R with ρ(e) > 0, we can use the bound
∥M(w)∥ ≤ ∣Imm(w) + Imw∣−1

that is obtained by taking the imaginary part of (B.1), yielding

ImM = (Imw + ⟨ImM⟩)MM
∗
,

and using ∥MM∗∥ = ∥M∥2 and ∥ImM∥ ≤ ∥M∥. By the Hölder continuity (B.4) in small neighbor-

hood I of e (whose size depend on the lower bound on ρ(e)) we obtain ∥M∥I ≲ ρ(e)−2 <∞. ThusM

continuously extends to I with the same bound and it is locally Lipschitz continuous with a Lipschitz

constant of order ρ(e)−2. In the entire κ-bulk this extension is controlled by a constant depending

only on κ and ∥Λ∥ (via (B.4)). This proves (B.6).
Near the spectral edges we have only anN-independent upper bound for ∥M∥. Using the spectral

decomposition of Λ̂ with eigenvalues νi and normalised eigenvectors yi , i ∈ ±[N], we have
M(w) =∑

i

∣yi⟩⟨yi∣
νi −w −m(w) , thus ∥M(w)∥ ≤ 2N

mini ∣νi −w −m(w)∣ . (B.8)

On the other hand the imaginary part of (2.4) implies

Imm = 1

2N
∑
i

Imm + Imw∣νi −w −m∣2
thus

1

2N
∑
i

1∣νi −w −m∣2 =
Imm

Imm + Imw
≤ 1

so ∣νi −w −m∣ ≥ 1/√2N . From (B.8) this gives the uniform bound

∥M(w)∥ ≤ (2N)3/2, w ∈C ∖R,
which guarantees the continuous extension ofM to the real line with a uniform Lipschitz constant(2N)3/2 . As we have seen, in the bulk this regularity can be improved.19

For part (c), the symmetry ρ(e) = ρ(−e) immediately implies the symmetrym(w) = −m(−w) for
its Stieltjes transform. Then (B.5) is an immediate consequences of the formulas (2.17)–(2.18).

18That is, a matrixH =W + Λ̂, whereW is a Hermitian matrix with normalised i.i.d. (up to the symmetry) entries of variance
1/(2N).

19We remark that under some extra condition on Λ further improvements away from the bulk are possible for m but not for

M . For example, if the singular values νi ofΛ are 1/2-Hölder continuous in the sense that ∣νi − νj ∣ ≤ C0[∣i − j∣/N]1/2 , thenm
is also uniformly bounded and 1/3-Hölder continuous with a constant depending onC0 , see Section 11.4 of [1].
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Finally, for part (d), the bound (B.6) was already proven above. The real analyticity of ρ andm in the

bulk with the bounds on the derivative (B.7) follows from taking derivatives in (2.4) and using again the

lower bound on Imm. �

Finally, we prove some regularity property of the κ-bulk, see (2.23).

Lemma B.2. Let 0 < κ′ < κ be two small constants, then

dist(∂Bκ′ ,Bκ) ≥ c(κ − κ′) (B.9)

with some N-independent constant c = c(∥Λ∥) > 0. Moreover, Bκ is a finite union of disjoint compact
intervals; the number of these components depends only on κ and ∥Λ∥.
Proof. As in the proof of Lemma B.1, we interpret Bκ as the κ-bulk of the deformed Wigner matrix

W + Λ̂, i.e. a model with the flatness condition. The statement on the number of components directly

follows from the real analyticity of ρ and (B.7).

The same argument would also imply (B.9) with a constant c that depends on κ and an upper bound

on ∥Λ∥. To remove the κ-dependence, we need to use the detailed shape analysis for ρ from [4]. In

particular, the flatness condition and ∥M∥I < C(κ) for any interval I ⊂ Bκ (equivalent to [4, Eq. (4.16)])

implies that Assumption 4.5 in [4] holds. Therefore Theorem 7.2 in [4] applies to our case. This theorem

says that in the regime where ρ is small, it is approximately given by explicit 1/3-Hölder continuous

functions, moreover ρ itself is 1/3-Hölder continuous with Hölder constant depending only on the so-

called model parameters of the problem, which in our case is just an upper bound on Λ (note that [4]

was written for muchmore complicated self-energy operators to include theMDE analysis for random

matrices with correlated entries). Noticing the κ1/3 power in the definition of Bκ in (2.6), this means

that the boundaries of Bκ are Lipschitz continuous functions of κ when κ is small with a Lipschitz

constant depending only on an upper bound on ∥Λ∥. �

RemarkB.3. Note that the proof of the independence of c = c(∥Λ∥) ofκ required a muchmore sophisticated
analysis. However, for our main proof, c = c(κ, ∥Λ∥) > 0 in (B.9) is sufficient, note that (B.9) is only
used in choosing δ in (4.22) appropriately. More precisely, for fixed L = L(ǫ) and κ0 > 0, given the

family (ℓκ0)ℓ∈[L] of parameters for the domainsD(ǫ0,κ0)
ℓ , we would have that dist(∂B(ℓ−1)κ0

,Bℓκ0
) ≥

c(ℓκ0, ∥Λ∥)κ0 . Now, the cutoff parameter δ in (4.22) is chosen much smaller than c(ℓκ0, ∥Λ∥)κ0 for every
ℓ ≤ L(ǫ).
B.2. The stability operator (B.2) and its spectral properties. Throughout the entire paper, the two-

body stability operator (B.2) and its adjoint (A.14) play a crucial role. These operators depend on two (a

priori) different spectral parametersw1,w2 via the solutionsM1 =M(w1) andM2 =M(w2) of the
MDE (B.1). For these solutions, we have the following basic lemma.

Lemma B.4. Let w1,w2 ∈ C ∖R be two spectral parameters and M1 = M(w1),M2 = M(w2) the
corresponding solutions to (B.1).

(a) Then we have theM-Ward identity,

M1 −M2 = [(w1 −w2) + (⟨M1⟩ − ⟨M2⟩)]M2M1 . (B.10)

In particular,M1 andM2 commute and it holds that

(1 − ⟨MM
∗⟩) ⟨ImM⟩ = Imw ⟨MM

∗⟩ . (B.11)

(b) Fix κ > 0 and let Rew1,Rew2 ∈ Bκ . Then, for Imw1Imw2 > 0, we have the perturbative
estimate ∥M(w1) −M(w2)∥ = O(∣w1 −w2∣ ∧ 1) .

Proof. Part (a) is an immediate consequence of the MDE (B.1) using the fact that

M = (Λ̂ − (w +m))−1
is a resolvent of Λ̂. The special case (B.11) follows from (B.10) with w1 = w and w2 = w̄, and taking a

trace.



EIGENVECTOR OVERLAPS FOR NON-HERMITIAN RANDOM MATRICES 57

For part (b), we focus on the case of small imaginary parts for the spectral parameters (the comple-

mentary regime being trivial) and use thatM is analytic away from the real axis and differentiate (B.1)

w.r.t. w, such that we find

∂wM = 1

1 − ⟨M2⟩M2

by means of S[M2] = ⟨M2⟩ as follows from the explicit form ofM in (2.17)–(2.18). Next, using (B.11),

the denominator is lower bounded as

∣1 − ⟨M2⟩∣ = ∣(1 − ⟨MM
∗⟩) − 2i⟨MImM⟩∣ ≥ 2∣⟨(ImM)2⟩∣ ≥ 2⟨ImM⟩2 , (B.12)

which shows that ∥∂wM∥ ≲ 1 in the bulk. Now the claim follows from the fundamental theorem of

calculus together with the boundedness ofM , see (2.22). �

Armed with this information, we can now turn to the following lemma, collecting several basic

spectral properties stability operatorB. Its proof will be given at the end of this section.

Lemma B.5. Let w1,w2 ∈C ∖R andM1,M2 be the respective solutions of (B.1).

(a) The associated two-body stability operator

B = 1 −M1S[⋅]M2

has two non-trivial eigenvalues β± (the other (2N)2 − 2 are equal to one), given by
β± = 1 ∓ ⟨M1E±M2E±⟩ . (B.13)

The corresponding right- and left-eigenvectors

B[R±] = β±R± , B
∗[L∗±] = β̄±L∗± ,

take the explicit form

R± =M1E±M2 , L± = E± , (B.14)

up to a normalisation ensuring that ⟨L±,R±⟩ = 1.
(b) The eigenvalues (B.13) can be lower bounded as

∣β±∣ ≳ (∣Rew1 ∓Rew2∣ + ∣Imw1∣ + ∣Imw2∣) ∧ 1 . (B.15)

In particular, the inverse stability operator B−1 exists.
(c) Fix κ > 0 and denote s ∶= − sgn(Imw1 Imw2). Then, for Rew1,Rew2 ∈ Bκ, we have that∣β−s ∣ ≳ 1.
By the last item, given s ∶= − sgn(Imw1 Imw2), we will always refer to

(β ∶= 1 − s⟨M1EsM2Es⟩ , R ∶=M1EsM2 , L ∶= Es) (B.16)

as the critical eigentriple (and accordingly β as the critical eigenvalue etc.), consisting of the eigenvalue
and the corresponding right- and left-eigenvector. Moreover, the estimate (B.15) shows that, if we have

(recall (3.6))

1
±
δ(w1,w2) ∶= φδ(Rew1 ∓Rew2) φδ(Imw1) φδ(Imw2) = 0

for some δ > 0, then the inverse stability operator B−1 is bounded and none of the eigenvalues β± is

really critical. In the complementary regime, 1±δ (w1,w2) = 1, and Rew1,Rew2 ∈ Bκ, we shall now

explain the interplay between the critical eigentriple (B.16) and the regularisation (3.7).

Lemma B.6. Let w1,w2 ∈C∖R with Rew1,Rew2 ∈Bκ for some fixed κ > 0 and denote the relative
sign of imaginary parts by s ∶= − sgn(Imw1 Imw2). Moreover, letM1 =M(w1),M2 =M(w2) be the
respective solutions of (B.1) and A ∈C2N×2N a bounded deterministic matrix.

(a) If 1s

δ(w1,w2) = 1 for some δ > 0 small enough, the critical left- and right-eigenvectors (B.16) are
normalised as ⟨L,R⟩ ∼ 1. In particular, if 1±δ (w1,w2) = 1, the respective denominator in the

regularisation Åw1,w2 (see (3.7)) is bounded away from zero.
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(b) The operator X12 , acting as

X12[B] ∶= ((B∗12)−1[B∗])∗ = (1 − S[M1 ⋅M2])−1[B] , B ∈C2N×2N
,

where B12 ∶= 1−M1S[⋅]M2 , is well defined and bounded on the s-regular component Å
s (w.r.t. the

pair of spectral parameters (w1,w2)) of any bounded A. This means, for
Å

s ∶= A − 1s

δ(w1,w2) ⟨M1AM2Es⟩⟨M1EsM2Es⟩Es (B.17)

it holds that ∥X12[Ås]∥ ≲ 1.
In particular, combining Lemma B.4 (b) with Lemma B.6 (a), (2.19), and Lemma B.4 (a), we conclude

the perturbative statements from Lemma 3.3.

Proof of Lemma B.6. For part (a), similarly to the proof of Lemma B.5 (c) given below, we focus on the

extreme case w2 = sw̄1 , where the critical eigentriple is given by

(β = 1 − s⟨M(w1)EsM(sw̄1)Es⟩ , R =M(w1)EsM(sw̄1) , L = Es) . (B.18)

Now by means of the chiral symmetry (2.19), we readily obtain

⟨L,R⟩ = s⟨M1M
∗
1 ⟩ = s ⟨ImM1⟩

Imw1 + ⟨ImM1⟩ ∼ 1 ,
wherewe used (B.11) in the second step. This principal normalisation of order persists after small pertur-

bation ofw2 around the extreme case, but as long as 1s

δ(w1,w2) = 1. Our claim for the denominators

in the regularisation (3.7) follows immediately from the representation in (B.18).

For part (b), we first note that, by means of Lemma B.5, the statement is trivial for constellations of

spectral parametersw1,w2 satisfying 1s

δ(w1,w2) = 0 and we can hence focus on the complementary

extreme case 1s

δ(w1,w2) = 1. Then it follows from the explicit form

X12[B] = B +∑
σ

σ
⟨M1BM2Eσ⟩

1 − σ⟨M1EσM2Eσ⟩Eσ

and Lemma B.5 that

X12[B] = s 1
β
⟨M1BM2Es⟩Es +O(1)[B] , (B.19)

whereO(1) is a shorthand notation for a linear operatorE ∶C2N×2N
→C

2N×2N satisfying ∥E[B]∥ ≲∥B∥. Now, plugging Ås from (B.17) into (B.19) yields the desired. �

It remains to give the proof of Lemma B.5.

Proof of Lemma B.5. For (a), we first observe that, due to the simple structure of S[⋅], indeed (2N)2 −2
of the (2N)2 eigenvalues of B are equal to one. The expressions (B.13) and (B.14) can be verified by

direct computation, invoking Lemma B.4 in combination with the chiral symmetry (2.19).

For (b) withw1 ≠ ±w2, we first find that

1

β±
= 1

1 ∓ ⟨M1E±M2E±⟩ = 1 +
⟨M1⟩ ∓ ⟨M2⟩
w1 ∓w2

(B.20)

as a consequence of Lemma B.4 (a) and the chiral symmetry. Now, using that ∣⟨M⟩∣ ≤ ⟨MM∗⟩1/2 < 1,
which follows fromMM∗ = ImM/(Imw + ⟨ImM⟩) (see Lemma B.4 (a)), we conclude that

∣β±∣ ≳ ∣Rew1 ∓Rew2∣ ∧ 1 (B.21)

by application of a triangle inequality in (B.20). Next, we estimate

min {∣β+∣ , ∣β− ∣} ≥ ∣1 − ⟨M1M
∗
1 ⟩1/2⟨M2M

∗
2 ⟩1/2∣ ≳ (∣Imw1∣ + ∣Imw2∣) ∧ 1 , (B.22)

where in the first step we used ⟨MM∗⟩ < 1 together with a Schwarz inequality, and (B.11) in the second
step. Combining (B.21) and (B.22) yields the claim.
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Finally, for (c), we consider the case of small imaginary parts for the spectral parameters (the com-

plementary regime being trivial) and focus on the extreme casew1 = −sw2 . Then, using (2.19) and (B.12),

we obtain

∣β−s∣ = ∣1 − ⟨M2
1 ⟩∣ ≥ 2⟨ImM1⟩2 ≳ 1 . (B.23)

This principal lower bound persists after small perturbations of w2, and the complementary regime

can be dealt with by (B.15). �

Appendix C. Proof of Theorem 2.6

In this appendix, we give a short proof of the usual single resolvent local law in the bulk given in

Theorem 2.6. In the literature, bulk local laws are established under the usual flatness assumption (see

[38, Assumption E]) on the self-energy operator S (recall (A.4)). However, for our model, the stability

operatorS[R] = ∑σ σ⟨REσ⟩Eσ violates the lower bound in the flatness condition (A.4), which is why
we need to provide a separate argument. The main idea is that lacking of the lower bound in (A.4) is

compensated by the orthogonality relation ⟨GE−⟩ = ⟨ME−⟩ = 0 as a consequence of (5.5).
The following argument heavily relies on [38, Theorem 4.1], where a general high-moment bound on

the underlined term in

⟨(G −M)B⟩ = −⟨WGX [B]M⟩ + ⟨G −M⟩⟨(G −M)X [B]M⟩ (C.1)

and its isotropic counterpart (see (C.2) below) has been shown. We stress that this estimate from [38] does

not require the lower bound in (A.4) for the self-energy operatorS . As usual, we suppressed the spectral
parameter w ∈ C ∖R satisfying Rew ∈ Bκ for some fixed κ > 0 from the notation. The expansion

(C.1) for an arbitrary deterministic matrixB ∈C2N×2N has already been established in (5.15), where we

introduced the linear operatorX [B] ∶= (1 − S[M ⋅M])−1[B] acting on matrices.

For givenB, we now decompose it into its (−)-regular and (−)-singular component (see (B.17), the

cutoff function being irrelevant here),

B = B̊− + ⟨MBME−⟩⟨ME−ME−⟩E− ,
respectively. For the second summand, we note that ⟨GE−⟩ = ⟨ME−⟩ = 0, and we can hence focus on
the regular component, i.e. assume thatB = B̊− is (−)-regular.

In this case, for a bounded deterministic ∥B∥ ≲ 1we thus have ∥X [B]∥ ≲ 1 from Lemma B.6. With

the high-moment bound on the underlined term from [38, Theorem 4.1, part (b)] one can conclude the

proof of Theorem 2.6 in the averaged case, ∣⟨(G−M)B⟩∣ ≺ (Nη)−1 , by a standard bootstrap argument

(see, e.g., [38, Sections 5.3 and 5.4]).

In the isotropic case, we evaluate (C.1) for B = 2N ∣y⟩ ⟨x∣, where x,y ∈ C2N are deterministic

vectors in with ∥x∥, ∥y∥ ≲ 1. More precisely, we subtract its (−)-singular component (which can be

dealt with separately as explained above) and insert

B = B̊− = 2N ∣y⟩ ⟨x∣ − ⟨x,ME−My⟩⟨ME−ME−⟩ E−
in the expansion (C.1), which leaves us with

(G −M)
xy
= − (WG)

x(My) + ⟨G −M⟩(G −M)x(My) (C.2)

+ [⟨x,ME−My⟩
⟨ME−ME−⟩ +

⟨x,M2y⟩
1 − ⟨M2⟩ ] [⟨WGE−M⟩ − ⟨G −M⟩⟨(G −M)E−M⟩] .

After realizing that the denominators in (C.2) are bounded away fromzero (see LemmaB.5 andLemmaB.6),

the proof of Theorem 2.6 in the isotropic case, ∣(G −M)
xy
∣ ≺ (Nη)−1/2 , can be concluded again by

a standard bootstrap argument, now using the high-moment bound from [38, Theorem 4.1, part (a)] and

the already proven averaged law ∣⟨(G −M)B⟩∣ ≺ (Nη)−1 with ∥B∥ ≲ 1 as an input.
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Appendix D. Bounds on the deterministic approximations: Proof of Lemma 4.3

The goal of this appendix is to prove the bounds fromLemma 4.3 on the deterministic approximation

M(w1,B1,w2, ...,Bk−1 ,wk)
to a resolvent chain

G(w1)B1G(w2)⋯Bk−1G(wk) .
WhileM(w1, ...,wk) has been introduced for an arbitrary numberk of spectral parametersw1, ...,wk

in Definition 4.1, the bounds in Lemma 4.3 shall be proven for k at most five and the deterministic

matricesB1, ...,Bk−1 being regular w.r.t. to the surrounding spectral parameters.

As a preparation for the proof of Lemma 4.3, we shall now show that M(w1, ...,wk) from (4.2)

satisfiesmultiple recursive relations,called recursiveDyson equations, by using a so-calledmeta argument,
that relies on the fact that M(w1, ...,wk) actually approximates a chain of products of resolvents.

In fact, we only picked one of the recursive relations (namely (D.1) with j = 1) for actually defining
M(w1, ...,wk) in Definition 4.1. Although the second recursion relation (D.2) will not be used in the

proof of Lemma 4.3, it is obtained completely analogous to (D.1) and we hence give it for completeness.

A similar meta argument has been done several times, see e.g. [31]. For convenience of the reader we

repeat it in our setup.

Lemma D.1. (Recursive Dyson equations forM(w1, ...,wk), see [28, Lemma 4.1])

Fix k ∈ N. Let w1, ...,wk ∈ C ∖R be spectral parameters and B1, ...,Bk−1 ∈ C2N×2N deterministic
matrices. Then for any 1 ≤ j ≤ k we have the relations

M(w1,...,wk) =M(w1, ...,wj−1 ,Bj−1M(wj)Bj ,wj+1, ...,wk) (D.1)

+ ∑
σ=±

j−1

∑
l=1

σM(w1, ...,Bl−1 ,wl,Eσ,wj ,Bj , ...,wk)⟨M(wl, ...,wj−1)Bj−1M(wj)Eσ⟩
+ ∑

σ=±

k

∑
l=j+1

σM(w1, ...,Bj−1M(wj)Eσ,wl,Bl...,wk)⟨M(wj , ...,wl)Eσ⟩
and

M(w1,...,wk) =M(w1, ...,wj−1 ,Bj−1M(wj)Bj ,wj+1, ...,wk) (D.2)

+ ∑
σ=±

j−1

∑
l=1

σM(w1, ...,Bl−1 ,wl,EσM(wj)Bj , ...,wk)⟨M(wl, ...,wj)Eσ⟩
+ ∑

σ=±

k

∑
l=j+1

σM(w1, ...,Bj−1 ,wj ,Eσ,wl,Bl, ...,wk)⟨M(wj)BjM(wj+1, ...,wl)Eσ⟩ .
If j = 1 or j = k, we define B0 = E+ resp.Bk = E+ in (D.1) and (D.2).

The formulas (D.1) and (D.2) shall be derived by expanding the jth resolvent Gj in the resolvent

chainG1B1 ⋯GjBj ⋯Bk−1Gk corresponding toM(w1, ...,wk) in an underlined term, once to the

right (for (D.1), see (D.8)) and once to the left (for (D.2), see (D.10)). Altogether, this yields 2k different

recursions forM(w1, ...,wk), which are listed in the above lemma. Moreover, it would be possible

to prove directly that all these different recursions define the sameM(w1, ...,wk). This strategy has
been used in a much simpler setup [26] dealing with Wigner matrices. Here, we find it simpler to use

the alternative meta argument.

Proof. The principal idea is to derive the respective relations (D.1) and (D.2) on the level of resolvent

chainsG1B1⋯Bk−1Gk , which, after taking the expectation and using thatGi ≈Mi fromTheorem 2.6,

yields the same relation on the level of the deterministic approximations. For the purpose of proving

identities aboutM(w1, ...,wk), wemay use the most convenient distribution forX , namelyGaussian.

For the sake of this proof, we thus assume the single entry distributionχ ofX to be a standard complex

Gaussian χ = NC(0,1), i.e.X in Assumption 2.1 is a complex Ginibre matrix, in which case it holds

that (recall the discussion below (5.3))

E f(W )Wg(W ) = 0 . (D.3)
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Let w1, ...,wk ∈ C ∖R be arbitrary (but fixed!) spectral parameters. We now conduct the meta argu-
ment, consisting of three steps.

Step 1.We consider the resolvent chain

G1B1 ⋯Bk−1Gk . (D.4)

ExpandingG1 via the identity

G1 =M1 −M1WG1 +M1S[G1 −M1]G1

and using S[G1 −M1] = ⟨G1 −M1⟩ from (5.5), we find that

G1B1 ⋯Bk−1Gk

=M1B1 ⋯Bk−1Gk −M1WG1B1 ⋯Bk−1Gk + ⟨G1 −M1⟩M1G1B1 ⋯Bk−1Gk

=M1B1 ⋯Bk−1Gk + ∑
σ=±

k−1

∑
l=2

σM1⟨G1B1 ⋯Bl−1GlEσ⟩EσGlBl ⋯Bk−1Gk (D.5)

−M1WG1B1 ⋯Bk−1Gk + ⟨G1 −M1⟩M1G1B1 ⋯Bk−1Gk +M1S[G1B1 ⋯Bk−1Gk]Mk ,

where in the last step we distributed the derivatives coming from the definition of the underline in (5.3)

according to the Leibniz rule. Now, (D.9) can be rewritten as

G1B1 ⋯Bk−1Gk

=(B1k)−1[M1B1 ⋯Bk−1Gk + ∑
σ=±

k−1

∑
l=2

σM1⟨G1B1 ⋯Bl−1GlEσ⟩EσGlBl ⋯Bk−1Gk

−M1WG1B1 ⋯Bk−1Gk + ⟨G1 −M1⟩M1G1B1 ⋯Bk−1Gk] . (D.6)

Apart from the last two terms in (D.6), this is the exact same relation on the level of resolvents as in

Definition 4.1 forM(w1, ...,wk).
Step 2.Let the originalmatrix sizeN be fixed. For anyd ∈N, we consider thedN×dN Ginibre random

matrixX(d) with entries having variance 1/(dN), and the deformationΛ(d) ∶= Λ ⊗ Id ∈ CdN×dN ,

where Id ∈Cd×d is the identitymatrix. Analogously to (2.2) and (2.15), we also define the Hermitisations

Λ̂
(d)

andW (d), as well as the resolventsG(d)i =G(d)(wi) ∶= (W (d) + Λ̂(d) −wi)−1 . It is crucial to
observe that the correspondingly modifiedMDE

− 1

M (d) = w − Λ̂(d) + S(d)[M (d)]
under the usual Imw ImM (d) > 0 constraint with

S
(d)[R] ∶= ẼW̃

(d)
RW̃

(d) =∑
σ

σ⟨RE
(d)
σ ⟩E(d)σ , where E

(d)
σ ∶= Eσ ⊗ Id ,

has the unique solutionM (d) =M⊗Id, whereM is the unique solution of theMDE (2.20) onC2N×2N .

In particular, if we defineB
(d)
i ∶= Bi⊗Id for all i ∈ [k], then it holds that (4.2) defined withM (d)

i and

B
(d)
i as inputs, also satisfiesM (d)(w1,B

(d)
1 , ...,B

(d)
k−1 ,wk) =M(w1,B1, ...,Bk−1 ,wk)⊗ Id.

We now multiply the analogue of (D.6) in boldface matrices by some B
(d)
k = Bk ⊗ Id with Bk ∈

C
2N×2N and take the averaged trace. Next, by means of (D.3), taking the expectation of the resulting

expression removes the underlined term. Hence, using the one-to-one correspondence between the

terms in the second line of (D.6) and the terms on the rhs. of (4.2), mentioned below (D.6), it follows by

telescopic replacement and a simple induction on the length k of the chain, that

lim
d→∞

E ⟨G(d)1 B
(d)
1 ⋯G

(d)
k B

(d)
k
⟩ = ⟨M(w1,B1, ...,wk)Bk⟩ (D.7)

by means of the usual global law [38, Theorem 2.1] for the last term on the rhs. of (D.6). In fact, due to the

tensorisation, we have that ∣⟨G(d)1 −M (d)
1 ⟩∣ ≺ 1/(Nd) since ∣Imw1∣ ≳ 1, where the implicit constant

potentially depends onN but not on d.
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We emphasise that the tensorisation by Id is indeed a necessary step, since the matricesMi andBi

areN-dependent and hence one cannot take the limitN →∞ in (D.7) for d = 1.
Step 3.Having (D.7) at hand, the recursive relations in (D.1) and (D.2) can be proven as follows: For (D.1),

let 1 ≤ j ≤ k and expandGj in (D.4) according to

Gj =Mj −MjWGj +MjS[Gj −Mj]Gj , (D.8)

which yields, analogously to (D.5),

G1 ⋯Bj−1GjBj ⋯Gk =G1 ⋯Bj−1MjBj ⋯Gk (D.9)

+ ∑
σ=±

j−1

∑
l=1

σG1 ⋯Bl−1Gl⟨Gl ⋯Gj−1Bj−1MjEσ⟩EσGjBj ⋯Gk

+ ∑
σ=±

k

∑
l=j+1

σG1 ⋯Bj−1Mj⟨GjBj ⋯Bl−1GlEσ⟩EσGlBl ⋯Gk

−G1 ⋯Bj−1MjWGjBj ⋯Gk + ⟨Gj −Mj⟩G1 ⋯Bj−1MjGjBj ⋯Gk .

Hence, after taking the trace against some arbitrary Bk ∈ C2N×2N , by performing the tensorisation

from Step 2, taking an expectation, and using (D.7), we obtain (D.1), but in a trace againstBk . However,

sinceBk was arbitrary, we conclude the desired.

For the second recursion (D.2), the argument is identical except from the fact that we expandGj in

(D.4) according to

Gj =Mj −GjWMj +GjS[Gj −Mj]Mj . (D.10)

�

The recursive relations from Lemma D.1 can be used to show the bounds from Lemma 4.3 on the

deterministic counterparts in the definition of Ψ
av/iso
k in (4.15) resp. (4.16) for k ≤ 4. Recall that all

deterministic matrices Ai appearing in the respective averaged or isotropic chain are regular in the

sense of Definition 4.2.

Proof of Lemma 4.3. In the following, we will distinguish the two regimes η ≤ 1 and η > 1 and argue

for each of them separately, iteratively using Lemma D.1. Before going into the iteration, recall that∥M(w1)∥ ≲min(1, 1

∣Imw1 ∣) from Lemma B.1, which immediately yields (4.11) for k = 1.
Regime η ≤ 1. Using (D.1) for k = j = 2, we find that

M(w1,A1,w2) =M(w1)X12[A1]M(w2) = B−112 [M(w1)A1M(w2)] , (D.11)

whereX12[B] ∶= (1−S[M(w1) ⋅M(w2)])[B] forB ∈C2N×2N . SinceA1 is regular, we conclude

(4.10) for k = 1 (by means of Lemma B.6 (b)), which immediately translates to (4.11) for k = 2.
Next, for (4.10) and k = 2, we again use (D.1) with j = 2, such that we obtain
M(w1,A1,w2,A2,w3) =M(w1,X12[A1]M(w2)A2,w3) (D.12)

+∑
σ

σM(w1,X12[A1]M(w2)Eσ,w3)⟨M(w2,A2,w3)Eσ⟩ .
Moreover, using (4.11) for k = 2 in combinationwith (D.11) and the lower bound (B.15) on the eigenvalues

of the stability operator B, (4.10) for k = 2 readily follows.
For (4.11) and k = 3 we need a different representation ofM(w1,A1,w2,A2,w3) as
B
−1
13 [M(w1)A1M(w2,A2,w3) +∑

σ

σM(w1)EσM(w2,A2,w3)⟨M(w1,A1,w2)Eσ⟩] ,
which follows from (D.1) with j = 1 (or simply by Definition 4.1). This implies

⟨B−113 [⋯]A3⟩ = ⟨[⋯]X31[A3]⟩
and thus, since ∥[⋯]∥ ≲ 1 from (4.10) with k = 1 and ∥X31[A3]∥ ≲ 1 (recall Lemma B.6 (b)), we have

proven (4.11) for k = 3.
In order to see (4.10) for k = 3, we first need to show that (4.10) for k = 2 remains valid, if only

one of the two involved matrices A1,A2 is regular. Henceforth, we will assume that A1 = Å1 and
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A2 is arbitrary, the other case being similar and hence omitted. We start with (D.12) and use the lower

bound (B.15) on the eigenvalues of B in the first term in (D.12), such that the remaining terms to be

investigated are in the last line of (D.12), where we study each factor separately. Thereby, we focus on

the case Imw1 > 0 and s1 = s2 = + (recall (3.8)), other constellations being completely analogous. Now,

in the second factor in the last line of (D.12) we use

∣⟨M(w2,A2,w3)E−⟩∣ = ∣⟨M(w2)A2M(w3)X32[E−]⟩∣ ≲ 1
for σ = −. For σ = +, we find, using cyclicity of the trace, that ∣⟨M(w2,A2,w3)E+⟩∣ equals

∣⟨A2M(w3,E+,w2)⟩∣ = 1

∣w3 −w2∣ ∣⟨A2(M(w3) −M(w2))⟩∣ ≲ 1 + 1

∣w3 −w2∣ .
In the first factor in the last line of (D.12), we use the usual bound (B.15) for σ = − and conclude the

desired estimate together with the bound on the second factor for σ = −. However, for σ = +, the
argument is slightly more involved: Using the usual notations ej = Rewj and ηj = ∣Imwj ∣, recall
from the proof of Lemma 5.6 (see the estimate of (5.48)) that

⟨M1X12[A○1,21 ]M2M
∗
2E−⟩ =O(∣e1 + e2∣ + η1 + η2) ,

which readily implies that

⟨M1X12[A○1,21 ]M2M3E−⟩ =O(∣e2 − e3∣ + ∣e1 + e2∣ + η1 + η2 + η3) (D.13)

by means of Lemma B.4 (b). Employing the associated decomposition in the first factor in the last line

of (D.12) (and using the analogous cτ(...)-notation as in (5.38)), we find it being equal to

M(w1, (X12[A1]M(w2))○1,3 ,w3) +∑
τ

cτ (X12[A○1,21 ]M2)M(w1,Eτ ,w3) .
The first summand is easily bounded by one, as follows from (4.10) for k = 1. Using (D.11), the termwith

τ = + is also bounded by one. The remaining term with τ = − can be estimated with the aid of (D.13) as

∣e2 − e3∣ + ∣e1 + e2∣ + η1 + η2 + η3∣w1 +w3∣ .

Collecting all the estimates from above, we find that ∥M(w1, Å1,w2,A2,w3)∥ is bounded by
1

η
+ (1 + ∣e1 + e3∣ + ∣e2 − e3∣ + η1 + η2 + η3∣e1 + e3∣ + η1 + η3 )(1 + 1

∣e3 − e2∣ + η2 + η3 ) ≲
1

η
,

which shows that (4.10) remains valid if only one of the two involved matricesA1, A2 is regular.

Having this at hand, we can now turn to the proof of (4.10) for k = 3. In fact, by (D.1) for k = 4, we
find

M(w1, ..,w4) =M(w1,X12[A1]M(w2),A2,w3,A3,w4) (D.14)

+∑
σ

σM(w1,X12[A1]M(w2)Eσ,w3,A3,w4)⟨M(w2,A2,w3)Eσ⟩
+∑

σ

σM(w1,X12[A1]M(w2)Eσ,w4)⟨M(w2,A2,w3,A3,w4)Eσ⟩ ,
where the first and second line of (D.14) are bounded by 1

η
and we can thus focus on the last line. Struc-

turally, this term is the analog of the last line in (D.12) and also proving it being bounded by 1

η
is com-

pletely analogous to the arguments above. This concludes the proof of (4.10) for k = 3, fromwhich (4.11)

for k = 4 immediately follows.

Finally, we turn to the proof of (4.10) for k = 4. By (D.1) for j = 1 (or simply by Definition 4.1) we

find the different representation

M(w1, ...,w5) =B−115 [M(w1)A1M(w2, ...,w5)
+∑

σ

σM(w1)EσM(w2, ...,w5)⟨M(w1,A1,w2)Eσ⟩
+∑

σ

σM(w1)EσM(w3, ...,w5)⟨M(w1, ...,w3)Eσ⟩
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+∑
σ

σM(w1)EσM(w4,A4,w5)⟨M(w1, ...,w4)Eσ⟩] .
Combining ∥[⋯]∥ ≲ η−1 , as follows from (4.10) for k ∈ [3] and (4.11) for k ∈ [4], with the usual bound
(B.15), we conclude the desired. This finishes the proof in the first regime where η ≤ 1.
Regime η > 1. In this second regime, we note that all inverses of stability operators are bounded (see

(B.15)). Moreover, it easily follows from (D.1) that every summand in the definition ofM(w1, ...,wk)
carries at least k factors of (different)M(wi). Now, as mentioned in the beginning of the proof, we

have ∥M(wi)∥ ≲ 1/η, which implies the desired bound. �

Appendix E. Proof of Lemmas 5.8 and 5.9

In this appendix, we carry out the proofs of the two Lemmas 5.8 and 5.9.

Proof of Lemma 5.8. Similarly to the proof of Lemma 5.6, we get from Appendix A and (4.4) that

⟨(G1A1G2 −M1X12[A1]M2)A2⟩ (E.1)

= ⟨M1A1(G2 −M2)X21[A2]⟩ − ⟨M1WG1A1G2X21[A2]⟩
+ ⟨M1S[G1 −M1]G1A1G2X21[A2]⟩ + ⟨M1S[G1A1G2](G2 −M2)X21[A2]⟩ .

We note that ∥X12[Å1]∥ ≲ 1 and ∥X21[Å2]∥ ≲ 1 by means of Lemma B.6.

Then, analogously to (5.37), we need to further decompose X21[A2]M1 in the last three terms in

(5.36) as

X21[Å2]M1 = (X21[Å2]M1)○ +∑
σ

1
σ
δ cσ(X21[Å2]M1)Eσ ,

wherewe again suppressed the spectral parameters (and the relative sign of their imaginary parts, which

has been fixed by Imw1 > 0 and Imw2 < 0) in the notation for the linear functionals cσ(⋅) onC2N×2N

defined as

c+(B) ∶= ⟨M2BM1⟩⟨M2M1⟩ and c−(B) ∶= ⟨M2BM
∗
1E−⟩⟨M2E−M∗
1E−⟩ . (E.2)

Continuing the expansion of (E.1), we arrive at

⟨M1Å1(G2 −M2)X21[Å2]⟩ − ⟨WG1Å1G2(X21[Å2]M1)○⟩
+ ⟨S[G1 −M1]G1Å1G2(X21[Å2]M1)○⟩ + ⟨S[G1Å1G2](G2 −M2)(X21[Å2]M1)○⟩
+∑

σ

1
σ
δ cσ(X21[Å2]M1)[ − ⟨WG1Å1G2Uσ⟩ + ⟨S[G1 −M1]G1Å1G2Eσ⟩

+ ⟨S[G1Å1G2](G2 −M2)Eσ⟩] .
We emphasise that, in case of Å2 and its linear dependents, the regular component is defined w.r.t. the

pair of spectral parameters (w2,w1).
Next, analogously to the proof of Lemma 5.6, we undo the underline in [⋯], such that our expansion

of (E.1) becomes

⟨(G1Å1G2 −M1X12[Å1]M2)Å2⟩
= ⟨M1Å1(G2 −M2)X21[Å2]⟩ − ⟨WG1Å1G2(X21[Å2]M1)○⟩ (E.3)

+ ⟨S[G1 −M1]G1Å1G2(X21[Å2]M1)○⟩ + ⟨S[G1Å1G2](G2 −M2)(X21[Å2]M1)○⟩
+∑

σ

1
σ
δ cσ(X21[Å2]M1)[ − ⟨Å1G2Eσ⟩ + ⟨G1Å1G2Φ̊σ⟩ + cσ(Φσ)⟨G1Å1G2Eσ⟩] ,

where

Φσ ∶= Eσ
1

M1

− S[M2Eσ] (E.4)

was further decomposed with the aid of cσ(Φτ ) ∼ δσ,τ and we used the notation (E.2).

We can now write (E.3) for both, Å2 = Φ̊+ and Å2 = Φ̊− , and solve the two resulting equation for⟨G1Å1G2Φ̊σ⟩ and ⟨G1Å1G2Φ̊−⟩. Observe that by means of

cτ(X21[Φ̊σ]M1) ∼ δσ,τ ,
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the original system of linear equations boils down to two separate ones. Thus, plugging the solutions

for ⟨G1Å1G2Φ̊±⟩ back into (E.3) we arrive at
⟨(G1Å1G2 −M1X12[Å1]M2)Å2⟩
= − ⟨WG1Å1G2(X21[Å2]M1)○⟩ + ⟨G1 −M1⟩⟨G1Å1G2(X21[Å2]M1)○⟩
+ ⟨M1Å1(G2 −M2)X21[Å2]⟩ + ⟨S[G1Å1G2](G2 −M2)(X21[Å2]M1)○⟩ (E.5)

+∑
σ

1
σ
δ cσ(X21[Å2]M1)

1 − 1σ
δ cσ(X21[Φ̊σ]M1)[ − ⟨WG1Å1G2(X21[Φ̊σ]M1)○⟩ (E.6)

+ ⟨G1 −M1⟩⟨G1Å1G2(X21[Φ̊σ]M1)○⟩ + ⟨M1Å1(G2 −M2)X21[Φ̊σ]⟩
+ ⟨S[G1Å1G2](G2 −M2)(X21[Φ̊σ]M1)○⟩ (E.7)

− ⟨Å1(G2 −M2)Eσ⟩ + cσ(Φσ)⟨(G1Å1G2 −M Å1
12 )Eσ⟩] . (E.8)

We now need to check that the denominators in (E.6) are bounded away from zero.

Lemma E.1. For small enough δ > 0, we have that
∣1 − 1σ

δ (w2,w1) cσ(X21[Φ̊σ]M1)∣ ≳ 1 for σ = ± .
Proof. Completely analogous to Lemma 5.7. �

Next, there are two particular terms, namely the ones of the form

⟨S[G1Å
1,2
1 G2](G2 −M2)Å2,1

2 ⟩ , (E.9)

appearing in (E.5) and (E.7), and

cσ(X21[Å2,1
2 ]M1)cσ(Φσ)⟨(G1Å

1,2
1 G2 −M1X12[Å1,2

1 ]M2)Eσ⟩ , (E.10)

appearing in (E.8), whose naive size 1/(Nη2) does not match the target. Hence, they have to be dis-

cussed in more detail. In (E.9) and (E.10), we emphasised the pair of spectral parameters with respect

to which the regularisation has been conducted. Moreover, for the following estimates, we recall the a

priori bounds (4.25).

Estimating (E.9).We begin by expanding

⟨S[G1Å
1,2
1 G2](G2 −M2)Å2,1

2 ⟩ =∑
σ

σ ⟨G1Å
1,2
1 G2Eσ⟩⟨(G2 −M2)Å2,1

2 Eσ⟩ (E.11)

and note that, analogously to (5.50),

Å
i,j
i Eσ = (Åi,j

i Eσ)○i,i +O(∣ei − σej ∣ + ∣ηi − ηj ∣)E+ +O(∣ei − σej ∣ + ∣ηi − ηj ∣)E− (E.12)

as well as

Å
i,j
i Eσ = (Åi,j

i Eσ)○j,j +O(∣ei − σej ∣ + ∣ηi − ηj ∣)E+ +O(∣ei − σej ∣ + ∣ηi − ηj ∣)E− (E.13)

for i ≠ j ∈ [2] and σ = ±.
In the first term in (E.11), for σ = + andEσ = E+ , we use a resolvent identity and the usual averaged

local law (4.17) in combination with (E.12), (E.13) and (4.8), in order to bound it as

∣⟨G1Å
1,2
1 G2⟩∣ ≺ 1 + 1∣e1 − e2∣ + η1 + η2 max

i∈[2]
∣⟨(Gi −Mi)(Å1,2

1 )○i,i⟩∣ . (E.14)

For σ = − and Eσ = E−, we first add and subtract the corresponding deterministic approximation⟨M(w1, Å
1,2
1 ,w2)E−⟩, which itself is bounded by means of Lemma 4.3. In the difference term, we use

(2.16) and employ the integral representation from Lemma 5.1 with

τ = + , J = Bℓκ0
, and η̃ = ℓ

ℓ + 1η ,
for which we recall that wj ∈ D(ǫ0,κ0)

ℓ+1 , i.e. in particular η ≥ (ℓ + 1)N−1+ǫ0 and hence η̃ ≥ ℓN−1+ǫ0 .
Note that Lemma 5.1 is also true on the level of the corresponding deterministic approximations, as can
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be seen, e.g., by a meta argument similarly to the proof of LemmaD.1. Hence, after splitting the contour

integral and bounding the individual contributions as described in (5.11), we obtain

∣⟨G1A
○1,2
1 G2E−⟩∣ ≺ 1 + ∫

Bℓκ0

∣⟨(G(x + iη̃) −M(x + iη̃))A○1,21 E−⟩∣
∣(x − e1 − i(η1 − η̃)) (x + e2 − i(η2 − η̃))∣dx

≺1 + ∫
Bℓκ0

∣⟨(G(x + iη̃) −M(x + iη̃))(A○1,21 E−)○x+iη̃,x+iη̃⟩∣
∣(x − e1 − i(η1 − η̃)) (x + e2 − i(η2 − η̃))∣ dx ,

where in the second step we used (E.12) and (E.13), and absorbed logarithmic corrections from the inte-

gral into ‘≺’. This finally yields that
∣⟨G1A

○1,2
1 G2E−⟩∣ ≺ 1 + 1∣e1 + e2∣ + η1 + η2 ⋅

ψav
1

Nη1/2
. (E.15)

Combining (E.14) and (E.15) with the estimate

∣⟨(G2 −M2)A○2,12 Eσ⟩∣ ≺ ∣e1 − σe2∣ + ∣η1 − η2∣
Nη

+ ψav
1

Nη1/2
(E.16)

for the second term in (E.11),which readily follows from (E.12) and (4.17), we find that (E.9) can be bounded

as

∣⟨S[G1A
○1,2
1 G2](G2 −M2)A○2,12 ⟩∣ ≺ 1

Nη
+ (ψav

1 )2(Nη)2 , (E.17)

where we used the trivial estimate ψav
1 ≺ η−1/2 .

Estimating (E.10). For the term (E.10), we first note that the two prefactors cσ(X21[A○2,12 ]M1) and
cσ(Φσ) are bounded. However, completely analogous to the proof of Lemma 5.6, in each of the two

cases σ = ±, the bound on one of the prefactors can be improved: In the first case, σ = +, we use (B.11)
and compute

c+(Φ+) = ⟨M1⟩(1 − ⟨M1M2⟩)
⟨M1M2⟩ = O(∣e1 − e2∣ + η1 + η2) .

∣⟨G1Å1G2 −M(w1, Å1,w2)⟩∣ ≺ 1

Nη
+ 1

∣e1 − e2∣ + η1 + η2 max
i∈[2]
∣⟨(Gi −Mi)(A○1,21 )○i,i⟩∣

which is obtained completely analogous to (E.14), we conclude that (E.10) for σ = + can be estimated by

1/(Nη). Similarly, in the second case, σ = −, we perform a computation similar to the one leading to

(5.16) and use (B.11) in order to obtain that c−(X12[A○1,21 ]M2) equals
i

2

⟨M1A
○1,2
1 M∗

2E−⟩⟨M1E−M∗
2E−⟩ +

1

2i

⟨M1A
○1,2
1 M2E−⟩⟨M1E−M∗

2E−⟩
1 + ⟨M1E−M

∗
2E−⟩

1 + ⟨M1E−M2E−⟩ = O(∣e1 + e2∣ + η1 + η2)
Combining this with the bound

∣⟨(G1A
○1,2
1 G2 −M(w1,A

○1,2
1 ,w2))E−⟩∣ ≺ 1

Nη
+ 1∣e1 + e2∣ + η1 + η2 ⋅

ψav
1

Nη1/2

which is obtained completely analogous to (E.15), we conclude that (E.10) can be estimated by 1/(Nη)
– now in both cases σ = ±.
Conclusion. Summarizing our investigations, we have shown that

⟨(G1Å1G2 −M(w1, Å1,w2))Å2⟩ = −⟨WG1Å1G2Å
′
2⟩ +O≺(Eav2 ) ,

where we used the shorthand notation

Å
′
2 ∶= (X21[Å2]M1)○ +∑

σ

1
σ
δ cσ(X21[Å2]M1)

1 − 1σ
δ cσ(X21[Φ̊σ]M1)(X21[Φ̊σ]M1)○ (E.18)

in the underlined term. Combining (E.17) and the bound on (E.10) established abovewith the usual single

resolvent local laws (4.17) and the bounds on deterministic approximations in Lemma 4.3, we collected

all the error terms from the expansion around (E.5)–(E.8) in (5.56). �
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Proof of Lemma 5.9. We denote Ai ≡ Åi, except we wish to emphasise Ai being regular. As usual, we

use the customary shorthand notations and start with

G2 =M2 −M2WG2 +M2S[G2 −M2]G2 ,

such that we get

G1Ã1G2Å2G3 = G1Ã1M2Å2G3 −G1Ã1M2WG2Å2G3 +G1Ã1M2S[G2 −M2]G2Å2G3

for Ã1 = X12[A1] with A1 = Å1 (note that ∥X12[Å1]∥ ≲ 1 by Lemma B.6) and the linear operator

X12 has been introduced in (5.35). The definition ofX23 is completely analogous.

Extending the underline to the whole product, we obtain

G1(Ã1−S[M1Ã1M2])G2Å2G3

=G1Ã1M2Å2G3 −G1Ã1M2WG2Å2G3 +G1Ã1M2S[G2Å2G3]G3

+G1Ã1M2S[G2 −M2]G2Å2G3 +G1S[(G1 −M1)Ã1M2]G2Å2G3 ,

which leaves us with

G1Å1G2Å2G3 −M(w1,A1,w2,A2,w3) (E.19)

= (G1 [X12[Å1]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))
−G1X12[Å1]M2WG2Å2G3 +G1X12[Å1]M2S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)X12[Å1]M2]G2Å2G3 +G1X12[Å1]M2S[G2Å2G3 −M2X23[Å2]M3]G3 ,

where we used Lemma D.1 for assembling the purely deterministic terms on the l.h.s. To continue,

we first note that ∥X12[Å1]∥ ≲ 1 and ∥X23[Å2]∥ ≲ 1 (again, the matrices being regular removes the

potentially ‘bad direction’ of the stability operatorsX12 and X23).

Then, we need to further decomposeX12[A1]M2 in the last four terms in (E.19) as

X12[A1]M2 = (X12[A1]M2)○ +∑
σ

1
σ
δ cσ(X12[A1]M2)Eσ , (E.20)

where, similarly as for ⋅○, we suppressed the spectral parameters w1,w2 in the notation for the linear

functionals cσ(...), which have been defined in see (5.38). Now, plugging (E.20) into (E.19) we find
G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3) (E.21)

= (G1 [X12[Å1]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))
−G1(X12[Å1]M2)○WG2Å2G3 +G1(X12[Å1]M2)○S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)(X12[Å1]M2)○]G2Å2G3 +G1(X12[Å1]M2)○S[G2Å2G3 −M2X23[Å2]M3]G3

+∑
σ

1
σ
δ cσ(X12[Å1]M2)[ −G1EσWG2Å2G3 +G1EσS[G2 −M2]G2Å2G3

+G1S[(G1 −M1)Eσ]G2Å2G3 +G1EσS[G2Å2G3 −M2X23[Å2]M3]G3] .
Next, as in the earlier sections (see, e.g., the display above (E.4)), in the last line of (E.21) we now undo

the underline and find the bracket [⋯] to equal (the negative of)
G1Eσ(Å2 + S[M(w2, Å2,w3)])G3 −G1ΦσG2Å2G3 ,

where we denoted

Φσ ∶= Eσ

1

M2

− S[M1Eσ] .
It is apparent from the expansion (E.21) (and it can also be checked by hand) that

M(w1,EσÅ2 +EσS[M(w2, Å2,w3)],w3) =M(w1,Φσ ,w2, Å2,w3) ,
which finally yields

G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3) (E.22)
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= (G1 [X12[Å1]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))
−G1(X12[Å1]M2)○WG2Å2G3 +G1(X12[Å1]M2)○S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)(X12[Å1]M2)○]G2Å2G3 +G1(X12[Å1]M2)○S[G2Å2G3 −M2X23[Å2]M3]G3

+∑
σ

1
σ
δ cσ(X12[Å1]M2)[ − (G1Eσ(Å2 + S[M(w2, Å2,w3)])G3 −M(w1, [⋯]w3))

+ (G1Φ̊σG2Å2G3 −M(w1, Φ̊σ ,w2, Å2,w3)) +∑
σ

cσ(Φσ)(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))] ,
where we further decomposedΦσ in the last line of (E.22) (while using the first relation in (5.42)) just as

X12[A1]M2 in (E.20).

Next, we write (E.22) for both,A1 = Å1 = Φ̊+ andA1 = Å1 = Φ̊− , and solve the two resulting linear
equations for G1Φ̊±G2 −M(w1, Φ̊±,w2). Observe that by means of the second relation in (5.42) the

original system of linear equations boils down to two separate ones. Thus, plugging the solutions for

G1Φ̊±G2Å2G3 −M(w1, Φ̊±,w2, Å2,w3) back into (E.22), we arrive at
G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3) (E.23)

= (G1 [X12[Å1]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))
−G1(X12[Å1]M2)○WG2Å2G3 +G1(X12[Å1]M2)○S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)(X12[Å1]M2)○]G2Å2G3 +G1(X12[Å1]M2)○S[G2Å2G3 −M2X23[Å2]M3]G3

+∑
σ

1
σ
δ cσ(X12[Å1]M2)

1 − 1σ
δ cσ(X12[Φ̊σ]M2)[ − (G1[Eσ(Å2 + S[M(w2, Å2,w3)])]G3 −M(w1, [⋯]w3))

+ (G1 [X12[Φ̊σ]M2(Å2 + S[M2X23[Å2]M3])]G3 −M(w1, [⋯],w3))
−G1(X12[Φ̊σ]M2)○WG2Å2G3 +G1(X12[Φ̊σ]M2)○S[G2 −M2]G2Å2G3

+G1S[(G1 −M1)(X12[Φ̊σ]M2)○]G2Å2G3 +G1(X12[Φ̊σ]M2)○S[G2Å2G3 −M2X23[Å2]M3]G3

+ cσ(Φσ)(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))] .
It has been shown in Lemma 5.7 that the denominators are bounded away from zero.

Next, we take the scalar product of (E.23) with two deterministic vectors x,y satisfying ∥x∥, ∥y∥ ≤
1. In the resulting expression, in case that 1σ

δ (w1,w2) = 1 (as we assumed in (??)), there are three

particular terms, namely the ones of the form

(G1S[(G1 −M1)A○1,21 ]G2Å2G3)
xy
, (E.24)

as appearing twice, in the fourth and second to last line,

(G1A
○1,2
1 S[G2Å2G3 −M(w2, Å2,w3)]G3)

xy
, (E.25)

as appearing, again twice, in the fourth and second to last line,

cσ(X12[Å1]M2)cσ(Φσ)(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))
xy
, (E.26)

as appearing in the last line, whose naive sizes 1/(Nη3), 1/(Nη3), and 1/√Nη4 do not match the

target. Hence, they have to be discussed in more detail.

Estimating (E.24). For the terms of the first type, we begin by expanding

(G1S[(G1 −M1)A○1,21 ]G2Å2G3)
xy
=∑

σ

σ⟨(G1 −M1)A○1,21 Eσ⟩(G1EσG2Å2G3)
xy

and recall from (E.16) that first factor can be estimated by

∣⟨(G1 −M1)A○1,21 Eσ⟩∣ ≺ ∣e1 − σe2∣ + ∣η1 − η2∣
Nη

+ ψav
1

Nη1/2
. (E.27)
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In the second factor, we distinguish the two cases σ = ±. For σ = +, we find
G1G2A

○2,3
2 G3 = G1A

○2,3
2 G3 −G2A

○2,3
2 G3(e1 − e2) + i(η1 + η2)

by a simple resolvent identity, which together with

Å
w2,w3
2 = Åw1,w3

2 +O(∣e1 − e2∣ + ∣η1 − η2∣ + ∣e1 − e3∣ + ∣η1 − η3∣)E+
+O(∣e1 − e2∣ + ∣η1 − η2∣ + ∣e1 + e3∣ + ∣η1 − η3∣)E−

from Lemma 3.3 (note the difference between the E+-error and the E−-error!) and the usual isotropic

law (4.17) yields the estimate

∣(G1G2A
○2,3
2 G3)

xy
∣ ≺ 1

η
+ 1

∣e1 − e2∣ + η1 + η2
⎛
⎝1 +

ψiso
1√
Nη2

⎞
⎠ , (E.28)

where we again used the a priori bound (4.25). For σ = − we employ the integral representation from

Lemma 5.1 and argue similarly as for (E.15) such that we finally obtain

∣(G1E−G2A
○2,3
2 G3)

xy
∣ ≺ 1

η
+ 1

∣e1 + e2∣ + η1 + η2
⎛
⎝1 +

ψiso
1√
Nη2

⎞
⎠ . (E.29)

Now, combining (E.27) with (E.28) and (E.29), we find

∣(G1S[(G1 −M1)A○1,21 ]G2Å2G3)
xy
∣ ≺ 1√

Nη3
(1 + ψav

1 ψiso
1

Nη
) , (E.30)

where we used that ψav
1 ≺ η−1/2 trivially by (4.17).

Estimating (E.25). For terms of the second type, we again start by expanding

(G1A
○1,2
1 S[G2Å2G3 −M(w2, Å2,w3)]G3)

xy

=∑
σ

σ⟨(G2Å2G3 −M(w2, Å2,w3))Eσ⟩(G1A
○1,2
1 EσG3)

xy
.

Then, for the first factor, we recall from the estimate of (E.9) that

∣⟨(G2A
○2,3
2 G3 −M(w2,A

○2,3
2 ,w3))Eσ⟩∣ ≺ 1

Nη
+ 1∣e2 − σe3∣ + η2 + η3 ⋅

ψav
1

Nη1/2
.

Treating the second factor analogously to (E.28) and (E.29) above, we find

∣(G1A
○1,2
1 EσG3)

xy
∣ ≺ ∣e2 − σe3∣ + ∣η2 − η3∣

η
+ ⎛⎝1 +

ψiso
1√
Nη2

⎞
⎠ .

Combining the two estimates, we have shown that

∣(G1A
○1,2
1 S[G2Å2G3 −M(w2, Å2,w3)]G3)

xy
∣ ≺ 1√

Nη3
(1 + ψiso

1

Nη
+ ψ

av
1 ψiso

1

Nη
) (E.31)

where we again used that ψav
1 ≺ η−1/2 trivially by (4.17).

Estimating (E.26). For the third term, we recall the (improved) estimates

c+(Φ+) = O(∣e1 − e2∣ + η1 + η2)
c−(X12[Å1]M2) = O(∣e1 + e2∣ + η1 + η2)

on the anyway bounded prefactors,which have been shown in the course of estimating (5.48). By arguing

analogously to (E.28) and (E.29), we also find

∣(G1EσG2Å2G3 −M(w1,Eσ,w2, Å2,w3))
xy
∣ ≺ 1√

Nη3
+ 1∣e1 − σe2∣ + η2 + η3

ψiso
1√
Nη2

.
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Now, combining these estimates, we conclude

∣(E.26)∣ ≺ 1√
Nη3

(1 + ψiso
1 ) . (E.32)

Conclusion. Summarizing our investigations, we have shown that

(G1Å1G2Å2G3 −M(w1, Å1,w2, Å2,w3))
xy
= −(G1Å

′
1WG2Å2G3)

xy
+O≺(E iso2 ) ,

where we used the shorthand notation

Å
′
1 = (X12[A1]M2)○ +∑

σ

1
σ
δ cσ(X12[A1]M2)

1 − 1σ
δ cσ(X12[Φ̊σ]M2)(X12[Φ̊σ]M2)○ (E.33)

in the underlined term. Combining (E.30), (E.31), and (E.32) with the usual single resolvent local laws

(4.17) and the bounds on deterministic approximations in Lemma 4.3, we collected all the error terms

from (E.23) in (5.64). �
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