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Abstract

For a large class of feature maps we provide a tight asymptotic characterisation of the test error associated with
learning the readout layer, in the high-dimensional limit where the input dimension, hidden layer widths, and number
of training samples are proportionally large. This characterization is formulated in terms of the population covariance
of the features. Our work is partially motivated by the problem of learning with Gaussian rainbow neural networks,
namely deep non-linear fully-connected networks with random but structured weights, whose row-wise covariances are
further allowed to depend on the weights of previous layers. For such networks we also derive a closed-form formula for
the feature covariance in terms of the weight matrices. We further find that in some cases our results can capture feature
maps learned by deep, finite-width neural networks trained under gradient descent.

1 Introduction
Deep neural networks are the backbone of most successful machine learning algorithms in the past decade. Despite their
ubiquity, a firm theoretical understanding of the very basic mechanism behind their capacity to adapt to different types
of data and generalise across different tasks remains, to a large extent, elusive. For instance, what is the relationship
between the inductive bias introduced by the network architecture and the representations learned from the data, and
how does it correlate with generalisation? Albeit the lack of a complete picture, insights can be found in recent empirical
and theoretical works.

On the theoretical side, a substantial fraction of the literature has focused on the study of deep networks at initialisa-
tion, motivated by the lazy training regime of large-width networks with standard scaling. Besides the mathematical
convenience, the study of random networks at initialisation have proven to be a valuable theoretical testbed – allowing
in particular to capture some empirically observed behaviour, such as the double-decent [1] and benign overfitting [2]
phenomena. As such, proxys for networks at initialisation, such as the Random Features (RF) model [3] have thus been
the object of considerable theoretical attention, with their learning being asymptotically characterized in the two-layer
case [4–10] and the deep case [11–14]. With the exception of [6] (limited to two-layer networks) and [14] (limited to
linear networks), all the analyses for non-linear deep RFs assume unstructured random weights. In sharp contrast, the
weights of trained neural networks are fundamentally structured - restricting the scope of these results to networks at
initialization.

Indeed, an active research direction consists of empirically investigating how the statistics of the weights in trained
neural networks encode the learned information, and how this translates to properties of the predictor, such as inductive
biases [15, 16]. Of particular relevance to our work is a recent observation by [17] that a random (but structured) network
with the weights sampled from an ensemble with matching statistics can retain a comparable performance to the original
trained neural networks. In particular, for some tasks it was shown that second order statistics suffices – defining a
Gaussian rainbow network ensemble.

Our goal in this manuscript is to provide an exact asymptotic characterization of the properties of Gaussian rainbow
networks, i.e. deep, non-linear networks with structured random weights. Our main contributions are:
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• We derive a tight asymptotic characterization of the test error achieved by performing ridge regression with
Lipschitz-continuous feature maps, in the high-dimensional limit where the dimension of the features and the
number of samples grow at proportional rate. This class of feature maps encompasses as a particular case Gaussian
rainbow network features.

• The asymptotic characterization is formulated in terms of the population covariance of the features. For Gaussian
rainbow networks, we explicit a closed-form expression of this covariance, formulated as in the unstructured case
[12] as a simple linear recursion depending on the weight matrices of each layer. These formulae extend similar
results of [12, 18] for independent and unstructured weights to the case of structured –and potentially correlated–
weights.

• We empirically find that our theoretical characterization captures well the learning curves of some networks
trained by gradient descent in the lazy regime.

Related works
Random features — Random features (Rfs) were introduced in [3] as a computationally efficient way of approximating
large kernel matrices. In the shallow case, the asymptotic spectral density of the conjugate kernel was derived in [19–21].
The test error was on the other hand characterized in [9, 10] for ridge regression, and extended to generic convex losses
by [4, 6, 8], and in [22–24] for other penalties. RFs have been studied as a model for networks in the lazy regime, see e.g.
[25–28];

Deep RFs – Recent work have addressed the problem of extending these results to deeper architectures. In the case of
linear networks, a sharp characterization of the test error is provided in [11] for the case of unstructured weights and [14]
in the case of structured weights. For non-linear RFs, [12] provides deterministic equivalents for the sample covariance
matrices, and [12, 13] provide a tight characterization of the test error. Deep random networks have been also studied in
the context of Gaussian processes by [29, 30], Bayesian neural networks in [11, 31–35] and inference in [36–40]. The
recent work of [17] provides empirical evidence that for a given trained neural network, a resampled network from an
ensemble with matching statistics (rainbow networks) might achieve comparable generalization performance, thereby
partly bridging the gap between random networks and trained networks.

2 Setting
Consider a supervised learning task with training data (xi, yi)i∈[n]. In this manuscript, we are interested in studying the
statistics of linear predictors fθ(x) = 1√

pθ
⊤φ(x) for a class of fixed feature maps φ : Rd → Rp and weights θ ∈ Rp

trained via empirical risk minimization:

θ̂λ = min
θ∈Rp

∑
i∈[n]

(yi − fθ(xi))
2
+ λ||θ||2. (1)

Of particular interest is the generalization error:

Egen(θ̂λ) = E
(
y − fθ̂λ(x)

)2
(2)

where the expectation is over a fresh sample from the same distribution as the training data. More precisely, our results
will hold under the following assumptions.

Assumption 2.1 (Labels). We assume that the labels yi are generated by another feature map φ∗ : R
d → Rk as

yi =
1√
k
θ⊤∗ φ∗(xi) + εi, (3)

where ε ∈ Rn is an additive noise vector (independent of the covariates xi) of zero mean and covariance Σ := E εε⊤,
and θ∗ ∈ Rk is a deterministic weight vector.

Assumption 2.2 (Data & Features). We assume that the covariates xi are independent and come from a distribution
such that

(i) the feature maps φ,φ∗ are centered in the sense Eφ(xi) = 0, Eφ∗(xi) = 0,
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(ii) the feature covariances

Ω := Eφ(xi)φ(xi)
⊤ ∈ Rp×p, Ψ := Eφ∗(xi)φ∗(xi)

⊤ ∈ Rk×k, Φ := Eφ(xi)φ∗(xi)
⊤ ∈ Rp×k, (4)

have uniformly bounded spectral norm.

(iii) scalar Lipschitz functions of the feature matrices

X := (φ(x1), . . . , φ(xn)) ∈ Rp×n, Z := (φ∗(x1), . . . , φ∗(xn)) ∈ Rk×n (5)

are uniformly sub-Gaussian.

Assumption 2.3 (Proportional regime). The number of samples n and the feature dimensions p, k are all large and
comparable, see Theorem 3.1 later.

Remark 2.4. We formulated Assumption 2.2 as a joint assumption on the covariates distribution and the feature maps. A
conceptually simpler but less general condition would be to assume that

(ii’) the covariates xi are Gaussian with bounded covariance Ω0 := E xix
⊤
i

(iii’) the feature maps φ,φ∗ are Lipschitz-continuous

instead of Assumptions (ii) and (iii).

The setting above defines a quite broad class of problems, and the results that follow in Section 3 will hold under
these generic assumptions. The main class of feature maps we are interested in are deep structured feature models.

Definition 2.5 (Deep structured feature model). For any L ∈ N and dimensions d, p1, . . . , pL = p, let φ1, . . . , φL : R →
R be Lipschitz-continuous activation functions |φl(a)− φl(b)| ≲ |a− b| applied entrywise, and letW1 ∈ Rp1×d,W2 ∈
Rp2×p1 , . . . be deterministic weight matrices with uniformly bounded spectral norms, ∥Wl∥ ≲ 1. We then call

φ(x) := φL (WLφL−1 (· · ·W2φ1 (W1x))) . (6)

a deep structured feature model.

Note that eq. (6) defines a Lipschitz-continuous map1 φ : Rd → Rp, φ∗ : R
d → Rk and therefore if both φ,φ∗

are deep structured feature models (with distinct parameters in general), then Assumption 2.2 is satisfied whenever
the feature maps φ,φ∗ are centered2 with respect to Gaussian covariates xi. As hinted in the introduction we will be
particularly interested in one sub-class of Definition 2.5 known as Gaussian rainbow networks.

Definition 2.6 (Gaussian rainbow ensemble). Borrowing the terminology of [17], we define a fully-connected, L-layer
Gaussian rainbow network as a random variant of Definition 2.5 where for each ℓ the hidden-layer weightsWℓ = ZℓC

1/2
ℓ

are random matrices with Zℓ ∈ Rpℓ+1×pℓ having zero mean and i.i.d. variance 1/pℓ Gaussian entries and Cℓ ∈ Rpℓ×pℓ

being uniformly bounded covariance matrices, which we allow to depend on previous layer weights Z1, . . . , Zl−1.

Note that Gaussian rainbow networks above can be seen as a generalization of the deep random features model
studied in [12, 13, 41], with the crucial difference that the weights are structured.

Notations
For square matrices A ∈ Rn×n we denote the averaged trace by ⟨A⟩ := n−1 TrA, and for rectangular matrices
A ∈ Rn×m we denote the Frobenius norm by ∥A∥2F :=

∑
ij |aij |2, and the operator norm by ∥A∥. For families of

non-negative random variables X(n), Y (n) we say that X is stochastically dominated by Y , and write X ≺ Y , if for all
ϵ,D it holds that P (X(n) ≥ nϵY (n)) ≤ n−D for n sufficiently large.

1∥φ(W x)− φ(W x′)∥2 =
∑

i|φ(w⊤
i x)− φ(w⊤

i x′)|2 ≲
∑

i|w⊤
i (x− x′)|2 = ∥W (x− x′)∥2 ≲ ∥x− x′∥2

2It is sufficent that e.g. ϕl is odd, and xi is centered.
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3 Test error of Lipschitz feature models
Under Assumptions 2.1 and 2.2 the generalization error from Eq. (2) is given by

Egen(λ) =
θ⊤∗ Ψθ∗
k

+
θ⊤∗ ZX

⊤GΩGXZ⊤θ∗
kp2

+
n

p

〈
X⊤GΩGXΣ

p

〉
− 2

θ⊤∗ Φ
⊤GXZ⊤θ∗
kp

, (7)

in terms of the resolvent G = G(λ) := (XX⊤/p+ λ)−1.
Our main result is a rigorous asymptotic expression for Eq. (7). To that end define,m(λ) to be the unique solution to

the equation
1

m(λ)
= λ+

〈
Ω
(
I +

n

p
m(λ)Ω

)−1
〉
, (8)

and define
M(λ) =

(
λ+

n

p
λm(λ)Ω

)−1

(9)

which is the deterministic equivalent of the resolvent,M(λ) ≈ G(λ), see Theorem 3.3 later. The fact that eq. (8) admits a
unique solutionm(λ) > 0 which is continuous in λ follows directly from continuity and monotonicity. Moreover, from

0 ≤
〈
Ω
(
I +

n

p
mΩ

)−1
〉

≤ min

{
⟨Ω⟩, rankΩ

n

1

m

}
we obtain the bounds

max

{
1

λ+ ⟨Ω⟩
,
1− rankΩ

n

λ

}
≤ m(λ) ≤ 1

λ
. (10)

We also remark thatm(λ) depends onΩ only through its eigenvaluesω1, . . . , ωp, whileM(λ) depends on the eigenvectors.
The asymptotic expression Eq. (12) for the generalization error derived below depends on the eigenvalues of Ω, the
overlap of the eigenvectors of Ω with the eigenvectors of Φ, and the overlap of the eigenvectors of Ψ,Φ with θ∗.

Theorem 3.1. Under Assumption 2.1, Assumption 2.2 and Assumption 2.3 for fixed λ > 0 we have the asymptotics

Egen(λ) = Ermt
gen(λ) +O

(
1√
n

)
, (11)

in the proportional n ∼ k ∼ p regime, where

Ermt
gen(λ) :=

1

k
θ⊤∗

Ψ− n
pmλΦ(M + λM2)Φ⊤

1− n
p (λm)2⟨ΩMΩM⟩

θ∗ + ⟨Σ⟩
(λm)2 n

p ⟨MΩMΩ⟩
1− n

p (λm)2⟨ΩMΩM⟩
. (12)

In the general case of comparable parameters we have the asymptotics with a worse error of

1√
min{n, p, k}

(
1 +

max{n, p, k}
min{n, p, k}

)
.

Remark 3.2 (Relation to previous results). We focus on the misspecified case as this presents the main novelty of the present
work. In the wellspecified case Z = X our model essentially reduces to linear regression with data distribution x = φ(x).
There has been extensive research on the generalization error of linear regression, see e.g. in [42–45] and the references therein.

(a) We confirm Conjecture 1 of [23] under assumption 2.2. The expression for the error term in Theorem 3.1 matches the
expression obtained in [23] for a Gaussian covariates teacher-student model.

(b) Independently and concurrently to the current work [46] (partially confirming a conjecture made in [47]) obtained
similar results under different assumptions. Most importantly [46] considers one-layer unstructured random feature
models and computes the empirical generalization error for a deterministic data set, while we consider general Lipschitz
features of random data, and compute the generalization error.

(c) In the unstructured random feature model [10, 48] obtained an expression for the generalization error under the
assumption that the target model is linear or rotationally invariant.

The novelty of Theorem 3.1 compared to many of the previous works is, besides the level of generality, two-fold:
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(i) We obtain a deterministic equivalent for the generalization error involving the population covariance Φ and the
sample covariance XZ⊤ in the general misspecified setting.

(ii) Our deterministic equivalent is anisotropic, allowing to evaluate Eq. (7) for fixed targets θ∗ and structured noise
covariance Σ ̸= I .

Some of the previous rigorous results on the generalization error of ridge regression have been limited to the well-specified
case, X = Z , since in this particular case the second term of Eq. (7) can be simplified to

XX⊤

p
GΩG

XX⊤

p
= (1− λG)Ω(1− λG). (13)

When computing deterministic equivalents for terms as GΩG, some previous results have relied on the “trick” of
differentiating a generalized resolvent matrix rG(λ, λ′) := (XX⊤/p+ λ′Ω+ λ)−1 with respect to λ′. Our approach is
more robust and not limited to expressions which can be written as certain derivatives.

To illustrate Item (ii), the conventional approach in the literature to approximating e.g. the third term on the right
hand side of Eq. (7) in the case Σ = I would be to use the cyclicity of the trace to obtain

1

p2
TrX⊤GΩGX =

1

p
TrG

XX⊤

p
GΩ

= ⟨GΩ⟩ − λ⟨G2Ω⟩.
(14)

Then upon using Eq. (8) and ⟨GΩ⟩ ≈ ⟨MΩ⟩, the first term of Eq. (14) can be approximated by 1/(λm(λ))− 1, while for
the second term it can be argued that this approximation also holds in derivative sense to obtain

⟨G2Ω⟩ = − d

dλ
⟨GΩ⟩ ≈ − d

dλ

1

λm(λ)
=
λm′(λ) +m(λ)

(λm(λ))2

By differentiating Eq. (8), solving form′ and simplifying, it can be checked that this result agrees with the second term
of Eq. (12) in the special case Σ = I . However, it is clear that any approach which only relies on scalar deterministic
equivalents is inherently limited in the type of expressions which can be evaluated. Instead, our approach involving
anisotropic deterministic equivalents has no inherent limitation on the structure of the expressions to be evaluated.

An alternative to evaluating rational expressions of X,Z , commonly used in similar contexts, is the technique of
linear pencils [46, 48]. The idea here is to represent rational functions of X,Z as blocks of inverses of larger random
matrices which depend linearly X,Z . The downside of linear pencils is that even for simple rational expressions the
linearizations become complicated, sometimes even requiring the use of computer algebra software for the analysis3
In comparison we believe that our approach is more direct and flexible.

3.1 Proof of Theorem 3.1
We present the proof of Theorem 3.1 in details in Appendix A. The main steps and ingredients for the proof of Theorem 3.1
consist of the following:

Concentration:
As a first step we establish concentration estimates for Lipschitz functions of X,Z and its columns. A key aspect is
the concentration of quadratic forms in the columns xi := φ(xi) of X :

|x⊤i Axi −Ex⊤i Axi| = |x⊤i Axi − TrΩA| ≺ ∥A∥F

which follows from the Hanson-Wright inequality [49]. The concentration step is very similar to analagous
considerations in previous works [50, 51] but we present it for completeness. The main property used extensively
in the subsequent analysis is that traces of resolvents with deterministic observables concentrate as

|⟨A[G(λ)−EG(λ)]⟩| ≺ ⟨|A|2⟩1/2

nλ3/2
. (15)

Anisotropic Marchenko-Pastur Law:
As a second step we prove an anisotropic Marchenko-Pastur law for the resolvent G, of the form:

3For instance [48] used block matrices with up to 16× 16 blocks in order to evaluate the asymptotic test error.
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Theorem 3.3. For arbitrary deterministic matrices A we have the high-probability bound

|⟨(G(λ)−M(λ)A⟩| ≺ ⟨|A|2⟩
nλ3

, (16)

in the proportional n ∼ p regime4.

Remark 3.4. Tracial Marchenko-Pastur laws (case A = I above) have a long history, going back to [52] in the
isotropic case Ω = I , [53] in the general case with separable covariance x =

√
Ωz and [54] under quadratic form

concentration assumption. Anisotropic Marchenko-Pastur laws under various conditions and with varying precision
have been proven e.g. in [47, 50, 55, 56].

For the proof of Theorem 3.3 the resolvent qG := (X⊤X/p+ λ)−1 ∈ Rn×n of the Gram matrix X⊤X plays a key
role. The main tool used in this step are the commonly used leave-one-out identities, e.g.

Gxi = λ qGiiG−ixi, G−i :=
(∑
j ̸=i

xjx
⊤
j

p
+ λ

)−1

(17)

which allow to decouple the randomness due the i-th column from the remaining randomness. Such identities are
used repeatedly to derive the approximation

EG ≈
(n
p
λ⟨E qG⟩Ω+ λ

)−1

(18)

in Frobenius norm, which, together with the relation 1 − λ⟨ qG⟩ = p
n

(
1 − λ⟨G⟩

)
between the traces of G and

qG, yields a self-consistent equation for ⟨ qG⟩. This self-consistent equation is an approximate version of Eq. (8),
justifying the definition ofm. The stability of the self-consistent equation then implies the averaged asymptotic
equivalent

|m− ⟨E qG⟩| ≲ 1

nλ2
. (19)

and therefore by Eq. (18) finally
∥M −EG∥F ≲

1

n1/2λ3
, (20)

which together with Eq. (15) implies Theorem 3.3.
Compared to most previous anisotropic deterministic equivalents as in [56] we measure the error of the ap-
proximation Eq. (16) with respect to the Frobenius of the observable A. As in the case of unified local laws for
Wigner matrices [57] this idea renders the separate handling of quadratic form bound unnecessary, considerably
streamlining the proof. To illustrate the difference note that specializing A to be rank-one A = xy⊤ in

|y⊤(G−M)x| = |Tr(G−M)A| ≺

{
∥A∥
⟨|A|2⟩1/2

results in a trivial estimate ∥x∥∥y∥ in the case of the spectral norm, and in the optimal estimate ∥x∥∥y∥/√p in the
case of the Frobenius norm.

Anisotropic Multi-Resolvent Equivalents
The main novelty of the current work lies in Proposition A.4 which asymptotically evaluates the expressions
on the right-hand-side of Eq. (7). A key property of the deterministic equivalents is that the approximation is
not invariant under multiplication. E.g. for the last term in Eq. (7) we have the approximations G ≈ M and
1
nXZ

⊤ = 1
n

∑
xiz

⊤
i ≈ Φ, while for the product the correct deterministic equivalent is

G
XZ⊤

n
≈ λmMΦ, (21)

i.e. the is an additional factor ofmλ. In this case the additional factor can be obtained from a direct application of the
leave-one-out identity Eq. (17) to the productGXZ⊤

n , but the derivation of the multi-resolvent equivalents requires
4See the precise statement in the comparable regime in Eq. (51) later
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more involved arguments. When expanding the multi-resolvent expression ⟨GAGB⟩ we obtain an approximative
self-consistent equation of the form

⟨GAGB⟩ ≈ ⟨MAMB⟩+ n

p
(mλ)2⟨MBMΩ⟩⟨GAGΩ⟩.

Using a stability analysis this yields a deterministic equivalent for the special form ⟨GAGΩ⟩ which then can be
used for the general case. The second term of Eq. (7) requires the most carefuly analysis due to the interplay of
the multi-resolvent expression and the dependency among Z,X .

4 Population covariance for rainbow networks
Theorem 3.1 characterizes the test error for learning using Lipschitz feature maps as a function of the three features
population (cross-)covariances Ω,Φ,Ψ. For the particular case where both the target and learner feature maps are drawn
from the Gaussian rainbow ensemble from Definition 2.6, these population covariances can be expressed in closed-form
in terms of combinations of products of the weights matrices. Consider two rainbow networks

φ(x) = φL(WLφL−1(. . . φ1(W1x)))

φ∗(x) = ψ
rL(VrLψrL−1(. . . ψ1(V1x)))

(22)

with depths L, rL. The approach we introduce here is in theory capable of obtaining linear or polynomial approximations
to Ω,Φ,Ψ under very general assumptions. However, for definiteness we focus on a class of correlated rainbow networks
in which, for all k ̸= j, the k-th row ofWℓ is independent from the j-th row ofWℓ, Vℓ as this allows for particularly
simple expressions for the linearized covariances5. Note that we explicitly allow for weights to be correlated across layers.

Assumption 4.1 (Correlated rainbow networks). By symmetrywe assumewithout loss of generalityL ≤ rL. Furthermore,
we assume that

(a) for ℓ ≤ L ≤ rL all the internal widths pℓ ofWℓ, Vℓ agree,

(b) for all ℓ ≤ rL, the dimensions scale proportionally, i.e. n ∼ d ∼ pℓ,

(c) for ℓ ≤ L ≤ rL the rows wℓ, vℓ ofWℓ, Vℓ are mean-zero and i.i.d. with

Cℓ := pℓ Ewℓw
⊤
ℓ ,

rCℓ := pℓ E vℓv
⊤
ℓ ,

qCℓ := pℓ Ewℓv
⊤
ℓ ,

(d) for two (possibly identical) rows u, z, and for any matrix A, quadratic forms admit concentration, w.h.p.6

u⊤Az − Tr(AE zu⊤) ≲ n−1/2, (23)

(e) for all ℓ ≤ rL, operator norms of (cross-)covariance matrices admit uniform bounds

∥Cℓ∥+ ∥ rCℓ∥+ ∥ qCℓ∥ ≲ 1. (24)

Under Assumption 4.1 the linearized population covariances can be defined recursively as follows:

Definition 4.2 (Linearized population covariances). Define the sequence of matrices Ωlin
ℓ ,Φlin

ℓ ,Ψlin
ℓ by the recursions

Ωlin
ℓ = (κ1ℓ)

2WℓΩ
lin
ℓ−1W

⊤
ℓ + (κ∗ℓ )

2I

Ψlin
ℓ = (κ̃1ℓ)

2VℓΨ
lin
ℓ−1V

⊤
ℓ + (rκ∗ℓ )

2I

Φlin
ℓ = κ1ℓ κ̃

1
ℓWℓΦ

lin
ℓ−1V

⊤
ℓ + (qκ∗ℓ )

2I,

(25)

with Ωlin
0 = Ψlin

0 = Φlin
0 = Ω0 the input covariance. The coefficients {κ1ℓ , κ̃1ℓ , κ∗ℓ , κ̃∗ℓ} are defined by the recursion

κ1ℓ := Eφ′
ℓ(Nℓ), rκ1ℓ := Eψ′

ℓ(
rNℓ) (26)

5The identity matrices in Eq. (25) are a direct consequence of this assumption. In case of weight matrices with varying row-norms or covariances
across rows the resulting expression would be considerably more complicated.

6This concentration holds in particular when rows u, z are Lipschitz concentrated with constant O(n−1/2), see Theorem A.3.
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and

κ∗ℓ =
√
E[φℓ(Nℓ)2]− rℓ(κ1ℓ)

2

κ̃∗ℓ =

√
E[ψℓ( rNℓ)2]− r̃ℓ(κ̃1ℓ)

2

qκ∗ℓ =

√
E[φℓ(Nℓ)ψℓ( rNℓ)]− řℓκ1ℓrκ1ℓ ,

(27)

where Nℓ, rNℓ are jointly mean-zero Gaussian with EN2
ℓ = rℓ, E rN2

ℓ = rrℓ, ENℓ
rNℓ = qrℓ, with

rℓ = Tr[CℓΩ
lin
ℓ−1], rrℓ = Tr[ rCℓΨ

lin
ℓ−1], qrℓ = Tr[ qC⊤

ℓ Φlin
ℓ−1].

Finally, for L̃ ≥ ℓ ≥ L+ 1, define

Φlin
ℓ = rκ1ℓΦ

lin
ℓ−1

ĂW⊤
ℓ , (28)

with still rκ1ℓ , rκ
∗
ℓ just as before, and Ψlin

ℓ with the same recursion (25).

Conjecture 4.3. The populations covariances Ω,Φ,Ψ involved in Theorem 3.1 can be asymptotically approximated with
the last iterates of the linear recursions of Definition 4.2, i.e.

∥Ω− Ωlin
L ∥F + ∥Ψ−Ψlin

L̃
∥F + ∥Φ− Φlin

L̃
∥F ≲ 1 (29)

Note that the linearization from Definition 4.2 also provides good approximation to the population covariances
Ωℓ,Φℓ,Ψℓ of the post-activations at intermediate layers ℓ. The method we use to rigorously derive the linearizations
is in theory applicable to any depths, however the estimates quickly become tedious. To keep the present work at a
manageable length we provide a rigorous proof of concept only for the simplest multi-layer case.

Theorem 4.4. Under Assumption 4.1 with L = 1, rL = 2 we have

∥Ω1 − Ωlin
1 ∥F + ∥Ψ1 −Ψlin

1 ∥F + ∥Φ1 − Φlin
1 ∥F ≲ 1

∥Ψ2 −Ψlin
2 ∥F + ∥Φ2 − Φlin

2 ∥F ≲ 1

with high probability.

Remark 4.5 (Comparison). The approach we take here is somewhat different from previous works [12, 41, 58] on (multi-layer)
random feature models. In these previous results, the deterministic equivalent for the resolvent was obtained using primarily
the randomness of the weights, resulting in relatively stringent assumptions (Gaussianity and independence between layers).
This layer-by-layer recursive approach resulted in a deterministic equivalent for the resolvent which is consistent with a
sample covariance matrix with linearized population covariance. Here we take the direct approach of considering feature
models with arbitrary structured features, and then linearize the population covariances in a separate step for random
features.

4.1 Proof of Theorem 4.4
We sketch the main tools used in the argument and we refer the reader to Proposition B.11 and Theorem B.12 for the
formal proof. In the proof, we crucially rely on the theory of Wiener chaos expansion and Stein’s method (see [59]).
Gaussian Wiener chaos is a generalization of Hermite polynomial expansions, which previously have been used for
approximate linearization [12, 41] in similar contexts. The basic idea is to decompose random variables F = F (x) which
are functions of the Gaussian random vector x, into pairwise uncorrelated components

F = EF +
∑
p≥1

Ip

(EDpF

p!

)
, (30)

where Ip is a so called multiple integral (generalizing Hermite polynomials) and Dp is the p-th Malliavin derivative. By
applying this to the one-layer quantities φ1(w

⊤x), ψ1(u
⊤x) we obtain, for instance

Eφ1(w
⊤x)ψ1(v

⊤x)

=
∑
p≥1

1

p!
Eφ

(p)
1 (w⊤x)Eψ

(p)
1 (u⊤x)⟨w, v⟩p, (31)
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Figure 1: Test error for a target θ⊤∗ tanh(W∗x), when learning with a four-layer Gaussian rainbow network with
feature map φ(x) = tanh(W3 tanh(W2 tanh(W1x))). All width were taken equal to the input dimension d, and the
regularization employed is λ = 10−4. The student weights are correlated across layers, with W1 = W2, and the
covariance C3 ofW3 depending onW1 as C3 = (W1W

⊤
1 + 1/2I)−1. Target/student correlations are also present, with

Č1 = 1/2I . The covariances C1, C2, C̃1 were finally taken to have a spectrum with power-law decay, parametrized
by γ. All details are provided in App. C. Solid lines: theoretical prediction of Theorem 3.1, in conjunction with the
closed-form expression for the features population covariance of Definition 4.2. Crosses : numerical simulations in
d = 1000. All experimental points were averaged over 20 instances, with error bars representing one standard deviation.
Different colors represent different values for the parameter γ, with small (large) values indicating slow (fast) covariance
eigenvalue decay.

which for independent w, v we can truncate after p = 1, giving rise to the linearization.
For the multi-layer case we combine the chaos expansion with Stein’s method in order to prove quantitative central

limit theorems of the type
dW (F,N) ≲ E|EF 2 − ⟨DF,−DL−1F ⟩| (32)

for the Wasserstein distance dW , where

F := w⊤φ1(W x), N ∼ N(0,EF 2), (33)

and L−1 is the pseudo-inverse of the generator of the Ornstein–Uhlenbeck semigroup.

4.2 Discussion of Theorem 4.4
The population covariances thus admit simple approximate closed-form expressions as linear combinations of products
of relevant weight matrices. These expressions generalize similar linearizations introduced in [12, 13, 18, 41, 58] for the
case of weights which are both unstructured and independent, and iteratively build upon earlier results for the two-layer
case developed in [4, 6, 7, 9]. In fact, the expressions leveraged in these works can be recovered as a special case for
Cℓ = C̃ℓ = I (isotropic weights) and Čℓ = 0 (independence). Importantly, note that possible correlation between weights
across different layers do not enter in the reported expressions. In practice, we have observed in all probed settings the
test error predicted by Theorem 3.1, in conjunction with the linearization formulae for the features covariance, to match
well numerical experiments.

Figure 1 illustrates a setting where many types of weights correlations are present. It represents the learning curves
of a four-layer Gaussian rainbow network with feature map tanh(W3 tanh(W2 tanh(W1x))), learning from a two-layer
target θ⊤∗ tanh(ĂW x). To illustrate our result, we consider both target/student correlations qC1 = 1/2I , and inter-layer
correlationsW1 = W2. We furthermore took the covariance of the third layer to depend on the weights of the first
layer, C3 = (W1W

⊤
1 + 1/2I)−1. In order to have structured weights, the covariances rC1, C1, C2 were chosen to have

a power-law spectrum. All details on the experimental details and parameters are exhaustively provided in Appendix
C. Note that despite the presence of such non-trivial correlations, the theoretical prediction of Theorem 3.1 using the
linearized closed-form formulae of Def. 4.2 for the features covariances (solid lines) captures compellingly the test error
evaluated in numerical experiment (crosses).

Finally, we note that akin to [12], as a consequence of the simple linear recursions, it follows that the Gaussian
rainbow network feature map φ shares the same second moments, and thus by Theorem 3.1 the same test error, as an
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Figure 2: Crosses : Test error when training the readout layer only of a tanh-activated three-layer neural network at
initialization (green) and after training (blue), using the Pytorch implementation of the full-batch Adam [61] optimizer,
over 3000 epochs with leraning rate 10−4 and n0 = 1400 samples, in dimension d = 1000. (red): ridge regression. The
data is sampled from an isotropic Gaussian distribution. In all training procedures, an ℓ2 optimization was employed, and
the strength thereof optimized over using cross-validation. Solid lines represent the theoretical prediction of Theorem
3.1, using the linearized formulae of Definition 4.2 for the features population covariances Ω,Ψ,Φ. Crosses represent
numerical experiments. Each simulation point is averaged over 10 instances, with error bars representing one standard
deviation.

equivalent linear stochastic network φlin = ψL ◦ · · · ◦ ψ1, with

ψℓ(x) = κ1ℓWℓx+ κ∗ℓξℓ (34)

where ξℓ ∼ N(0, I) a stochastic noise. This equivalent viewpoint has proven fruitful in yielding insights on the implicit
bias of RFs [12, 60] and on the fundamental limitations of deep networks in the proportional regime [18]. In the Section 5
we push this perspective further, by heuristically finding that the linearization and Theorem 3.1 can also describe
deterministic networks trained with gradient descent in the lazy regime.

5 Linearizing trained neural networks
The previous discussion addressed feature maps associated to random Gaussian networks. However, note that the
linearization itself only involves products of the weights matrices, and coefficient depending on weight covariances
which can straightforwardly be estimated therefrom. The linearization 4.2 can thus be readily heuristically evaluated
for feature maps associated to deterministic trained finite-width neural networks. As we discuss later in this section,
the resulting prediction for the test error captures well the learning curves when re-training the readout weights of the
network in a number settings. Naturally, such settings correspond to lazy learning regimes [60], where the network
feature map is effectively linear, thus little expressive. However, these trained feature map, albeit linear, can still encode
some inductive bias, as shown by [62] for one gradient step in the shallow case. In this section, we briefly explore these
questions for fully trained deep networks, through the lens of our theoretical results.

Fig. 2 contrasts the test error achieved by linear regression (red), and regression on the feature map associated to a
three-layer student at initialization (green) and after 3000 epochs of end-to-end training using full-batch Adam [61] at
learning rate 10−4 and weight decay 10−3 over n0 = 1400 training samples (blue). For all curves, the readout weights
were trained using ridge regression, with regularization strength optimized over using cross-validation. Solid curves
indicate the theoretical predictions of Thm. 3.1 leveraging the closed-form linearized formulae 4.2 for the features
covariance. Interestingly, even for the deterministic trained network features, the formula captures the learning curve
well. This observation temptingly suggests to interpret the feature map φ(x) as the stochastic linear map

φg(x) =Weff.x+ C
1/2
eff.ξ (35)

where Weff. ∈ Rp×d is proportional to the product of all the weight matrices and ξ ∼ N(0, I) is a stochastic noise
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colored by the covariance

Ceff. ≡
L−1∑
ℓ=1

(
κ∗ℓ

L∏
s=ℓ+1

κ1s

)2

ŴL . . . Ŵℓ+1Ŵ
⊤
ℓ+1 . . . Ŵ

⊤
L + (κ∗L)

2I. (36)

We denoted {Ŵℓ}1≤ℓ≤L the trained weights. Note that the effective linear network (35) simply corresponds to the
composition of the equivalent stochastic linear layers (34). A very similar expression for the covariance of the effective
structured noise (36) appeared in [12] for the random case with unstructured and untrained randomweights. The effective
linear model (35) affords a concise viewpoint on a deep finite-width non-linear network trained in the lazy regime. On
an intuitive level, during training, the network effectively tunes the two matricesWeff., Ceff. which parametrize the
effective model (35). The effective weightsWeff. controls the (linear) representation of the data, while the colored noise
C

1/2
eff.ξ in (35) can be loosely interpreted as inducing an effective regularization.
In fact, despite the fact that all three feature maps represented in Fig. 2 are effectively just linear feature maps, they

can still encode very different biases, yielding different phenomenology. In particular, remark that the trained feature
map (blue) is outperformed by mere ridge regression (red) at large sample complexities, despite the former having been
priorly trained on n0 additional samples – suggesting the trained weightsWeff., Ceff. learned some form of inductive
bias which is helpful at small and moderate sample complexities, but ultimately harmful for large sample complexities.
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A Anisotropic asymptotic equivalents
Recall from Assumption 2.2 that we assume that the feature matrices X,Z are Lipschitz-concentrated in the following
sense (considering the vectors space of rectangular matrices equipped with the Frobenius norm):

Definition A.1 (Lipschitz concentration). We say that a random vector x in a normed vector space X is Lipschitz-
concentrated with constant µ if there exists a constant C such that for all 1-Lipschitz functions f : X → R it holds
that

P(|f(x)−E f(x)| ≥ t) ≤ C exp
(
− t2

Cµ2

)
. (37)

A sufficent condition for Lipschitz concentration is that that the columns xi = φ(xi) are Lipschitz functions of
Gaussian random vectors xi of bounded covariance Ω0 := E xix

⊤
i , c.f. Remark 2.4. Indeed, let rφ(g) := φ(

√
Ω0g)

and consider standard Gaussian vectors gi, . . . , gn. We recall that standard Gaussian random vectors are Lipschitz-
concentrated with a constant which is independent of the dimension:

Theorem A.2 (Gaussian concentration). Let g be a random vector with independent standard Gaussian entries. Then g is
Lipschitz-concentrated with constant µ = 1.

Therefore we can stack the Gaussian vectors g1, . . . , gn into g ∈ Rnp and write X = X(g) = (rφ(g1), . . . , rφ(gn)).
Then X is Lipschitz-concentrated with dimension-independent constant by Theorem A.2 since for any Lipschitz
f : Rp×n → R it holds that g 7→ f(X(g)) is Lipschitz due to

|f(X(g))− f(X(g′))|2 ≤ ∥X(g)−X(g)′∥2F =
∑
i

∥rφ(gi)− rφ(g′i)∥2 ≲
∑
i

∥gi − g′i∥2 = ∥g − g′∥2. (38)

Resolvent concentration
It will be useful to introduce also the resolvent of the associated Gram matrix X⊤X/p which is given by

qG =
(X⊤X

p
+ λ

)−1

. (39)

The two resolvents are related by the identity

X⊤GX

p
=

1

p
X⊤
(XX⊤

p
+ λ

)−1

X =
X⊤X

p

(X⊤X

p
+ λ

)−1

= 1− λ qG. (40)

Both resolvents G, qG are Lipschitz-continuous with respect to the Frobenius norm due to the resovlent identity(XX⊤

p
+ λ

)−1

−
(Y Y ⊤

p
+ λ

)−1

=
(XX⊤

p
+ λ

)−1 (Y −X)Y ⊤ +X(Y −X)⊤

p

(Y Y ⊤

p
+ λ

)−1
(41)

and the bound
∥GX∥ ≤

√
p∥G∥+ pλ∥G2∥ ≤

√
2p/λ, (42)

implying

∥G−G′∥F ≤ 2
µ

λ3/2p1/2
∥X − Y ∥F , G :=

(XX⊤

p
+ λ

)−1

, G′ :=
(Y Y ⊤

p
+ λ

)−1

. (43)

Therefore we obtain that

|⟨A(G−EG)⟩| ≲ ⟨|A|2⟩1/2

λ3/2p
, |⟨A( qG−E qG)⟩| ≲ ⟨|A|2⟩1/2

λ3/2p1/2n1/2
(44)

from Theorem A.2,

|⟨A(G−G′)⟩| ≤ 1

p
∥A∥F ∥G−G′∥F ≤ 2⟨|A|2⟩1/2

λ3/2p
∥X − Y ∥F . (45)

and the analogous estimate for qG− qG′. An important special case of eq. (44) is A being rank-one which yields

|x⊤Gy −Ex⊤Gy| ≲ ∥x∥∥y∥
λ3/2p1/2

, |x⊤ qGy −Ex⊤ qGy| ≲ ∥x∥∥y∥
λ3/2p1/2

(46)
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Quadratic form and norm concentration
The other important concentration result needed in the proof of Theorem 3.1 is the concentration of quadratic forms, see
e.g. Theorem 2.3 in [63].

Theorem A.3. If x is a random vector of mean zero satisfying Lipschitz concentration with constant µ, and A is a
deterministic matrix, then

|x⊤Ax−Ex⊤Ax| ≲ µ2∥A∥F . (47)

Finally we need some upper bound on the operator norm of X/√p which can be obtained standard ϵ-net arguments,∥∥∥∥XX⊤

n
− Ω

∥∥∥∥ ≺ p

n
, (48)

see e.g. Remark 5.40 in [64].

Leave-one-out identities
Define the leave-one-out resolvent G−i = (λ+ p−1

∑
j ̸=i xjx

⊤
j )

−1 for which we have the identity

G = G−i −
1

p

G−ixix
⊤
i G−i

1 + x⊤i G−ixi/p
= G−i − λ

G−ixix
⊤
i G−i

p
qGii

Gxi = G−ixi

(
1− 1

p

x⊤i G−ixi
1 + x⊤i G−ixi/p

)
=

G−ixi
1 + x⊤i G−ixi/p

= λ qGiiG−ixi

(49)

where the denominators can be simplified using

− 1

1 + x⊤i G−ixi/p
=

x⊤i G−ixi
1 + x⊤i G−ixi/p

− 1 =
x⊤i Gxi
p

− 1 = −λ( qG)ii (50)

due to (40).

Anisotropic Marchenko-Pastur Law
We are now ready to prove Theorem 3.3, the anisotropic Marchenko-Pastur Law. In the comparable regime from Theo-
rem 3.1 we will show that

|⟨[G(λ)−M(λ]A⟩| ≺ ⟨|A|2⟩1/2

pλ3

(
1 +

p

n
+
n

p

)
. (51)

Proof of Theorem 3.3. For the resolvent G we obtain the equation

I =
λ

p

∑
i

(
(E qGii)EG−iΩ+E( qGii −E qGii)G−ixix

⊤
i

)
+ λEG

= EG
(
λ
n

p
⟨E qG⟩Ω+ λ

)
+
λ

p

∑
i

(
⟨E qG⟩(EG−i −EG)Ω +E( qGii −E qGii)G−ixix

⊤
i

) (52)

so that

EG =
(
λ
n

p
⟨E qG⟩Ω+λ

)−1

+
λ

p

∑
i

(
⟨E qG⟩(EG−i−EG)Ω+E( qGii−E qGii)G−ixix

⊤
i

)(
λ
n

p
⟨E qG⟩Ω+λ

)−1

. (53)

Using the bounds

∥G−ixix
⊤
i −EG−ixix

⊤
i ∥F ≤ ∥G−ixix

⊤
i −G−iΩ∥F + ∥(G−i −E−iG−i)Ω∥F ≺ 1

λ
+

1

p1/2λ3/2
, (54)

∥EG−i −EG∥F = λ| qGii|
∥∥∥∥G−ixix

⊤
i G−i

p

∥∥∥∥
F

≺ 1

p

(
∥G−iΩG−i∥F + ∥G−i(xix

⊤
i − Ω)G−i∥F

)
≺ 1

p1/2λ2
(55)
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and | qGii −E qGii| ≺ 1
p1/2λ3/2 from Eq. (46) we thus obtain∥∥∥EG(λ)−M(λ, ⟨E qG⟩)

∥∥∥
F
≺ n

p3/2λ3
, M(λ,m) :=

(
λ
n

p
mΩ+ λ

)−1

. (56)

Note that whileM(λ, ⟨E qG⟩) is a deterministic matrix, it still depends on the expected trace of qG explicitly. However,
we claim that

|m− ⟨E qG⟩| ≲ m

pλ3
, (57)

proving

∥EG−M∥F ≲
1

p1/2λ3/2
+

n

p3/2λ3
+ ∥M(λ, ⟨E qG⟩)−M(λ,m)∥F ≲

1

p1/2λ3

(
1 +

n

p
+
p

n

)
. (58)

Now Eq. (51) follows directly together with the concentration estimate Eq. (44). Finally, eq. (57) follows from

|m− ⟨E qG⟩| ≤ λm|⟨E qG⟩|

∣∣∣∣∣ 1

λm
− 1

λ⟨E qG⟩

∣∣∣∣∣ = λm|⟨E qG⟩|
∣∣∣⟨ΩM(λ,m(λ))⟩ − ⟨ΩM(λ, ⟨E qG⟩)⟩

∣∣∣+O

(
m

pλ2

)
≤ |m− ⟨E qG⟩|λ2m|⟨E qG⟩|n

p
⟨ΩM(λ,m(λ))ΩM(λ, ⟨E qG⟩)⟩+O

(
m

pλ2

)
≤ |m− ⟨E qG⟩| ⟨Ω⟩

λ+ ⟨Ω⟩
+O

(
m

pλ2

) (59)

due to

⟨ΩM(λ, ⟨E qG⟩)⟩ = p

nλ⟨E qG⟩

(
1− λ⟨M(λ, ⟨E qG⟩)⟩

)
=

p

nλ⟨E qG⟩

(
1− λ⟨EG⟩

)
+O

(
1

pλ3⟨E qG⟩

)
=

1

λ⟨E qG⟩
− 1 +O

(
1

pλ3⟨E qG⟩

)
.

(60)

and
λ2m⟨E qG⟩n

p
⟨ΩM(λ,m)ΩM(λ, ⟨E qG⟩)⟩ ≤ λm⟨ΩM⟩ = 1− λm ≤ ⟨Ω⟩

λ+ ⟨Ω⟩
. (61)

Multi-Resolvent Deterministic Equivalents
The key for proving Theorem 3.1 is extending the anisotropic Marchenko-Pastur to mutli-resolvent expressions, which
we summarize in the following proposition. For simplicity we carry the precise error term in the comparable regime only
in the first statement, the other ones being similar.

Proposition A.4.

1. For any A ∈ Rk×p we have

1√
kp

⟨GXZ⊤A⟩ = λmn√
kp

⟨MΦA⟩+O

(
n

k1/2p3/2λ3

(
1 +

n

p
+
p

n

))
(62)

2. For any A ∈ Rp×p we have more generally

⟨AGΩG⟩ = ⟨AMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩1/2

pλ7

)
(63a)

while for any A,B ∈ Rp×p we have

⟨AGBG⟩ = ⟨AMBM⟩+ n

p
(mλ)2

⟨AMΩM⟩⟨ΩMBM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩1/2∥B∥

pλ7

)
(63b)
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3. For any A ∈ Rp×p we have〈
X⊤GΩGXA

p

〉
=

λ2m2⟨ΩMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

⟨A⟩+O

(
⟨|A|2⟩1/2

pλ7

)
(64)

4. Finally, for any A ∈ Rp×p we have

〈
ZX⊤GΩGXZ⊤A

kp

〉
= (mλ)2

n

k

〈
A
((

Ψ− 2n
pλmΦ⊤MΦ

)
⟨ΩMΩM⟩+ n

pΦ
⊤MΩMΦ

)〉
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩1/2

pλ7

) (65)

Before turning to the proof of Proposition A.4, we demonstrate how Proposition A.4 implies Theorem 3.1.

Proof of Theorem 3.1. By applying Proposition A.4 to the terms of Eq. (2) we obtain

Egen =
φ⊤
∗ Ψφ∗

k
+
φ⊤
∗ ZX

⊤GΩGXZ⊤φ∗

kp2
+
n

p

〈
X⊤GΩGXΣ

p

〉
− 2

φ⊤
∗ Φ

⊤GXZ⊤φ∗

kp

=
1

k
φ∗

(
Ψ+ (mλ)2

n

p

(
Ψ− 2n

pλmΦ⊤MΦ
)
⟨ΩMΩM⟩+ n

pΦ
⊤MΩMΦ

1− n
p (mλ)

2⟨ΩMΩM⟩
− 2λm

n

p
Φ⊤MΦ

)
φ∗

+ ⟨Σ⟩
(λm)2 n

p ⟨MΩMΩ⟩
1− n

p (λm)2⟨ΩMΩM⟩
+O

(
∥φ∗∥2

p1/2λ7

)
.

(66)

It remains to show that the matrix in the brackets can be simplified to the expression in Theorem 3.1. For the last term in
the numerator of the fraction we use

mλ
n

p
MΩM =M − λM2, (67)

so that the bracket, after simplifying, becomes

Ψ−mλn
pΦ

⊤(M + λM2)Φ

1− n
p (mλ)

2⟨ΩMΩM⟩
, (68)

just as claimed.

Proof of Proposition A.4. We begin with the proof of Item 1. First note that ⟨GXZ⊤A⟩ is a Lipschitz function of the
Gaussian randomness d used to construct X and Z . Indeed, denoting G,X,Z evaluated at another realization of the
Gaussian randomness by G′, X ′, Z ′ we have

⟨GXZ⊤A⟩ − ⟨G′X ′(Z ′)⊤A⟩ = ⟨(G−G′)XZ⊤A⟩+ ⟨G′(X −X ′)Z⊤A⟩+ ⟨G′X ′(Z − Z ′)⊤A⟩

= O

(
∥X −X ′∥F ∥X∥∥Z∥⟨|A|2⟩1/2

λ3/2p
+

(∥X −X ′∥F ∥Z∥+ ∥X∥∥Z − Z ′∥F )⟨|A|2⟩1/2

pλ

)
,

(69)

so that on the high probability event (recall Eq. (48)) that ∥X∥ ≺ √
p, ∥Z∥ ≺

√
k it follows that ⟨GXZ⊤A⟩ is Lipschitz

with constant ⟨|A|2⟩1/2/pλ3/2. By estimating the complement of this high probability event trivially we can conclude∣∣∣∣ 1√
kp

⟨GXZ⊤A⟩ − 1√
kp

⟨EGXZ⊤A⟩
∣∣∣∣ ≺ ⟨|A|2⟩1/2

pλ3/2
. (70)

For the expectation we write out XZ⊤ and use eq. (49) we obtain

1√
kp
GXZ⊤ =

1√
kp

∑
i

Gxiz
⊤
i =

1√
kp

∑
i

λ qGiiGixiz
⊤
i . (71)
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With

λ√
kp

E
∑
i

( qG)ii⟨Gixiz
⊤
i A⟩ =

λ√
kp

∑
i

(
(E qGii)⟨EGixiz

⊤
i A⟩+O

(√
Var qGii

√
Var⟨Gixiz⊤i A⟩

))
=

λ√
kp

∑
i

(E qGii)⟨EGiΦA⟩+O

(
n

k1/2p3/2λ2

)
=
λmn√
kp

⟨MΦA⟩+O

(
n

k1/2p3/2λ3

(
1 +

n

p
+
p

n

))
(72)

due to Eq. (58), Var qGii ≲ 1
pλ3 and

Var⟨G−ixiz
⊤
i A⟩ ≲

1

p2
E−i∥AG−i∥2F +Var−i⟨G−iΦA⟩ ≲

⟨|A|2⟩
pλ3

(73)

by eq. (44), this concludes the proof of Item 1.
We now turn to the proof of Item 2. First note that by Lipschitz concentration we have

|⟨AGBG−EAGBG⟩| ≲ ∥A∥⟨|B|2⟩1/2

pλ5/2
(74)

due to
|⟨AGBG⟩ − ⟨AG′BG′⟩| ≤ |⟨A(G−G′)BG⟩|+ |⟨AG′B(G−G′)⟩| ≤ 2

∥A∥∥B∥F
pλ

∥G−G′∥F (75)

and eq. (43).
It is useful to expand G aroundM as in

G =M + λMΩG
n

p
⟨m− qG⟩ −M

XX⊤

p
G+ λMΩG

n

p
⟨ qG⟩ =M −M

XX⊤

p
G+ λ⟨ qG⟩MΩG

n

p
+O

(
1

pλ3

)
MΩG

(76)

using eq. (57) in the second step. Consequently we obtain

⟨GAGB⟩ = ⟨MAGB⟩ − ⟨MXX⊤

p
GAGB⟩+ nλ

p
⟨ qG⟩⟨MΩGAGB⟩+O

(
⟨|A|2⟩1/2⟨|B|2⟩1/2

pλ6

)
= ⟨MAMB⟩ − 1

p

∑
i

(⟨Mxix
⊤
i GAGB⟩ − λ qGii⟨MΩGAGB⟩) +O

(
∥B∥⟨|A|2⟩1/2

pλ6

)
= ⟨MAMB⟩ − λ

p

∑
i

qGii(⟨Mxix
⊤
i G−iAG−iB⟩ − ⟨MΩGAGB⟩) +O

(
∥B∥⟨|A|2⟩1/2

pλ6

)
+
λ2

p

∑
i

qG2
ii

x⊤i G−iAG−ixi
p

x⊤i G−iBMxi
p

,

(77)

using eq. (49) in the third step. The second term of eq. (77) can be estimated in expectation using

λ

p
E
∑
i

qGii⟨Mxix
⊤
i G−iAG−iB⟩ = λ

p

∑
i

(
(E qGii)⟨EMΩG−iAG−iB⟩+O

(√
Var qGii

√
Var⟨Mxix⊤i G−iAG−iB⟩

))
=
λ

p

∑
i

(E qGii)⟨EMΩGAGB⟩+O

(
n∥B∥⟨|A|2⟩1/2

p2λ4

)
=
λ

p
E
∑
i

qGii⟨MΩGAGB⟩+O

(
n∥B∥⟨|A|2⟩1/2

p2λ4

)
(78)

since Var qGii ≲ 1
pλ3 ,

Var⟨Mxix
⊤
i G−iAG−iB⟩ ≲ 1

p2
E−i∥G−iAG−iBM∥2F +Var−i⟨MΩG−iAG−iB⟩ ≲ ∥B∥2⟨|A|2⟩

pλ6
(1 +

1

pλ
). (79)
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and
∥G−Gi∥ ≲

1

pλ2
, ⟨MΩG−iAG−iB⟩ = ⟨MΩGAGB⟩+O

(
∥B∥⟨|A|2⟩1/2

pλ4

)
. (80)

For the last term of Eq. (77) we have

x⊤i G−iAG−ixi
p

= ⟨ΩG−iAG−i⟩+O

(
1

p
∥G−iAG−i∥F

)
= ⟨ΩGAG⟩+O(

⟨|A|2⟩1/2

p1/2λ2
)

x⊤i G−iBMxi
p

= ⟨ΩG−iBM⟩+O

(
1

p
∥G−iBM∥F

)
= ⟨ΩMBM⟩+O(

⟨|B|2⟩1/2

p1/2λ2
),

(81)

so that with

E qG2
ii

x⊤i G−iAG−ixi
p

x⊤i G−iBMxi
p

= (E qG2
ii)
(
E
x⊤i G−iAG−ixi

p

)(
E
x⊤i G−iBMxi

p

)
+O

(
⟨|A|2⟩1/2⟨|B|2⟩1/2

pλ7

)
= (E qG2

ii)⟨EΩGAG⟩⟨EΩGBM⟩+O

(
⟨|A|2⟩1/2⟨|B|2⟩1/2

pλ7

)
(82)

and
1

p

∑
i

qG2
ii =

n

p
m2 + 2

n

p
m⟨ qG−m⟩+ 1

p

∑
i

( qGii −m)2 =
n

p
m2 +O

(
1

pλ5
+

n

p2λ3

)
(83)

we arrive at

λ2

p
E
∑
i

qG2
ii

x⊤i G−iAG−ixi
p

x⊤i G−iBMxi
p

=
n

p
(mλ)2⟨ΩMBM⟩⟨EΩGAG⟩+O

(
⟨|A|2⟩1/2⟨|B|2⟩1/2

pλ6

)
. (84)

Choosing B = Ω it follows that

⟨GAGΩ⟩(1− n

p
λ2m2⟨ΩMΩM⟩) = ⟨MAMΩ⟩+O

(
⟨|A|2⟩1/2

pλ6

)
, (85)

so that the final claim Item 2 follows upon division.
Turning to the proof of Item 3 we first note that by eq. (49) we have

E
(X⊤GΩGX

p

)
ii
= λ2 E qG2

ii⟨EΩG−iΩG−i⟩+O

(
1

p

√
Var qG2

ii

√
Varx⊤i G−iΩG−ixi

)
= λ2 E qG2

ii

⟨ΩMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
1

pλ7

)
,

(86)

so that by a Lipschitz concentration argument as in Eq. (74) we obtain for the diagonal part Ad of A = Ad +Ao that〈
X⊤GΩGX

p
Ad

〉
=

λ2m2⟨ΩMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

⟨Ad⟩+O

(
⟨|Ad|2⟩1/2

pλ7

)
. (87)

For the off-diagonal part we use eq. (49) twice to obtain(X⊤GΩGX

p

)
ij
=
λ2 qGii

qGjj

p
x⊤i G−iΩG−jxj

=
λ2 qGii

qGjj

p
x⊤i G−ijΩG−ijxj +

λ4 qG2
ii

qG2
jj

p3
x⊤i G−ijxjx

⊤
j G−ijΩG−ijxix

⊤
i G−ijxj

− λ3 qG2
ii

qGjj

p2
x⊤i G−ijΩG−ijxix

⊤
i G−ijxj −

λ3 qGii
qG2
jj

p2
x⊤i G−ijxjx

⊤
j G−ijΩG−ijxj .

(88)

The second term can be estimated trivially by p−3/2λ−4, while for the first, third and fourth terms the trivial estimates of
p−1/2λ−2, p−1λ−3 and p−1/2λ−3 do not suffice. For those we use the expectation and decompose qGii = m+( qGii−m),
qGjj = m+ ( qGjj −m) to obtain

E
λ2 qGii

qGjj

p
x⊤i G−ijΩG−ijxj = E

λ2( qGii −m)( qGjj −m)

p
x⊤i G−ijΩG−ijxj = O

(
1

λ2p3/2

)
(89)
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and

E
λ3 qG2

ii
qGjj

p2
x⊤i G−ijΩG−ijxix

⊤
i G−ijxj = E

λ3( qG2
ii

qGjj −m3)

p2
x⊤i G−ijΩG−ijxix

⊤
i G−ijxj = O

(
1

p3/2λ7/2

)
(90)

using that, say, xj is centered and independent of xi, G−ij . By combining these estimates we obtain

E

∣∣∣∣(X⊤GΩGX

p

)
ij

∣∣∣∣ = O

(
1

p3/2λ4

)
, (91)

concluding the proof of Item 3.
We now turn to the proof of (4) which follows a similar strategy as the proof of Item 2. First we note that by a

Lipschitz concentration argument as in Eq. (74) it is sufficient to approximate the expectation of ZX⊤GΩGXZ⊤. By
writing out ZX⊤ and XZ⊤ and using eq. (49) twice we obtain

1

kp
ZX⊤GΩGXZ⊤ =

1

kp

∑
ij

zix
⊤
i GΩGxjz

⊤
j

=
1

kp

∑
i

(λ qGii)
2zix

⊤
i G−iΩG−ixiz

⊤
i +

1

kp

∑
i̸=j

(λ qGii)(λ qGjj)zix
⊤
i G−iΩG−jxjz

⊤
j .

(92)

For the first term of Eq. (92) we have

n

kp
E⟨Azix⊤i G−iΩG−ixiz

⊤
i ⟩ = n

k2p
(E z⊤i Azi)(Ex

⊤
i G−iΩG−ixi) +O

(
n

k2p

√
Var z⊤i Azi

√
Varx⊤i G−iΩG−ixi

)
=
n

k
⟨AΨ⟩E⟨ΩG−iΩG−i⟩+O

(
n⟨|A|2⟩1/2

p1/2k3/2λ2

)
=
n

k
⟨AΨ⟩ ⟨ΩMΩM⟩

1− n
p (mλ)

2⟨ΩMΩM⟩
+O

(
n⟨|A|2⟩1/2

pkλ3
(1 +

√
p/k)

)
(93)

using Item 2 in the ultimate step. For the second term in the right hand side of Eq. (92) we expand both G−i and G−j

around G−ij using Eq. (49) to

⟨zix⊤i G−iΩG−jxjz
⊤
j A⟩ ≈

〈
zix

⊤
i

(
G−ij − λmG−ij

xjx
⊤
j

p
G−ij

)
Ω
(
G−ij −mλG−ij

xix
⊤
i

p
G−ij

)
xjz

⊤
j A

〉

=
〈
zix

⊤
i G−ijΩG−ijxjz

⊤
j A
〉
+ (λm)2

〈
zix

⊤
i G−ij

xjx
⊤
j

p
G−ijΩG−ij

xix
⊤
i

p
G−ijxjz

⊤
j A

〉

− λm

〈
zix

⊤
i G−ijΩG−ij

xix
⊤
i

p
G−ijxjz

⊤
j A

〉
− λm

〈
zix

⊤
i G−ij

xjx
⊤
j

p
G−ijΩG−ijxjz

⊤
j A

〉
.

(94)

Here in the first line we replaced ( qG−i)jj and ( qG−j)ii bym which results in an error term negligible compared to the
other error terms. The first term of Eq. (94) can, in expectation, be approximated by

E
〈
zix

⊤
i G−ijΩG−ijxjz

⊤
j A
〉
= E⟨Φ⊤G−ijΩG−ijΦA⟩ =

⟨Φ⊤MΩMΦA⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩1/2

pλ7

)
, (95)

using Item 2 in the ultimate step. The third term of Eq. (94) can be approximated by

λmE

〈
zix

⊤
i G−ijΩG−ij

xix
⊤
i

p
G−ijxjz

⊤
j A

〉
=

1

kp
λm(x⊤i G−ijΦAzi)(x

⊤
i G−ijΩG−ijxi)

= λmE−ij

(
⟨Φ⊤G−ijΦA⟩⟨ΩG−ijΩG−ij⟩+O

√Vari
x⊤i G−ijΦAzi

k

√
Vari

x⊤i G−ijΩG−ijxi
p

)
= λm

⟨Φ⊤MΦA⟩⟨ΩMΩM⟩
1− n

p (mλ)
2⟨ΩMΩM⟩

+O

(
⟨|A|2⟩
λ7p

(
1 +

√
p

k

))
(96)
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and the fourth term is exactly the same by symmetry. Here in the ultimate step we used

Vari
x⊤i G−ijΩG−ijxi

p
≲

1

p2
∥G−ijΩG−ij∥2F ≲

1

pλ2
, Vari

x⊤i G−ijΦAzi
k

≲
⟨|A|2⟩
λk

(97)

and Eq. (58) and Item 2. Finally, for the second term of Eq. (92) we use the simple bound〈
zix

⊤
i G−ij

xjx
⊤
j

p
G−ijΩG−ij

xix
⊤
i

p
G−ijxjz

⊤
j A

〉

=
1

kp2
(x⊤i G−ijxj)(x

⊤
j G−ijΩG−ijxi)(x

⊤
i G−ijxj)(z

⊤
j Azi)

= O

(
1

kp2
∥G−ij∥F ∥G−ijΩG−ij∥F ∥G−ij∥F ∥A∥F

)
= O

(
⟨|A|2⟩1/2

k1/2p1/2λ4

)
.

(98)

By combining all the above estimates we conclude the proof of Item 4.

B Linearization of population covariance

B.1 Technical background
In this section we state several definitions and propositions from [59], that will be used further in our arguments. Let
x ∈ Rd be a mean-zero Gaussian vector with covariance ExxT = I . Let X = {X(v) := v⊤x, for v ∈ Rd} be a
collection of jointly Gaussian centered random variables. Note that EX(g)X(h) = g⊤h. The theory ofWiener chaos,
which will be introduced shortly, can be used to study functions on the probability space (Ω,F, P ), where F is generated
byX . For our needs, we only state the results for the explicit construction ofX , however, note that the results from [59]
are about general separable Hilbert spaces.

Following ([59], Definition 2.2.3), we write Hn to denote the closed linear subspace of L2(Ω,F, P ) generated by the
random variables of type Hn(X(h)), h ∈ Rd =: H, ∥h∥ = 1. We callHn, the nth Wiener chaos.

Definition B.1. Let L2(Ω,H⊗̃p) be the space of functions f : Rd×p → R, such that f is square-integrable and

f(a1, . . . , ap) =
1

p!

∑
σ∈Sp

f(aσ(1), . . . , aσ(p)). (99)

Let S denote the set of all random variables of the form f(X(h1), . . . , X(hm)), where f : Rm → R is a C∞-
function.

Definition B.2 ([59], Definition 2.3.2). Let F ∈ S and p ≥ 1 be an integer. The pth Malliavin derivative of F (with
respect to X) is the element of L2(Ω,H⊗̃p), defined by

DpF :=

m∑
i1,...,ip=1

∂pf

∂xi1 . . . ∂xip
(X(h1), . . . , X(hm))hi1 ⊗ . . .⊗ hip . (100)

Proposition B.3 ([59], Proposition 2.3.7). Let ϕ : Rm → R be a continuously differentiable function with bounded partial
derivatives. Suppose that F = (F1, . . . , Fm) is a random vector whose components are functions with derivatives in Lq(γ),
for some q ≥ 1. Then, derivative of ϕ(F ) also lies in Lq(γ) and

Dϕ(F ) =

m∑
i=1

∂ϕ

∂xi
(F )DFi. (101)

Definition B.4 ([59], Definition 2.5.2). We define δpu as the unique element of L2 satisfying

E[Fδp(u)] = E[⟨DpF, u⟩H⊗p ].

Definition B.5 ([59], Definition 2.7.1). Let p ≥ 1 and f ∈ H⊗̃p. The p-th multiple integral of f with respect to X is
defined by Ip(f) = δp(f).
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Proposition B.6 ([59], Proposition 2.7.5). Fix integers 1 ≤ q ≤ p and f ∈ H⊗̃p and g ∈ H⊗̃q . We have

E Ip(f)Iq(g) = δpqp!⟨f, g⟩H⊗p (102)

Theorem B.7 ([59], Theorem 2.7.7). Let f ∈ H be such that ∥f∥H = 1. Then, for any integer p ≥ 1, we have

Hp(X(f)) = Ip(f
⊗p), (103)

where Hp is the p-th Hermite polynomial.

Corollary B.8 ([59], Corollary 2.7.8). Every F ∈ L2(Ω) can be expanded as

F = EF +

∞∑
p=1

Ip(fp), (104)

for some unique collection of kernels fp ∈ H⊗̃p, p ≥ 1. Moreover, if F ∈ C∞, then for all p ≥ 1,

fp =
1

p!
EDpF. (105)

Theorem B.9 ([59], Theorem 5.1.5). Let F ∈ C∞ be a square-integrable function. Let EF = 0 and EF 2 = σ2 > 0 and
N ∼ N(0, σ2). Let h : R → R be C2 with ∥h′′∥∞ <∞. Then,

|Eh(N)−Eh(F )| ≤ 1

2
∥h′′∥∞ E

[
|⟨DF,−DL−1F ⟩ − σ2|

]
. (106)

For our application, we need the following expansion: for smooth odd functions f , and matrixW ∈ Rk×d, we can
write

f(Wx)i = f(w⊤
i x) =

∑
p≥1

E f (p)((WW⊤)
1/2
ii N)

p!
Ip(w

⊗p
i ), (107)

where wi ∈ Rd is the i-th row ofW . Here without loss of generality we assume that x has i.i.d. entries, the general case
of covariance Ω0 then follows upon redefiningW1 7→W1

√
Ω0.

Lemma B.10 (Weak correlation). Let b ≥ 1 be an fixed integer. Let h0, h1, . . . , hb be a collection of functions. Then, if
⟨wi, wj⟩ ≲ d−1/2 for i ̸= j, we have that

E

[
h0(u

⊤φ1(W
1x))

b∏
i=1

hi(w
⊤
i x)

]
= Eh0(u

⊤φ1(W
1x))

b∏
i=1

Ehi(w
⊤
i x) +O(d−1/2). (108)

Proof. The fact that ui ≲ d−1/2 and φ1(w
⊤x) ≲ 1 together with perturbation analysis imply that

E

[
h0(u

⊤φ1(W
1x))

b∏
i=1

hi(w
⊤
i x)

]
= E

h0
 ∑

k≥b+1

ukφ1(w
⊤
k x)

 b∏
i=1

hi(w
⊤
i x)

+O(d−1/2). (109)

Let A := h0

(∑
k≥b+1 ukφ1(w

⊤
k x)

)
and B :=

∏b
i=1 hi(w

⊤
i x). Note that for any p ≥ 1, ⟨EDpA,EDpB⟩ constitutes

of terms ⟨wi, wj⟩ where i ̸= j. Each of these inner products is of order O(d−1/2) by our assumptions. Therefore, in total,
⟨EDpA,EDpB⟩ = O(d−p/2). This implies that

E

h0
 ∑

k≥b+1

ukφ1(w
⊤
k x)

 b∏
i=1

hi(w
⊤
i x)

 = E

h0
 ∑

k≥b+1

ukφ1(w
⊤
k x)

E

[
b∏

i=1

hi(w
⊤
i x)

]
+O(d−1/2). (110)

Similarly, it follows thatE
∏b

i=1 hi(w
⊤
i x) =

∏b
i=1 Ehi(w

⊤
i x)+O(d−1/2) and finally, using perturbation analysis again,

we conclude that

E

[
h0(u

⊤φ1(W
1x))

b∏
i=1

hi(w
⊤
i x)

]
= Eh0(u

⊤φ1(W
1x))

b∏
i=1

Ehi(w
⊤
i x) +O(d−1/2) (111)
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B.2 One layer linearization
Consider a mean-zero Gaussian random vector x ∈ Rd with covariance Exx⊤ = I , two weight matrices W ∈
Rk×d, V ∈ Rk×d and two smooth odd functions φ,ψ applied entrywise toWx, V x. We assume that rows ofW and
V satisfy Assumption 4.1; in particular, they are i.i.d. mean-zero samples (wi, vi) ∼ (w, v). We define Cw := C1/k =

Eww⊤, Cv := rC1/k = E vv⊤ and Cwv := qC1/k = Ewv⊤. Note that we also have TrCw,TrCv,TrCwv ≲ 1.
Let Nw, Nv be jointly Gaussian mean-zero random variables, such that

EN2
w = TrCw, EN2

v = TrCv, ENwNv = TrCwv. (112)

Define

Φ1 = Eφ(Wx)ψ(V x)⊤,

Φlin
1 = (Eφ′(Nw))(Eψ

′(Nv))WV ⊤ + [Eφ(Nw)ψ(Nv)− (Eφ′(Nw))(Eψ
′(Nv))(ENwNv)]I.

(113)

Proposition B.11. We have that, with high probability, ∥Φ1 − Φlin
1 ∥F = O(1).

Proof. Using a Wiener chaos expansion (eq. (107)), we can write

φ(Wx)i =
∑
p≥1

Eφ(p)((WW⊤)
1/2
ii N)

p!
Ip(Wx)i, ψ(V x)j =

∑
p≥1

Eψ(p)((V V ⊤)
1/2
jj N)

p!
Ip(V x)j (114)

where N ∼ N(0, 1) and Ip(Wx), Iq(V x) are random vectors with covariance

E Ip(Wx)Iq(V x)
⊤ = p!δpq(WV ⊤)⊙p (115)

with A⊙p denoting the p-th entrywise (Hadamard) power. Thus we have the identity

Eφ(Wx)iψ(V x)j =
∑
p≥1

1

p!
(Eφ(p)((WW⊤)

1/2
ii N))(WV ⊤)pij(Eψ

(p)((V V ⊤)
1/2
jj N)). (116)

From concentration of quadratic forms assumption for w, v, it follows that

(WW⊤)ii = TrCw +O(d−1/2), (V V ⊤)jj = TrCv +O(d−1/2), (117)
(WV ⊤)ij = δij TrCwv +O(d−1/2). (118)

From perturbation analysis, we can write

Eφ(p)((WW⊤)
1/2
ii N) = Eφ(p)(

√
TrCwN) +O(d−1/2) = Eφ(p)(Nw) +O(d−1/2), (119)

and similarly Eψ(p)((V V ⊤)
1/2
jj N) = Eψ(p)(Nv) +O(d−1/2).

off-diagonal entries Here, for p ≥ 2, we have that (WV ⊤)pij = O(d−p/2). Therefore,

Eφ(Wx)iψ(V x)j = Eφ′(Nw)ψ
′(Nv)(WV ⊤)ij +O(d−1) = (Φlin

1 )ij +O(d−1). (120)

diagonal entries We rewrite the infinite sum as

Eφ(Wx)iψ(V x)i =
∑
p≥1

1

p!
(Eφ(p)((WW⊤)

1/2
ii N))(WV ⊤)pii(Eψ

(p)((V V ⊤)
1/2
ii N))

=
∑
p≥1

[Eφ(p)(
√
TrCwN)][Eψ(p)(

√
TrCvN)]

p!
(TrCwv)

p +O(d−1/2)

= Eφ(Nw)ψ(Nv) +O(d−1/2) = (Φlin
1 )ii +O(d−1/2).

(121)

Summing up over all entries, we conclude that ∥Φ1 − Φlin
1 ∥F = O(1).

Note that in case of independent Nv, Nw (i.e., independent v, w) the second term of Φlin
1 vanishes and in case of

W = V , f ≡ g this reduces to

Φlin
1 = (Eφ′(Nw))

2WW⊤ + [Eφ(Nw)
2 − (Eφ′(Nw))

2 TrCw]I. (122)
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B.3 Two layer case
We now consider the simplest 2-layer example

φ2(W
2φ1(W

1x)), ψ(V x) (123)

with general matrices W 1,W 2, V ∈ Rk×d and smooth odd functions φ1, φ2, ψ. We assume that rows of W 1,W 2

and V satisty Assumption 4.1; in particular, they are mean-zero i.i.d. samples (w1
i , w

2
i , vi) ∼ (w1, w2, v). Define

C1,w := C1/k = Ew1(w1)⊤, C2,w := C2/k = Ew2(w2)⊤, Cv := rC1/k = E vv⊤ and Cwv := qC1/k = Ew1v⊤.
Define

Φ1 := Eφ1(W
1x)ψ(V x)⊤,

Φ2 := Eφ2(W
2φ1(W

1x))ψ(V x)⊤,

Φlin
1 := (Eφ′

1(N1,w))(Eψ
′(N1,v))WV ⊤ + [Eφ1(N1,w)ψ(N1,v)− (Eφ′

1(N1,w))(Eψ
′(N1,v))(EN1,wN1,v)]I,

Φlin
2 := (Eφ′

2(N2,w))WΦlin
1 ,

Ω1 := Eφ1(W
1x)φ1(W

1x)⊤,

Ωlin
1 := (Eφ′

1(N1,w))
2W 1(W 1)⊤ + [Eφ1(N1,w)

2 − (Eφ′
1(N1,w))

2 TrC1]I,

Ω2 := Eφ2(W
2φ1(W

1x))φ2(W
2φ1(W

1x))⊤,

Ωlin
2 := (Eφ′

2(N2,w))
2W 2Ωlin

1 (W 2)⊤ + [Eφ2(N2,w)
2 − (Eφ′

2(N2,w))
2 TrC1]I,

(124)
where N1,w, N2,w, Nv are zero-mean jointly Gaussian.

EN2
1,w = Tr(C1,w) EN2

v = Tr(Cv) EN1,wNv = Tr(Cwv) EN2
2,w = Tr(C2,wΩ

lin
1 ) (125)

Theorem B.12. We have that, with high probability, (i) ∥Φ2 − Φlin
2 ∥F = O(1) and (ii) ∥Ω2 − Ωlin

2 ∥F = O(1).

We split the proof into following lemmas:

Lemma B.13 (Diagonal entries of Ω2). For row v of matrixW 2, with high probability,

Eφ2(v
⊤φ1(W

1x))2 = Eφ2(N2,w)
2 +O(d−1/2). (126)

Lemma B.14 (Off-diagonal entries Ω2). If u and z are independent rows, such that ui ≲ d−1/2 and zi ≲ d−1/2, we have
with high probability,

Eφ2(u
⊤φ1(Wx))ψ2(z

⊤ψ1(V x))

= Eφ′
2(u

⊤φ1(Wx))Eψ′
2(z

⊤ψ1(V x))u
⊤ E

[
φ1(Wx)ψ1(V x)

⊤] z +O(d−1).
(127)

Lemma B.15 (Entries of Φ2). For rows u, v of matricesW 2, V respectively, with high probability

Eφ2(u
⊤φ1(W

1x))ψ(v⊤x) = E
[
φ′
2(u

⊤φ1(W
1x))]u⊤ Eφ1(W

1x)ψ(v⊤x) +O(d−1). (128)

Proof of Theorem B.12. Lemma B.15 implies that

∥Φ2 −E
[
φ′
2(u

⊤φ1(Wx))]W 2Φ1∥F = O(1). (129)

Note that, since from Proposition B.11 ∥Φ1 − Φlin
1 ∥F = O(1) and since ∥W 2∥ = O(1), we have that

∥E
[
φ′
2(u

⊤φ1(Wx))
]
W 2Φ1 −E

[
φ′
2(u

⊤φ1(Wx))
]
W 2Φlin

1 ∥F = O(1), (130)

therefore, by triangle inequality,

∥Φ2 −E
[
φ′
2(u

⊤φ1(Wx))
]
W 2Φlin

1 ∥F = O(1). (131)

Finally, note that by simple chaos expansion, E
[
φ′
2(u

⊤φ1(Wx))
]
= Eφ′

2(N2,w), therefore ∥Φ2 − Φlin
2 ∥F = O(1).

Furthermore, Lemma B.13 together with Lemma B.14 imply that

∥Ω2 − (E
[
φ′
2(u

⊤φ1(Wx))
]
)2W 2Ω1(W

2)⊤ − (Eφ2(N2,w)
2 − (E

[
φ′
2(u

⊤φ1(Wx))
]
)2)I∥F = O(1). (132)

Again, using the fact that ∥Ω1−Ωlin
1 ∥F = O(1), ∥W 2∥ = O(1) and approximatingEφ′

2(u
⊤φ1(Wx))withEφ′

2(N2,w),
we obtain that ∥Ω2 − Ωlin

2 ∥F = O(1).
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B.4 Proof of Lemma B.13
Let F = v⊤φ1(W

1x). Our goal is to compute Eφ2(v
⊤φ1(W

1x))2 = Eφ2(F )
2. For simplicity we omit indices in φ1

andW 1 and write just φ andW . We can decompose

F = v⊤φ(Wx) =
∑
p

Ip

(
EDpF

p!

)
=
∑
p

Ip

(∑
i

vi ED
pφ(w⊤

i x)

p!

)
=
∑
p

Ip

(∑
i

viw
⊗p
i Eφ(p)(w⊤

i x)

p!

)
. (133)

Let φp
i := Eφ(p)(w⊤

i x). We obtain that

DF =
∑
p≥1

pIp−1

(∑
i

viw
⊗p
i φp

i

p!

)
and −DL−1F =

∑
q≥1

Iq−1

(∑
i

viw
⊗q
i φq

i

q!

)
. (134)

Lemma B.16.
E|⟨DF,−DL−1F ⟩ −EF 2| = O(d−1/2). (135)

Proof. Note that

Ip−1

(∑
i

viw
⊗p
i φp

i

p!

)
=
∑
i

viφ
p
i Ip−1(w

⊗p−1
i )wi

p!
, (136)

which implies that, for some coefficients cp,q ,

⟨DF,−DL−1F ⟩ =
∑
p,q≥1

cp,q
∑
i,j

⟨wi, wj⟩vivjφp
iφ

q
jIp−1(w

⊗p−1
i )Iq−1(w

⊗q−1
j ). (137)

Now, using ([59], Theorem 2.7.10), we can rewrite

Ip−1(w
⊗p−1
i )Iq−1(w

⊗q−1
j )

=

p∧q−1∑
r=0

⟨wi, wj⟩rcr,p,qIp+q−2(r+1)(w
⊗p−1−r
i

r⊗w⊗q−1−r
j )

=

p+q−2∑
s=|p−q|

2 divides (s−|p−q|)

cr,p,q⟨wi, wj⟩(p+q−2−s)/2Is

(
w

⊗(p−q+s)
i

r⊗w⊗(q−p+s)
j

)
,

(138)

and plugging this expression back into eq. (137), we get

⟨DF,−DL−1F ⟩ =
∑
s≥0

∑
|p−q|≤s

2 divides (s−|p−q|)
p∧q≥1+(s−|p−q|)/2

c̃r,p,q
∑
i,j

⟨wi, wj⟩(p+q−s)/2vivjφ
p
iφ

q
jIs(w

⊗(s+p−q)/2
i

r⊗w⊗(s+q−p)/2
j ).

(139)
In the sum above, term s = 0 corresponds to EF 2. Let us collect all the terms corresponding to sth multiple integral.
Note that given conditions on s, p, q, we always have that (p+ q − s)/2 ≥ 1, which is the power of the inner product
⟨wi, wj⟩ in the expression above. If we introduce a := (p+ q − s)/2, then for fixed s, sth multiple integral Is can be
rewritten as follows:

Is

∑
a≥1

∑
i,j

⟨wi, wj⟩avivjT s
ij

 , (140)

where T s
ij is some s-dimensional tensor, which is a sum of tensor products of wi and wj , also containing combinatorial

terms, and products of expectations of derivatives of f . Then, we can write

E(⟨DF,−DL−1F ⟩ −EF 2)2 =
∑
s≥1

E Is

∑
a≥1

∑
i,j

⟨wi, wj⟩avivjT s
ij

2

. (141)

Observe that

E Is

∑
a≥1

∑
i,j

⟨wi, wj⟩avivjT s
ij

2

=
∑

a,a′≥1

∑
i,j
i′,j′

⟨wi, wj⟩a⟨wi′ , wj′⟩a
′
vivjvi′vj′⟨T s

ij , T
s
i′j′⟩, (142)
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and note that for some constant C (depending on combinatorial terms, and products of expectations of derivatives of f )
⟨T s

ij , T
s
i′j′⟩ can be upper bounded by

⟨T s
ij , T

s
i′j′⟩ ≤ C(⟨wi, wi′⟩+ ⟨wi, wj′⟩+ ⟨wj , wi′⟩+ ⟨wj , wi′⟩)s. (143)

Now, we analyze each term of the summand in eq. (142) depending on s, a, a′, i, i′, j, j′. Define N := |{i, i′, j, j′}|, the
number of distinct indices among i, i′, j and j′. Note that since entries of v are of order vi ≲ d−1/2, we get that in total
vivjvi′vj′ contribute O(d−2).

Case N = 1 Here, since there are in total d such terms, which immediately obtain O(d−1) upper bound.

Case N = 2 There are in total O(d2) such terms. In this case, it must be that either (1) i ̸= j or (2) i′ ̸= j′ or (3) both
i = j, i′ = j′. Note that in the first two cases, we get that ⟨wi, wj⟩a⟨wi′ , wj′⟩a

′
≲ d−1/2, which together with bound on

vi’s gives O(d2−2−1/2) contribution. If both i = j and i′ = j′, then necessarily ⟨T s
ij , T

s
i′j′⟩ = O(d−1/2) and we arrive at

the same conclusion.

CaseN = 3,min(a, a′, s) ≥ 2 There are in total O(d3) such terms. WLOG assume that i = j. Sincemin(a, a′, s) ≥ 2,
we get that ⟨wi′ , wj′⟩a

′
= O(d−1) and ⟨T s

ij , T
s
i′j′⟩ = O(d−1), which in total gives O(d−1) contribution.

Case N = 4 Here, there are in total O(d4) such terms. If min(a, a′) ≥ 2, then it total we obtain O(d4−2−2−1/2) =
O(d−1/2) contribution. We start with the case a = a′ = 1. Let

X =
∑

i,j,i′,j′

all distinct

⟨wi, wj⟩⟨wi′ , wj′⟩vivjvi′vj′⟨T 1
ij , T

1
i′j′⟩ with EW X = 0,

X2 =
∑

i1,j1,i
′
1,j

′
1

all distinct

∑
i2,j2,i

′
2,j

′
2

all distinct

⟨wi1 , wj1⟩⟨wi′1
, wj′1

⟩⟨wi2 , wj2⟩⟨wi′2
, wj′2

⟩vi1vj1vi′1vj′1vi2vj2vi′2vj′2⟨T
s
i1j1 , T

s
i′1j

′
1
⟩⟨T s

i2j2 , T
s
i′2j

′
2
⟩.

(144)
Since wa is independent from wb for a ̸= b, and all rows are mean-zero, we conclude that the only non-zero contribution
comes from terms with pairings between indices. Therefore, we get that EW X2 = O(d−3), which implies that, with
high probability, X = O(d−1/2).

When a = 1 and a′ = 2, by similar computation one obtains that EWX2 = O(d−2), and therefore, with high
probability, X = O(d−1/2).

Case N = 3,min(a, a′, s) = 1 This case can be done similarly to the previous ones.

Overall, we obtain that
E(⟨DF,−DL−1F ⟩ −EF 2)2 = O(d−1/2), (145)

which, by Theorem B.9, using h(x) = φ2(x)
2 that

Eφ2(u
⊤φ1(W

1x))2 = Eφ2(Z)
2 +O(d−1/2), (146)

where EZ2 = u⊤ Eφ1(W
1x)Eφ1(W

1x)⊤u. By perturbation analysis, we obtain that

Eφ2(u
⊤φ1(W

1x))2 = Eφ2(N2,w)
2 +O(d−1/2) (147)

B.5 Proof of Lemma B.15
We restate the lemma:

Lemma B.17.

Eφ2(u
⊤φ1(Wx))ψ(v⊤x) = E

[
φ′
2(u

⊤φ1(Wx))]u⊤ Eφ1(Wx)ψ(v⊤x) +O(d−1) (148)
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Our goal is to compute
Eφ2(u

⊤φ1(Wx))ψ(v⊤x). (149)

LetFi = φ1(w
⊤
i x) andF = (F1, . . . , Fn), wherewi’s are the rows ofW . Note that we can viewφ2(u

⊤φ1(Wx)) = ϕ(F ),
for ϕ(F ) = φ2(

∑
ukFk). Recall that DpFk = φ(p)(w⊤

k x)w
⊗p
k . Then, we have that

Dϕ(F ) =
∑
k

φ′
2(u

⊤φ1(Wx))ukDFk. (150)

From Lemma B.10, it follows that

EDϕ(F ) =
∑
k

E
[
φ′
2(u

⊤φ1(Wx))
]
uk EDFk +O(d−1/2), (151)

and we obtain that

⟨EDψ(v⊤x),EDφ2(u
⊤φ1(Wx))⟩ = E

[
φ′
2(u

⊤φ1(Wx))
]∑

k

uk⟨EDψ(v⊤x),EDφ1(w
⊤
i x)⟩. (152)

For the second derivative, we obtain that

D2ϕ(F ) =
∑
k,k′

φ′′
2(u

⊤φ1(Wx))uku
′
k(DFk)⊗ (DFk′) +

∑
k

φ′
2(u

⊤φ1(Wx))ukD
2Fk. (153)

Overall, for EDpϕ(F ), we obtain

EDpϕ(F ) =
∑
k

E
[
φ′
2(u

⊤φ1(Wx))ukD
pFk

]
+ER (154)

where R is the term containing higher derivatives of φ2. This implies that

⟨EDpϕ(F ),EDpψ(v⊤x)⟩ =
∑
k

uk E
[
f ′2(u

⊤φ1(Wx))φ(p)(w⊤
k x)

]
E
[
ψ(p)(v⊤x)

]
⟨wk, v⟩p + ⟨ER,EDpψ(v⊤x)⟩.

(155)
From Lemma B.10, we have that

E
[
φ′
2(u

⊤φ1(Wx))φ(p)(w⊤
k x)

]
= E

[
φ′
2(u

⊤φ1(Wx))
]
E
[
φ(p)(w⊤

k x)
]
+Q, (156)

where Q = O(d−1/2). We now show that terms involving Q have O(d−1) contribution to the final expression:

Lemma B.18. ∑
k

uk⟨wk, v⟩p = O(d−1/2) (157)

Proof. Since v can be correlated with at most one row ofW by our assumptions, WLOG we assume that v is uncorrelated
with all wk for k ≥ 2. Then we can write∑

k

uk⟨wk, v⟩p = u1⟨w1, v⟩p +
∑
k≥2

uk⟨wk, v⟩p, (158)

where the first term isO(d−1/2) since ui = O(d−1/2). Next, if p ≥ 2, we directly obtain that the second term isO(d−1/2).
For case p = 1, note since

∑
k≥2 uk⟨wk, v⟩ is the sum of independent mean-zero random variables (in theW space), we

obtain that
∑

k uk⟨wk, v⟩ = O(d−1/2). Altogether, we get that
∑

k uk⟨wk, v⟩p = O(d−1/2) with high probability.

Lemma B.18 implies that

⟨EDpϕ(F ),EDpψ(v⊤x)⟩

=
∑
k

uk E
[
φ′
2(u

⊤φ1(Wx))
]
E
[
φ(p)(w⊤

k x)
]
E
[
ψ(p)(v⊤x)

]
⟨wk, v⟩p + ⟨ER,EDpψ(v⊤x)⟩+O(d−1)

= E
[
φ′
2(u

⊤φ1(Wx))
]∑

k

uk⟨EDpFk,ED
pψ(v⊤x)⟩+ ⟨ER,EDpψ(v⊤x)⟩+O(d−1).

(159)
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Lemma B.19.
⟨ER,EDpψ(v⊤x)⟩ = O(d−1). (160)

Proof. Note that we can rewrite

⟨ER,EDpψ(v⊤x)⟩ =
∑
π⊢[p]

π ̸={[p]}

∑
i1,...,i|π|

|π|∏
q=1

(
uiq ⟨v, wiq ⟩b(q)

)
, (161)

where for π (partition of [p]) we denote b(q) as the size of qth block. Let π ̸= {[p]} be some partition, s := |π|, and
let Aπ :=

∑
i1,...,is

∏s
q=1

(
uiq ⟨v, wiq ⟩b(q)

)
. If all blocks of π are of size at least 2, then naive estimate gives in total the

contribution is O(d−1). Now assume that there is a block of size 1. WLOG we assume that v is correlated with w1 and
b(1) = 1. If i1 = 1, then let r be the number of indices among s− 1 remaining indices, such that corresponding index is
summed over ik ≥ 2. If r ≤ s− 2, then we arrive at the estimateO(dr−s/2−r/2) = O(d−1). Now, assume that r = s− 1.
If two indices coincide, then we arrive at the estimate O(d(s−2)−s/2−(s−1)/2) = O(d−1). Therefore, the remaining case
is

Bπ :=
∑

i2 ̸=i3 ̸=...̸=is ̸=1

u1⟨v, w1⟩
s∏

q=2

uiq ⟨v, wiq ⟩b(q). (162)

If exists q > 1, such that b(q) ≥ 1, then from naive estimate we obtain bound O(ds−1−s/2−(s−2)/2−1) = O(d−1).
Therefore, we can assume that all blocks of π are of size 1. By independence of rows, theW -expectation ofBπ is zero and

EW B2
π =

∑
i2 ̸=i3 ̸=... ̸=i|π| ̸=1

∑
i′2 ̸=i′3 ̸=... ̸=i′|π| ̸=1

u21⟨v, w1⟩2
p∏

q=2

uiqui′q ⟨v, wiq ⟩⟨v, wi′q
⟩. (163)

The only non-zero contributions come from pairings between i, i′, which contribute O(d(p−1)−p−(p−1)) = O(d−1).
The case i1 ̸= 1 follows by similar calculations. Overall, we proved that ⟨ER,EDpψ(v⊤x)⟩ =

∑
π ̸={[p]}O(d−1) =

O(d−1).

Using LemmaB.19, we have that ⟨EDpϕ(F ),EDpψ(v⊤x)⟩ = E
[
φ′
2(u

⊤φ1(Wx))
]∑

k uk⟨EDpFk,ED
pψ(v⊤x)⟩+

O(d−1), and this implies that

Eφ2(u
⊤φ1(Wx))ψ(v⊤x)

=
∑
p≥1

1

p!
⟨EDpφ2(u

⊤φ1(Wx)),EDpψ(v⊤x)⟩

=
∑
p≥1

1

p!

∑
k

uk E
[
φ′
2(u

⊤φ1(Wx))]⟨EDpφ1(w
⊤
k x),ED

pψ(v⊤x)⟩+O(d−1)

= E
[
φ′
2(u

⊤φ1(Wx))]
∑
k

uk Eφ1(w
⊤
k x)ψ(v

⊤x) +O(d−1)

= E
[
φ′
2(u

⊤φ1(Wx))]u⊤ Eφ1(Wx)ψ(v⊤x) +O(d−1).

(164)

Therefore, we obtain that Eφ2(u
⊤φ1(Wx))ψ(v⊤x) = E

[
φ′
2(u

⊤φ1(Wx))]u⊤ Eφ1(Wx)ψ(v⊤x) +O(d−1)

B.6 Proof of Lemma B.14
For convenience, we restate the lemma.

Lemma B.20. If u and z are independent, we have

Eφ2(u
⊤φ1(Wx))ψ2(z

⊤ψ1(V x)) = Eφ′
2(u

⊤φ1(Wx))Eψ′
2(z

⊤ψ1(V x))u
⊤ E

[
φ1(Wx)ψ1(V x)

⊤] z +O(d−1)
(165)

Here, our goal is to compute Eφ2(u
⊤φ1(Wx))ψ2(z

⊤ψ1(V x)) with assumption that u and z are independent. Since
EDpφ2(u

⊤φ1(Wx)) =
∑

k ukw
⊗p
k E

[
φ′
2(u

⊤φ1(Wx))φ1(w
⊤
k x)

]
, we can write

⟨EDpφ2(u
⊤φ1(Wx)),EDpψ2(z

⊤ψ1(V x))⟩

=
∑
k,j

⟨wk, vj⟩pukzj E
[
φ′
2(u

⊤φ1(Wx))φ1(w
⊤
k x)

]
E
[
ψ′
2(z

⊤ψ1(V x))ψ1(v
⊤
j x)

]
+R, (166)
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where R is the term containing higher derivatives of φ2, ψ2. By computations similar to previous case, we can show that
R = O(d−1). Also, by weak correlation between the layers (also see previous case), we can show that

⟨EDpφ2(u
⊤φ1(Wx)),EDpψ2(z

⊤ψ1(V x))⟩

=
∑
k,j

⟨wk, vj⟩pukzj E
[
φ′
2(u

⊤φ1(Wx))φ
(p)
1 (w⊤

k x)
]
E
[
ψ′
2(z

⊤ψ1(V x))ψ
(p)
1 (v⊤j x)

]
+O(d−1)

=
∑
k,j

⟨wk, vj⟩pukzj E
[
φ′
2(u

⊤φ1(Wx))
]
E
[
φ
(p)
1 (w⊤

k x)
]
E
[
ψ′
2(z

⊤ψ1(V x))
]
E
[
ψ
(p)
1 (v⊤j x)

]
+O(d−1)

(167)

After reverting chaos expansion, we obtain that

Eφ2(u
⊤φ1(Wx))ψ2(z

⊤ψ1(V x)) = Eφ′
2(u

⊤φ1(Wx))Eψ′
2(z

⊤ψ1(V x))u
⊤ E

[
φ1(Wx)ψ1(V x)

⊤] z +O(d−1).
(168)

C Details on numerics
We provide in this Appendix more details on the experiments reported in Fig. 1 and Fig. 2.

C.1 Details of Fig. 1
Target We consider a two-layer structured RF teacher, with feature map

φ∗(x) = tanh (W∗x) (169)

where the weightW∗ = Z∗C̃
1
2
1 ∈ Rd×d has covariance

C̃1 = diag({k−0.3}1≤k≤d). (170)

Student We consider the task of learning this target with a four-layer RF student, with feature map

φ(x) = tanhW3(tanh (W2 tanh(W1x))) (171)

where, in order to introduce inter-layer and target/student weight correlations, we consideredW2 =W1, with

W1 = 1/2Z1diag({k−
γ/2}1≤k≤d) + 1/2W∗, (172)

for γ ∈ {0.0, 0.2, 0.5, 0.8}. In other words, the covariance C1 ofW1,W2 is a sum of two power laws with decay γ and
0− 3. Finally, in order to introduce another form of correlation, we chose

W3 = Z3C
1/2
3 (173)

where the covariance C3 depends on the previous weights as

C3 = (W1W
⊤
1 + 1/2Id)−1. (174)

C.2 Details on Fig. 2
In Fig. 2, we consider the task of learning a target corresponding to a structured three-layer RF

φ∗(x) = θ⊤∗ tanh (W ∗
2 sign (W

∗
1 x)) , (175)

where the weightsW ∗
1 ,W

∗
2 ∈ Rd×d have covariance

C1 = C2 = Id + 8vv⊤, (176)

Finally, the readout θ∗ has i.i.d variance 1/d Gaussian entries. To learn this target, we consider training the three-layer
feed-forward neural network

θ⊤ tanh(W2 tanh(W1x), (177)

with trainable weightsW1,W2 ∈ Rd×d. We consider the two-step training procedure
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1. We first train the whole network end-to-end, using th Pytorch [65] implementation of full-batch Adam [61],
for T = 3000 epochs, with learning rate η = 10−3 and weight decay 10−5. The training is done for N = 1400
training samples, with for 1 ≤ µ ≤ n inputs xµ ∼ N(0, Id), and the corresponding labels θ⊤∗ φ∗(x

µ). All these
experiments were set in dimension d = 1000.

2. At the end of the training, one freezes the weight matrices to their trained values Ŵ1, Ŵ2, thereby obtaining the
trained network feature map

φ̂(x) = tanh(Ŵ2 tanh(Ŵ1x). (178)

The readout weights θ are then re-trained alone, according to the ERM describe in the main text, with a fresh
training set of n = αd samples. The ridge regularization strength λ is optimized over using cross-validation in this
second step.

The generalization of the student network at the end of these two steps yields the blue curve in Fig. 2. We plot alongside the
performance of the network with untrained first weights (green), i.e. when the first step is skipped. In this case, the feature
map involves the weights at initialization, namely Gaussian random matrices, and corresponds to an unstructured dRF
[12, 13]. Finally, the red curve corresponds to the performance of ridge regression directly on the inputs x, unprocessed
by any feature map.
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