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Introduction

High-throughput screening (HTS) is considered to be the 
famous search for the needle in the haystack. This often 
referred-to picture describes the fact that in the majority of 
drug discovery screens, only a small number of active sub-
stances is searched for within a large number of inactive 
substances. This imbalance is the whole reason for per-
forming random screening experiments, where “substance” 
can refer to anything from small organic molecules, natu-
ral products, peptides, RNA, to proteins or even cells. The 
purpose of primary screening, the first assay en route to 
an optimized medicine, is to arrive at a short list of mostly 
active compounds, starting from the large list of mostly 
inactive compounds, at a manageable consumption of 
material and resources. The primary hit list can only serve 
as a candidate set of possibly active compounds, because it 
is generated free of any prior hypothesis as to which of the 
compounds are expected to be active and which ones are 
expected to be inactive. Therefore, confirmation experi-
ments have to follow to establish the real activity of the hit 
list members. From the details of the workflow, i.e., pri-
mary screen – hit list generation – confirmation of the hits, 
it is obvious that primary false negatives will never be fol-
lowed later on. Only if additional knowledge in the form of 
structure-activity relationships is taken into account can 

weakly active compounds be rescued, that have interest-
ing physico-chemical or pharmacokinetic properties. Vice 
versa, a lot of primary false positives unnecessarily increase 
the cost of follow-up experiments. The ideal hit list is a 
balance between these two counteracting consequences.

In order to arrive at this balance, a detailed characteriza-
tion of the primary hit list is required. To stay in the illustra-
tive picture: how many needles are in the haystack? For a 
certain hit list cutoff, how many needles will be found, how 
many will be missed, and how many are actually straws? 
Or, more seriously: how many more confirmed hits can be 
found if 1000 compounds more are retested? How many 
compounds have to be retested to achieve a false negative 
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Abstract

Following the success of small-molecule high-throughput screening (HTS) in drug discovery, other large-scale screening 
techniques are currently revolutionizing the biological sciences. Powerful new statistical tools have been developed to 
analyze the vast amounts of data in DNA chip studies, but have not yet found their way into compound screening. In HTS, 
characterization of single-point hit lists is often done only in retrospect after the results of confirmation experiments are 
available. However, for prioritization, for optimal use of resources, for quality control, and for comparison of screens it would 
be extremely valuable to predict the rates of false positives and false negatives directly from the primary screening results. 
Making full use of the available information about compounds and controls contained in HTS results and replicated pilot 
runs, the Z score and from it the p value can be estimated for each measurement. Based on this consideration, we have 
applied the concept of p-value distribution analysis (PVDA), which was originally developed for gene expression studies, to 
HTS data. PVDA allowed prediction of all relevant error rates as well as the rate of true inactives, and excellent agreement 
with confirmation experiments was found.
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rate of less than 50%? And, most fundamental, are the hits 
in the list significant at all?

In the current situation, intuitive ad hoc visual inspection 
by an experienced senior screening expert is a common way 
to characterize the hit list distribution; hit selection is often 
determined by the retesting capacity rather than by statisti-
cal considerations; often no quantitative information of the 
quality of the primary hit list is available before confirma-
tion experiments are finished; statistical methods are largely 
neglected, partly due to the fact that no replicates are avail-
able for full-library screens.

The characterization of primary screens has improved 
over the past years, most notably with the long-awaited 
introduction of a unified quality criterion, the Z′ factor,1 
and after robust estimates for the mean and the standard 
deviation got in use, for instance, with the so-called B-score.2,3 
Nevertheless, there is still a need for quantification tools of 
hit list properties, i.e., estimates of the false positive rate 
(FPR), the false negative rate (FNR), the false discovery 
rate (FDR, 1-confirmation rate), for quality control and pri-
oritization of confirmation experiments.

It is important to emphasize that the present work only 
makes statements about sensitivity and specificity from sta-
tistical variation. Reproducible assay artifacts that lead to 
erroneous hits or underestimated activities for individual 
compounds are not taken into account and cannot be inves-
tigated with the method presented here.

In contrast to pharmaceutical HTS, statistical analysis of 
high-throughput data has been developed and applied since 
the early days of DNA microarrays for gene expression pro-
filing. A vast body of tools is available 4,5 and standardized 
data quality control is nowadays a widely accepted proce-
dure 6,7 and required by many high-ranking journals upon 
publication. One difference is that, unlike in HTS with only 
one data point per compound, at least three DNA chips are 
usually analyzed per group to estimate the biological vari-
ability of each gene. With only one measurement per com-
pound in HTS, it is impossible to estimate the variance of 
each individual compound. Hence, it is a common convic-
tion that the tools and concepts used in and developed for 
genomic analyses cannot be utilized for chemical library 
HTS data. It will be demonstrated below that by exploiting 
the information from replicated positive and negative con-
trols on each microwell plate, and by disseminating repli-
cated pilot screens, assay variability can be estimated with 
sufficient accuracy also in pharmacological HTS.

As a first step in the hit list characterization procedure 
proposed here, the hit selection process is considered as a 
statistical test. In particular, Fisher’s Z-test is applied to find 
compounds significantly more active than inactive controls 
or than a preset minimum activity. The assumptions 
required for the Z-test are evaluated on the basis of a 
medium scale pilot screen including some 10 000 compounds 
and controls that span the whole range of activities from 0 

to 100 percent. For the actual test, the mean and standard 
deviation under the Null hypothesis H

0
, i.e., the inactive 

population, are calculated robustly (median and median 
absolute deviation) from negative controls or from the entire 
compound data, assuming a small rate of active compounds. 
For characterization of the hit list including, for instance, 
FDR and FNR, the p-value distribution analysis method pro-
posed by John D. Storey for microarray data 8,9 is introduced 
because of its intuitive usage and because it can be extended 
to multiple dimensions in a straightforward way. Finally, the 
predicted FDR is compared to confirmation experiments for 
five actual screens of different kinds and found to be highly 
accurate.

P-value distribution analysis (PVDA) holds promise to 
provide a solid quantitative understanding of the quality of 
primary HTS hit lists, to rationalize the extent of confirma-
tion experiments and to facilitate data-driven prioritization 
of resources.

Materials and Methods
Large-Scale Screening as 
a Multitude of Statistical Tests

Rigorous statistical analysis of HTS data was rather limited 
in the past, at least partly because for most of the often 
one million compounds no replicates are available. In con-
trast, in gene expression profiling using DNA microarrays, 
statisticians were involved in data analysis at a time when 
the field was still in its infancy. As a consequence, a large 
and ever-growing body of statistical data analysis tools has 
been and is being developed.

In a typical microarray (chip) experiment, two or more 
groups of subjects, either true individuals or pooled individu-
als, are compared. For the sake of simplicity, let us assume 
two groups of individuals are different according to one treat-
ment of interest and any stratifying variable shall be neglected 
for the moment. Replicated measurements are taken to esti-
mate the distribution of expression for each gene because it 
can vary considerably from one gene to the other. The num-
ber of possible replicates is usually rather small due to the 
relatively high costs of the experiment. Fortunately, in many 
practical cases it is allowed to assume a normal distribution 
of the expression level fold changes and to apply the t-test.10 
As a consequence, acceptable statistical power is often 
achieved already with three to five good quality replicates by 
applying the shrinkage approach, where the variance esti-
mate of each particular gene is stabilized by taking the vari-
ance of all other genes into account.11

Between the two groups, one statistical test is performed 
for each RNA transcript represented on the chip, about 
50 000 for a human whole-genome chip. With such a large 
number of tests, the so-called “multiple testing problem” is 
easily illustrated in the following.
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Consider a p-value cutoff for each individual test, p
0
 

(Fig. 1a). Then, the probability of finding at least one false 
positive test among the N genes when in fact both groups are 
identical, can be approximated as p

tot
 <_ Np

0
 (Bonferroni). As 

discussed by Benjamini and Hochberg,12 in the multiple test-
ing situation the relevant criterion to determine a hit list cut-
off is rather, how many false positive results are expected for 
each positive finding (false discovery rate). For instance, in 
a full library screen of one million compounds, if the maxi-
mally accepted p value for each test is set to be as high as 
5%, we would expect to observe 50,000 positives even when 
all compounds are really inactive. For cases where the num-
ber of tests is as large as in whole genome or full library 
experiments (N > 1000), John D. Storey has introduced an 
illustrative way to estimate the false discovery rate8 and thus 
determine a statistically derived hit list cutoff. His line of 
argument will be followed for the remaining part of this 
work.

The p-Value Distribution Analysis

The false discovery rate can be estimated by analyzing the 
distribution of p values that were calculated from any 
meaningful statistical test in a correct manner, i.e., by 
assuring that the derived p value really corresponds to the 
true type-1 error rate. In this case, the p-value distribution 
(PVD) for observations obeying the Null hypothesis H

0
 is 

uniform by definition. This is due to the fact that the proba-
bility P x x H P p x p p p p x( | ) ( ( ) ) , ( ).≥ = < = =0 0 0 0 0 0with
From this it follows that P p p x p p H p( ( ) | )0 0 0≤ < + =δ δ , 
independent of p, i.e., constant. From the schematic PVD 
of an H

0
 ensemble in Figure 1b it becomes clear that a hit 

list generated by ranking or by a fixed p-value cutoff can 
contain many hits but they might all be false positives.

In most screening applications, in which the observa-
tions are coming from a mixture of many observations 
obeying the Null hypothesis and only a few obeying the 

Figure 1. (a) Definition of the p value. For any value x
0
 of a test statistics x, the p value p

0
 is the probability of observing this value x

0
 

or an even more extreme value (red area). (b) Schematic of the uniform PVD under H
0
 (red line), (c) of a mixture of observations from 

H
0
 and different alternative hypotheses. (d) and (e) show PVDs based on simulated data, corresponding to the conditions (b) and (c), 

respectively. The irregular PVD (f) is obtained from the same data as in (e) but with an overestimation of the standard deviation by 10%, 
resulting in the dip at around p = 0.06.
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alternative hypothesis, the shape of the PVD is similar to 
the one shown in Figure 1c,e: a peak at small p values 
which decreases monotonically toward the horizontal part at 
large p values. The two cases in Figure 1b,d and 1c,e are 
representing the only possible regular PVDs for a two-sided 
test. Any other behavior, such as a dip at low p values or a 
bump somewhere, is an indication for an irregular behavior 
of the data or incorrectly determined p values (Fig. 1f). 
Moreover, if no peak at low p values is visible the candidate 
list will have a very low confirmation rate.

From the horizontal part of the PVD, the rate of Null 
observations can be directly read as the plateau value of the 
PVD (Fig. 1c). This is a unique feature of the multiple test-
ing situation and not accessible otherwise. Once a p-value 
cutoff is given, all relevant error rates can be directly read 
from the PVD. The hit rate is given by the area to the left of 
the cutoff; the true positive rate is equal to the area to the left 
of the cutoff and above the plateau; the false positive is equal 
to the area to the left of the cutoff and below the plateau. The 
false negative rate is equal to the area to the right of the cut-
off and above the plateau; the true negative rate is equal to 
the area to the right of the cutoff and below the plateau.

It is now straightforward to determine the p-value cutoff 
that gives a desired FDR which is equal to the area to the 
left of the cutoff and above the plateau divided by the total 
area to the left of the cutoff. The estimated FDR, also called 
the q value, is conveniently calculated with the help of 
Storey’s package q value for the statistics software R. 13

Multivariate Testing and Hit Selection
The concept of selecting a hit list according to a predefined 
FDR cutoff using the PVD is readily generalized to the mul-
tivariate case. In certain situations the interesting observa-
tions may be selected not only according to one criterion but 
according to a combination of several selection criteria. In 
pharmaceutical screening this is often referred to as high-
content screening (HCS), which describes in the most 
general meaning of the word a scoring based on more 
information than just one parameter. In the more common 
meaning, HCS describes the scoring based on multiple vari-
ables (analogous for parameters or readouts) that are deter-
mined from two or three dimensional image recordings from 
cells or tissue sections via image segmentation, object clas-
sification, and feature extraction. The features include geo-
metrical properties of the objects, such as area (in number of 
pixels), circumference, long axis length, or ellipticity, and 
intensity properties, i.e., any pixel intensity statistics 
(mean, median, sum, …) in a certain object region, such as 
the cell membrane, or the cell nucleus, for a certain popu-
lation of objects.

The p value for the multivariate case can in principle be 
estimated from the test statistics for any arbitrary multivari-
ate joint probability distribution from pure H

0
 samples, i.e., 

negative controls, or by resampling methods, such as boot-
strap. While this might be feasible for univariate scoring, it 
is often beyond reach for the multivariate situation because 
the necessary sample size increases roughly with the power 
of the number of parameters.

A more realistic scenario can be obtained when the data 
are at least approximately described by the multivariate 
normal distribution. Then the relevant test statistics is the so- 
called Mahalanobis distance, m, which is related to the mul-
tivariate t statistics as m t xk k ki i i

i

= = −∑2 2 2( ) /µ σ , where µi, 

σ
i
 are mean and standard deviation of the parameter i, and 

x
ki

 is the value of parameter i in observation k. Under H
0
, m 

is chi-square distributed, m ~ χ2. Thus, the chi-square test in 
the multivariate case is analogous to the t-test in the univari-
ate case 14 and known as test of Hotelling or referred to as 
multivariate analysis of variance (MANOVA).

Multivariate testing is not widely used in statistics 
because of the so-called curse of the dimensions: the refuta-
tion range of the test statistics, e.g., the typical 5% quantile 
of the Mahalanobis distance, is decreasing linearly with the 
number of dimensions. In geometrical terms, the outer 5% 
slice of the N-dimensional hypervolume is getting thinner 
and thinner as the number of dimensions increases. As a 
consequence, the univariate test has more power than the 
multivariate test; here, power means the statistical term 
describing the ability to detect a real difference, i.e., the true 
positive rate. Therefore, in any HCS application, a possible 
gain in information by integration of an additional parame-
ter has to balance the loss in testing power.

Especially for cases where subsets of parameters are cor-
related to a different degree with each other but uncor-
related with other subsets several dimension reduction 
methods are available,15 such as principal component anal-
ysis (PCA). They are also essential operations prior to 
hypothesis testing because in general the tests require 
independence of the individual measurement.

Experimental
For validation of the theoretical predictions for the FDR 
they are compared to actual screening data coming from 
a range of experimental situations. The data include bio-
chemical and cellular assays, different target classes, such 
as, GPCRs or proteases, and different assay readouts, such 
as, fluorescence resonance energy transfer (FRET) for sec-
ond messenger quantification or polarization anisotropy for 
detecting ligand binding.

The ~1 Mio compounds from the Roche screening 
library are plated in an arbitrary nonrandomized fashion in 
column 3 through 24 of a 384-well plate. During HTS, 
columns 1 and 2 are filled with a number of controls of dif-
ferent kind depending on the type of assay. Typically, these 
consist of three concentrations of a known effective refer-
ence compound with defined activities, such as, 0%, 50%, 
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and 100% that are used later for normalization and qual-
ity control (QC). Experiments were performed at the 
Roche Basel screening facility.

QC and visual inspection of the raw data is done using 
Genedata’s Screener software (Genedata AG, Basel, 
Switzerland). The positive (-100%) and negative (0%) con-
trols are used for plate-wise normalization of the signal to 
correct for additive and multiplicative plate-to-plate or 
daily variability of the sensitivity window of the assay. The 
normalized signal reads as

S
S S

S Snorm
raw neg

pos neg

=
−
−



 

 S S S Sneg neg
i

pos pos
i= =median( ), median( ).,

The software also allows for correction of between-plate 
patterns from systematic tip carry-over or clogging, or per-
sistent within-plate patterns from temperature edge effects 
or gradients according to an undisclosed method. Correction 
is carried out only if necessary and only if it improves the 
apparent geometric patterns in the signal, as judged by 
visual inspection.

The FDR prediction is compared to the experimentally 
determined confirmation rate (1 - FDR) from concentration- 
response hit confirmation screens. The experimental false 
negative rate is compared with the prediction within a  
specific interval bounded on the one hand by the hit con-
firmation cutoff and on the other hand by the FDR cutoff, 
as given in the results section.

Hit confirmation experiments were carried out using the 
same plate and liquid handling robotic systems and the 
same readers as in the primary screen. Between-plate serial 
dilutions were prepared to obtain 12-point concentration 
response curves. A confirmed hit is defined as a compound 
for which the normalized activity at the screening concen-
tration calculated from the concentration response is further 
away from the negative control than the cutoff: smaller than 
the cutoff for inhibitory assays and larger than the cutoff for 
activation assay. This phrasing takes into account the fact 
that in our convention the positive controls in antagonist 
assays correspond to -100 % activity while in agonist assays 
the positive control is at +100 %.

Results
The p-value distribution analysis method described in the 
methods section was validated on five screening campaigns 
as described in the experimental section. First, replicate 
pilot screens were analyzed to ensure that the assumptions 
of PVDA are in general sufficiently fulfilled for this type of 
assay. Next, the same assumptions are probed for the actual 
primary screening data as far as possible, with replicates 
available just for control compounds and single values for 
the test compounds. This step is important because the data 
variability is often different in the pilot as compared with 

the primary screen. Finally, the predicted rate of actives in 
the set of compounds retested in confirmation experiments 
is compared with the actual outcome.

Distribution of Compounds and Controls
Down to its foundation, PVDA depends on the correctness 
of the applied test. For the Z-test it means that for each com-
pound, observations need to be independent and identical 
normally distributed each with the same variance but differ-
ent means. It is clear from the very beginning that this 
assumption will not be fulfilled in a strict sense. Rather, the 
relevant question is going to be, how much will it be vio-
lated and what are the consequences. Fortunately, by visu-
ally analyzing the PVD we have an internal control allowing 
characterization of the influence of any gross deviation.

One powerful tool to compare data distributions with 
each other or with theoretical distributions is the so-called 
quantile-quantile plot, or QQ-plot (an example is shown in 
Fig. 2b). If two distributions are the same, all their proper-
ties, including the quantiles, are identical. If the sample 
quantiles are plotted against the reference quantiles of two 
identical distributions, the data are located along a straight 
line. If the sample distributions contain more extreme values 
as expected, i.e., if it is long-tailed compared to the reference 
distribution, the QQ-plot exhibits points below the line on 
the left end of the data range and above the line on the 
right end (Fig. 2b); for short-tailed distributions it is the 
opposite; for right-skewed distributions, the points are above 
the line on both ends of the data range; for left-skewed dis-
tributions they are below on both ends. In the QQ-plot, the 
behavior of the tails is more strongly visible than the 
behavior of the center, just the opposite as compared with 
a histogram, where often the tail behavior is invisible.

In order to guarantee that the data are independent iden-
tical normal distributed, two criteria shall be checked: (i) 
the overall frequency distribution is sufficiently close to a 
normal distribution, as illustrated by the QQ-plot and tested 
formally using the Kolmogorov-Smirnov test (H

0
: data are 

normal: p = 0.14); (ii) the variance is independent of the 
mean, as judged visually from a plot median{(x

1
-x

2
)/√2} 

against median{(x
1
+x

2
)/2}, where x

1
, x

2
 are replicates of the 

same compound or control in a pilot screen.
This and other general quality control plots are shown in 

Figure 2. Visualization is one of the most important meth-
ods for descriptive data analysis especially when dealing 
with large data sets or multiple dimensions. Figure 2a dis-
plays the series of data from three replicates of a pilot screen 
consisting of close to 35,000 data points from ninety-nine 
384-well plates. Data were normalized to the medians of the 
negative and the positive control and corrected for geo-
metric patterns as described. Color coding allows spot-
ting of run-wise signal shifts or drifts of compounds or 
controls, as well as systematic changes of the variance 
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Figure 2. Characterization of compound and control activities during a pilot screen. (a) Point series of consecutive measurements. (b) 
Histogram and QQ-plot of the negative controls. (c) Two-run reproducibility plot. (d) Median of the standard deviation of two runs as 
a function of the median of the 2-run mean.

during the pilot screen. The variance of the negative (red) 
and the positive control (green) are fairly constant, with a 
slightly less varying signal around data point 20,000 as 
compared to 10,000 or 30,000. The intermediate control is 
constant as expected, with a tiny step at around 23,000. The 
compounds’ signals cumulate around 0 with sparse outliers 
toward -100, just as expected.

The distribution of the negative controls and their QQ-plot 
show no signs for a strong deviation from a normal distribu-
tion (Fig. 2b). One outlier at around -40 causes the histogram 
to exhibit a long left tail. This is reflected in the QQ-plot by 
the point far below the straight line on the left-hand side. The 
controls from the independent replicates are highly reproduc-
ible with little bias (Fig. 2c), with a slightly decreasing vari-
ability from positive to intermediate to negative control. In 
99% of the cases, the difference between the activities in the 
two runs is less than 15, 14, and 8 for the positive, intermedi-
ate, and negative control, respectively. Among the compound 
signal data points, less than one in a thousand can be 

considered outliers in at least one run (points along the axis 
run1 = 0 or run2 = 0) and most are nicely consistent between 
runs (points along the line run1 = run2). That means, about 
one in ten hits would be a false positive due to sporadic outli-
ers. The standard deviation of compounds and negative con-
trols is slightly smaller than that of the positive and 
intermediate controls (Fig. 2d). The difference from 3 to 2 
over the whole activity range, i.e, 0.1 every 10% activity dif-
ference can safely be considered as constant.

To summarize the evaluation of the pilot screen, there 
are no indications from the data that the necessary assump-
tions to apply the Z-test are not fulfilled. Apart from a few 
outliers, the variance estimate from three independent rep-
etitions is independent of the mean.

Parameter Estimation
The primary screen is initiated when the pilot has reached 
the preset QC criteria for reproducibility and Z′. Because the 
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primary screen is often performed under similar but not 
identical conditions – a different cell or enzyme batch is 
used – the variance of the negative control, which is the 
relevant variable needed for performing the test, cannot be 
estimated from the pilot.

Essential QC plots for the primary screen are displayed 
in Figure 3. Plate-wise 25, 50, and 75% quantiles (Fig. 3a 
top) exhibit a larger variability of the inter-quartile range 
(IQR) than was expected from the pilot screen. The rela-
tively small number of replicates of the controls on each 
plate results in a rather noisy estimate of the plate-wise 
variability. This limitation can be overcome by averaging 
over controls in neighboring plates, i.e., plates that have 
been measured one after the other, with the idea that they 
were recorded under similar conditions and therefore their 
variability should be similar. In the current example, the 
sliding median absolute deviation (MAD) of controls and 
compounds is depicted in Figure 3a bottom and serves as the 
robust estimator of the variance under H

0
 for all compounds 

on a given plate. The smoothing parameter is chosen such 
that variations across several plates are captured while the 
large noise in the top panel is suppressed by averaging 
over approximately 50 wells or five plates. The negative con-
trol and the compounds exhibit similar variation, whereas the 
positive and intermediate controls vary sometimes five 
times stronger. This can be due to differences in the  

liquid handling. The median MAD over the whole screen of 
2800 plates is similar for all controls and the compounds 
between 2 and 3.

Figure 3b shows QQ-plots for the three controls and the 
compounds. The negative controls are approximately nor-
mal distributed up to 3σ, the intermediate control even up to 
4σ, would it not be for the gross outlier region around plate 
number 520 (Fig. 3a, top). The positive control distribution 
is more long-tailed and can only be approximated by a 
Gaussian inside 2σ. The compounds are clearly skewed 
toward negative values beyond 3σ.

Predictions from the p-Value Distribution
Using the smoothed robust estimator for the variance of the 
negative controls on each plate, and their smoothed median 
as the robust estimator for the plate-wise sample mean 
under H

0
 (activity x = 0), a Z-test is performed for each 

compound with x < 0, 549,298 in total. The corresponding 
p value and the normalized activity are illustrated in the 
one-sided volcano plot, or Geyser plot, in Figure 4b. The 
spread of the data points is a result of the different assay 
variability on each plate. If a constant variance is assumed 
for the whole screen, the graph would exhibit a continuous 
line. The volcano plot is a popular graphical tool to select 
hit lists because the significance (p value) of an observation, 

Figure 3. Characterization of compound and control activities during a primary screen. (a) Top: plate medians (center line) plus the 25% 
and 75% quantiles; bottom: local polynomial smoothing of the plate-wise MAD for controls and compounds. (b) QQ-plot of all controls 
and of the compounds.
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Figure 4. Primary screen hit selection graphs. (a) PVD with 90% 
inactives (red line), (b) Geyser plot (one-sided volcano plot), and 
(c) the cutoff selection graph displaying the number of confirmed 
hits as well as the number of false positives and negatives in 
relation to the number of selected hits, equal to the number of 
confirmation experiments to be performed.

or more precisely, the negative logarithm, is related to its 
amplitude (effect size): highly potent substances can be 
chosen even though their significance is low; similarly, 
highly significant but weak signals may be rejected.

From the p values and the corresponding PVD (Fig. 4a), 
the screening hits can be characterized as described in the 
methods section. Among the 549,000 compounds with 
activity < 0, 90% are consistent with H

0
, i.e., x = 0 (they are 

really “inactive”). The number of confirmed hits (true posi-
tives), the number of false positives, and the number of 
false negatives are plotted as a function of the number of the 
most significant hits in Figure 4c, which are ordered by 
increasing p value. The graph reads, for instance, for the 
40,000 most significant hits, the number of false positives is 
expected to be around 10,000. Up until 15,000 hits, the 
number of false positives is negligible and as long as the 
capacity for confirmation experiments is available it makes 
sense from a statistical point of view to retest all of them. 
The resulting FDR is well below 10%.

If the maximum tolerable FDR is set to 0.1%, PVDA 
estimates for the size of the hitlist 10,823 at a maximum  
p value of 2.6·10-5 corresponding to a maximum Z-score of 
-4.0. Then the hitlist is predicted to include 10,158 true pos-
itives, five false positives, and exclude 415,348 true nega-
tives, and 35,736 false negatives.

The presented graph allows for an easy but quantitative 
and statistically sound hit selection process, in which the 
experimentalist can rationally make the balance between 
two counteracting principles: selecting as many true hits as 
possible while keeping the number manageable from a 
logistics standpoint.

The same analysis was performed on altogether five 
screens of a variety of targets and assay formats from the 
past year. Without additional experimental efforts, the con-
firmation rate of primary hits in the secondary assays can be 
compared with the theoretical predictions from PVDA, as 
shown in Table 1 and Figure 5. The agreement is very 
good (Wilcoxon’s signed rank test p = 0.81) and retrospec-
tively confirms the validity of the approach.

Discussion
The analysis of p-value distributions to control the FDR has 
been applied to primary compound screening hits and is 
reported here, to our knowledge, for the first time. In the 
previous sections it was described how knowledge about 
the activity distribution under the Null hypothesis is 
obtained from negative control compounds, which are pres-
ent in replicates on each plate. Based on the robust esti-
mates of location and scale of these controls under H

0
, 

Fisher’s Z-test is performed to calculate a p value for the 
single measurement of each compound. The shape of a 
p-value distribution of a mixture of active and inactive 
compounds is known and is used to derive estimates for the 
FPR, the FNR, and the FDR. Among them, the FDR can be 
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readily compared to experimental confirmation results and 
a very good agreement is found for a variety of confirma-
tion rates.

Distribution of Compounds and Controls
In the example shown above, and in many HTS campaigns, 
it is commonplace to perform pilot screens prior to the full 
HTS to guarantee sufficient quality, as judged by the Z′ 
factor. Conveniently, these data can be used to check 
whether the assumptions for the test statistics are fulfilled, 
without further experimental effort.

They also serve to learn about the assay reproducibility 
or the frequency of outliers, i.e., results that occur only in 
one out of three replicates. Too many outliers will hamper 
any model-based statistical analysis because the models 
usually do not include their presence. As a rule of thumb, 
when the frequency of outliers approaches the range of the 
hit rate statistical predictions become invalid.

Another imperfection visible in pilot experiments are 
trends or sudden changes in the plate-averaged signal of 
compounds and controls, which indicate an incorrect nor-
malization and can make a correct statistical analysis in the 
worst case impossible. However, it is one main purpose of 

this work to present experimental evidence that even in the 
presence of some imperfections, predictions can be made 
that are valid to a large extent.

The fundamental assumption that the data are indepen-
dent, identically normal distributed, is tested twofold: the 
distribution of all controls is normal with equal variance 
and the variance of the compounds is independent of the 
mean. For real data, in most cases, the assumption is only 
fulfilled approximately. Yet in fact, simulations show that 
the variance can increase by more than a factor of five 
across the whole activity range without large effect on pre-
dictions (for a uniform distribution of 0.1-1% actives, less 
than 15% error in the composition of the histlist; data not 
shown). In cases where the variance changes even more 
drastically, or when the type of data suggest a different error 
structure, monotonous transformation of the data may help 
to regularize the distribution, e.g., log-transform for a mul-
tiplicative error structure.14

The two-group t-test (or Z-test) for unequal variance is 
not appropriate here because the p values for pooled vari-
ances are only asymptotically accurate, i.e., with an infinite 
number of samples. Since we are dealing here with single 
sample data, this is definitely not valid and would lead to 
irregular PVDs that cannot be analyzed with the present 
method.

In practice, without replicates, the Z-test is the only pos-
sible way to compute p values. But in general, PVDA is 
ignorant on the nature of the used test as long as the p values 
are correct. For this reason PVDA is easily transferable to 
the multivariate case. Other tests are in principle possible, 
for instance, the binomial test, or the signed rank test of 
Wilcoxon, but many require replicates and thus not appli-
cable to single sample data. It should be emphasized that the 
PVDA hitlist is equivalent to the hitlist from the top-X scor-
ing method when the variance is constant over the whole 
screen. But PVDA gives information on the significance 
and the error content of the hitlist, which are not available 
in the top-X method.

Parameter Estimation
After the type of test is chosen and its assumptions are 
checked, the parameters of the test statistics under H

0
 need 

to be estimated. In the case of the Z-test the location and the 
scale of the normal distribution are estimated separately 
from the compound distribution using the negative con-
trols. The reliability of this determination has a profound 
influence on the result of the scoring. For instance, even a 
MAD-based robust estimation of the variance of the H

0
 

distribution derived from the compound distribution 
(instead of the negative controls) often leads to an overesti-
mation because the underlying assumption, that it is mostly 
determined by the inactive subpopulation, is not suffi-
ciently fulfilled. Relying on a single estimate for the vari-
ance of a whole screen from the pilot experiment is also 

Table 1. Comparison of Predicted and Observed Hita 
Confirmation Rates

Confirmation 
Rate, %

Screen 
1

Screen 
2

Screen 
3

Screen 
4

Screen 
5

 PVDA predicted 34 64 78 85 74
 PVDA observed 27 69 77 88 70
aPVDA, p-value distribution analysis.

Figure 5. Comparison of the predicted and the experimentally 
determined confirmation rate for five HTS campaigns.
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not sufficient because the variance is usually not constant. 
Especially between pilot screen and primary screen, due to 
small but important differences in the workflow timing, 
significant differences in the assay variability are com-
monly observed. It also changes during the screen along a 
single run due to systematic trends in the assay sensitivity 
coming from, e.g., decreasing enzyme activity, pro-
gressing substrate degradation/precipitation, or cell 
cycle-related changes in the metabolic state.

Robust estimation of the variance on each plate of the 
primary screen would be more appropriate to capture the 
day-to-day and plate-to-plate variability. In most practical 
cases, though, the relatively small number of controls per 
plate results in a large uncertainty of the variance estima-
tion, which can lead to unnecessary false positives by 
an underestimation of the true variance.14 This can be 
accounted for by using shrinkage methods.16 Descriptive, 
simplified, and focused on the current work, shrinkage 
methods improve the estimation of a parameter of one group, 
e.g., the variance on one plate, by borrowing information 
from (all) other groups assuming they are in some sense 
similar, e.g., the plates that were measured shortly before 
and after. As an example, the variance of all compounds on 
plate i may be estimated by the weighted average of the 
sample variance of plate i and the variance over all controls 

on plates i-k to i+k without plate i, 
∼
σ̂2

i = λσ̂2

i 
+ (1-λ)

 
σ̂2

2k\i 

the estimator  
∼
σ̂2

i . Depending on the tuning parameter λ  
can change from σ̂2

i  (local, low bias, large variance) to  

σ̂2

2k\i  (global, high bias, low variance). Depending on k, the 
estimator is more or less local. In the present work, λ= 1

2k  
was chosen, leading to a simple averaging around plate i. 
The window size k was allowed to adapt for the local 

variability of  
∼
σ̂2

i  using a polynomial regression approach 
(loess), and typically ranged between 1 and 3.

Predictions from the p-Value Distribution
From the predictions made from the PVD, i.e., the FPR, 
FNR, and FDR, the latter can be compared with experimen-
tal results from follow-up dose-response profiling (see 
Table 1 and Fig. 5). The agreement achieved here gives 
confidence in the presented method, especially since the set 
completely represents all tried cases and no selection was 
made. It seems that any violation of the assumptions that 
may be present does not lead to large errors. This might be 
due to the low hit rate that is usual in HTS, and the rela-
tively stringent cutoff at very low p values or low FDR, 
respectively. To gain additional confidence and to explore 
the range of experimental situations for which PVDA gives 
valid results, Monte-Carlo simulations have been per-
formed which are described and discussed in the supple-
mental material. Detailed theoretical considerations may  
be available in the future which are both consistent with  

the true experimental situation and able to predict the  
conditions at which the approximations used here break 
down. However, this is beyond the scope of the present 
article.

Like a summary of the predictions, the gains and costs 
of choosing a particular number of confirmation experi-
ments are illustrated in Figure 4b: more confirmation 
experiments constitute higher costs in time and reagents 
but bring more confirmed hits and fewer false negatives. 
Using a hit selection graph such as this allows the screener 
to find optimal conditions where the gain outweighs the 
cost.

The present work provides evidence that (1) p values can 
be accurately calculated for single-point HTS data using the 
variance of the controls for a Z-test, and that (2) from the 
p-value distribution, the relevant screen characteristics can 
be estimated. Most prominently, the false discovery rate 
allows prediction of the expected hit confirmation rate prior 
to any follow-up experiment.

Several advantages compared with the most widely used 
hit-list generation method, the topX method can be men-
tioned: PVDA allows finding out whether a candidate list 
contains any statistically significant hit at all. Especially 
screens with very few active compounds or with very weak 
compounds or large assay variability may have very few 
significant hits but will always have a top 100 list. A quick 
look at the PVD whether a peak at low p values is visible 
gives a qualitative impression about the expected FDR of 
the hit list.

The cutoff selection according to a preset false-discovery 
rate is among the most transparent rules and easy to inter-
pret. In addition, by estimating the plate-wise variance, any 
variation of the assay variability from plate to plate is taken 
into account. And in situations where the calculated p  
values are not exact, the shape of the p-value distribution 
allows for an easy internal quality control. The essence of 
the method is finally illustrated by the relation of gains and 
costs of choosing a particular hit list size.

With PVDA, a modern and powerful statistical method 
was applied to HTS data. In the future, with more academic 
groups embarking on the journey of high-throughput min-
iaturized assays, both for genome-wide siRNA screens and 
small molecule compound screens, we expect new and 
more tailor-made methods to be developed which will 
enable an even better and scientifically sound analysis of 
large data sets.
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Journal of Biomolecular Screening – M. Prummer - Hypothesis testing in HTS  Supplemental	material	
In the main body of this article a strong emphasis was put in applying the p-value distribution analysis 

to real data from actual screening campaigns. While a comparison of PVDA predictions with 

experimental results showed good agreement and thus proved the usefulness of the method, the 

accessible parameter range, for instance, of the day-to-day variation or of the different magnitude of 

the standard deviation of negative and positive controls, is limited. The simulations presented here 

were performed to better explore the validity range of PVDA and to find its limits. 

Supplemental methods 

Monte-Carlo simulation 
All simulations and computations were performed in R using a conventional desktop computer. Data 

were generated in a format that resembles real HTS data: one line corresponds to the measurement in 

one well; the columns indicate the following parameters: date, plate identifier (pid), well identifier 

(wid), compound type (negative control, intermediate control, positive control, compopund), plate-

wise normalized signal (expressed as percentage of the difference between the medians of the positive 

and negative control on each plate), plate-wise variances of the 3 controls, day-to-day variation factor, 

and plate-to-plate variation factor. 

To simulate a small screen, data were grouped to 384 wells per plate, of which 24 were controls and 

360 compounds. The runs consisted of 100 plates per day, 1000 plates in total, i.e., 360’000 data points. 

The signal of the controls was drawn from normal distributions with mean equal to 0, 50, 100 for 

negative, intermediate, and positive control, respectively. The mean standard deviation was chosen as 

indicated in Supplemental Table 1. To account for plate-to-plate and day-to-day variations, the 

standard deviation was adjusted on each plate by two correction factors, each drawn from a uniform 

distribution and constant for all wells: σ = σ ∙ sdcor ∙ sdcor , , ~ (−1,1). The day-to-

day variability factor is indicated in Suppl. Tab. 1, the plate-to-plate variability factor is set to 1.2, 

except for Example 6 (Suppl. Fig. 6), where it was increased to 2.  

The expected compound signal was chosen to be either 0 for the inactive fraction or drawn from a 

normal distribution with mean 0 and standard deviation 50 at a ratio according to the set hit rate 

(Suppl. Tab. 1). In an idealistic way, this ad hoc selection resembled real screen distributions in the 

absence of gross outliers. Assay variability was added to the compound signal by drawing from a 

normal distribution with mean equal to the just mentioned expected compound signal and a standard 

deviation ( ) that includes the same correction factors above and in addition depends on the 

magnitude of the signal. For simplicity, the compound standard deviation at a signal of 0, 50, and 100 

was assumed to be equal to the standard deviation of the negative, intermediate, and positive control, 

and a linear dependence was chosen in between. The resulting data set was then processed by the same 
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PVDA algorithm as the real data. From the positive arm of = , the p-value was 

calculated according to a Z-test, i.e., directly from the normal distribution of .  

Supplemental results and discussion 

Monte-Carlo simulation 
The range of validity of PVDA was explored for the following conditions: small (0.01), intermediate 

(0.1) and large (up to 0.4) hit rate; small (1.2), intermediate (2.0) and large (3.0) day-to-day change of 

the assay variability; low (2), medium (4) and high (8) standard deviation of the negative control; a 

signal-independent and a signal-dependent (factor of 4 per 100 percent) standard deviation.  

Predictions of PVDA are compared with controlled conditions, i.e., the set hit rate with the predicted 

hit rate (1-FDR) given ℋ 	:	signal = 0; and with calculated prior information, i.e., the expected 

number of true positives among all positives, 
# |〈 〉# , with the predicted 

confirmation rate (1-FDR) given ℋ 	:	signal = cutoff.  
Results of the simulations using the parameters in Suppl. Tab. 1 are shown in Suppl. Figs. 1-6. Except 

for Suppl. Fig. 6, which will be discussed separately, all PVDs are regular. Although there is no formal 

proof, it is tempting to claim that this finding retrospectively justifies the use of PVDA and shows that 

the underlying assumptions are not dramatically violated. The height of the peak at low p-values 

reflects the observed hit rate, the widths of the peak is determined by the assay variability.  

The plate-wise Z’ pattern that was calculated for each of the different parameter sets ranges from 

constantly high (Suppl. Fig. 1a) to highly variable and often very low (Suppl. Fig. 4d). In fact, if it 

would be real screening data, those in Suppl. Figs. 2-4 c & d, as well as Suppl. Fig. 6 would not pass our 

QC criteria. The signal dependent, daily changing assay variability that is illustrated on the 

corresponding graphs on the right hand side in each figure nicely resembles the profile and range of 

real data.  

The robust estimate of the compound standard deviation (black line) in Suppl. Fig. 4 is increasing 

from a-d with increasing hit rate, starting to follow closely the negative control (a) and ending to be 

rather close to the intermediate control (d). The increased proportion of actives among the 

compounds is causing the distribution to broaden even close to the maximum at 0 signal and 

gradually increasing the estimated standard deviation even though the robust MAD is used. This 

nicely shows that particular care needs to be taken when the compounds’ distribution is used to 

estimate parameters of the inactives, under the assumption that most of the compounds are inactive. 

The data in Suppl. Fig. 6 exhibit an irregular PVD with a valley around 0.1-0.3 and a hill for large p-

values. This is a definite sign that here the underlying assumptions are violated to a large extent and 

any prediction based on it is expected to have a large error. The difference between this data and those 

in Suppl. Fig. 4a is just the fact that the additional plate-to-plate variability is */÷ 2 instead of */÷ 1.2. 

This increased variability difference between neighboring plates is sufficient to violate the assumption 
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that neighboring plates have a similar assay variability and therefore can be averaged over when 

estimating the local standard deviation. Lowering the amount of averaging is reducing the problem 

(data not shown), but at the cost of a larger estimation error. Without averaging, the PVD is 

completely regular but the hit rate is overestimated by a factor of 2. Large day-to-day variations of the 

assay variability don’t seem to violate the assumptions of PVDA to the same extent because they only 

affect the estimate of the standard deviation on plates close to the border between two days, which can 

even be avoided entirely. The data were excluded from further analysis.  

A summary of PVDA predictions for the simulated data is shown in Suppl. Fig. 7. The diagonal lines 

indicate the line of identity together with a */÷ 1.2 and +/- 0.1 confidence band, respectively. Given 

the described conditions, larger hit rates are predicted well within the given confidence limit (Suppl. 

Fig. 7a). With decreasing hit rate the data are reaching a sensitivity limit at about 5%. The 

confirmation rate relative to a given cutoff of 25 (circles) is predicted much better than the one with a 

cutoff of 40 (triangles). This is related to the fact that the cutoff was increased only because the assay 

variability did not allow a reliable hit selection at the lower value. The color code reflects this 

dependence of the quality of the prediction on the total assay variability, quantified by Z’. For the 

cases with Z’ > 0.75, what we would consider a good quality run, the predicted confirmation rate was 

only few percent points away from the true value and altogether very high. With decreasing Z’ the 

predicted confirmation rate decreased as well as its reliability (Suppl. Fig. 7b). 

The performance of PVDA in the current realistic simulation in the explored parameter space 

underlines its broad applicability in relevant real screening situations. In particular, for screens with 

Z’ > 0.7, PVDA predicts hit rates and confirmation rates sufficiently well to serve as a planning tool 

for follow-up experiments. Using PVDA is only valid if the assumptions are fulfilled. A major benefit 

of PVDA is the fact that the shape of the PVD allows to identify situations when this is not the case. 
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Supplemental Table 1: Parameters used in the simulations, the corresponding figure number, and the 

obtained results (grey).  

Fig set 
hit 
rate 

day-to-day 
sd 
variability 
(sdcord2d) 

sd 
neg 
ctr 

sd 
interm 
ctr 

sd 
pos 
ctr 

median 
Z' 

predicted 
hit rate 

Confirm 
cutoff 

expected 
confirm 
rate 

predicted 
confirm 
rate 

1a 0.01 1.2 2 2 2 0.89 0.03 25 0.98 0.97
1b 0.1 1.2 2 2 2 0.89 0.12 25 0.98 0.95
1c 0.01 3 2 2 2 0.95 0.01 25 0.99 0.98
1d 0.1 3 2 2 2 0.94 0.15 25 0.99 0.96
2a 0.01 1.2 2 4 6 0.80 0.04 25 0.97 0.98
2b 0.1 1.2 2 4 6 0.81 0.12 25 0.97 0.95
2c 0.01 3 2 4 6 0.86 0.04 25 0.99 1.00
2d 0.1 3 2 4 6 0.76 0.12 25 0.97 0.92
3a 0.01 1.2 4 6 8 0.71 0.03 25 0.96 0.92
3b 0.1 1.2 4 6 8 0.69 0.12 25 0.95 0.90
3c 0.01 3 4 6 8 0.67 0.03 25 0.86 0.64
3d 0.1 3 4 6 8 0.76 0.12 25 0.92 0.79
4a 0.01 1.2 8 8 8 0.60 0.07 40 0.92 0.64
4b 0.1 1.2 8 8 8 0.60 0.05 40 0.90 0.73
4c 0.01 3 8 8 8 0.45 0.04 40 0.33 0.17
4d 0.1 3 8 8 8 0.58 0.14 40 0.80 0.52
5a 0.1 2 2 4 6 0.83 0.14 25 0.98 0.95
5b 0.2 2 2 4 6 0.81 0.23 25 0.97 0.95
5c 0.3 2 2 4 6 0.81 0.32 25 0.97 0.95
5d 0.4 2 2 4 6 0.78 0.40 25 0.97 0.94
6 0.1 2 2 4 6 0.73 NA 25 NA NA
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Supplemental Figure 1: Simulation results for small, equal variability (sd.n = sd.i = sd.p = 2). (a,b) 

low, (c,d) high day-to-day variability. (a,c) low, (b,d) high hit rate. P-value distribution (left), plate-

wise Z’ (inset), smoothed plate-wise robust estimate of the standard deviation (right). 

 



Page | 6  

 

Supplemental Figure 2: Simulation results for small, changing variability (sd.n = 2, sd.i = 4, sd.p = 6). 

(a,b) low, (c,d) high day-to-day variability. (a,c) low, (b,d) high hit rate. P-value distribution (left), 

plate-wise Z’ (inset), smoothed plate-wise robust estimate of the standard deviation (right). 
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Supplemental Figure 3: Simulation results for large, changing variability (sd.n = 4, sd.i = 6, sd.p = 8). 

(a,b) low, (c,d) high day-to-day variability. (a,c) low, (b,d) high hit rate. P-value distribution (left), 

plate-wise Z’ (inset), smoothed plate-wise robust estimate of the standard deviation (right). 
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Supplemental Figure 4: Simulation results for large, equal variability (sd.n = sd.i = sd.p = 8). (a,b) low, 

(c,d) high day-to-day variability. (a,c) low, (b,d) high hit rate. P-value distribution (left), plate-wise Z’ 

(inset), smoothed plate-wise robust estimate of the standard deviation (right). 
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Supplemental Figure 5: Simulation results for small, changing variability (sd.n = 2, sd.i = 4, sd.p = 6), 

medium day-to-day variability, and increasing hitrate: 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d). PVD (left), plate-

wise Z’ (inset), smoothed plate-wise robust estimate of the standard deviation (right). 
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Supplemental Figure 6: Simulation results for similar conditions as in Suppl. Fig. 4a but with an 

additional plate-to-plate variability of */÷ 2 instead of 1.2. P-value distribution (left), plate-wise Z’ 

(inset), smoothed plate-wise robust estimate of the standard deviation (right). 

 

 

Supplemental Figure 7:  Comparison of set parameters of the simulation with predicted parameters 

from the PVDA. (a) Predicted hit rate versus set hit rate, (b) predicted confirmation rate versus 

observed confirmation rate. Triangles mark the simulations with a constant standard deviation of 8 

(Fig. 3), where the confirmation cutoff had to be set to 40 instead of 25 (circles). The color code allows 

to distinguish simulations resulting in a median Z’ below 0.5 (black), above 0.75 (green) or in between 

(red).  

 

 


