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SUMMARY

In order to use rocking as a seismic response modification strategy along both directions of seismic
excitation, a three-dimensional (3D) rocking model should be developed. Since stepping or rolling rocking
structural members out of their initial position is not a desirable performance, a rocking design should not
involve these modes of motion. To this end, a model that takes the aforementioned constraint into account
needs to be developed. This paper examines the 3D motion of a bounded rigid cylinder that is allowed to
uplift and sustain rocking and wobbling (unsteady rolling) motion without sliding or rolling out of its initial
position (i.e., a 3D inverted pendulum). Thus, the cylinder is constrained to zero residual displacement at the
end of its 3D motion. This 3D dynamic model of the rocking rigid cylinder has two DOFs (three when
damping is included), making it the simplest 3D extension of Housner’s classical two-dimensional (2D)
rocking model. The development of models with and without damping is presented first. They are simple
enough to perform extensive parametric analyses. Modes of motion of the cylinder are identified and
presented. Then, 3D rocking and wobbling earthquake response spectra are constructed and compared with
the classical 2D rocking earthquake response spectra. The 3D bounded rocking earthquake response spectra
for the ground motions considered seem to have a very simple linear form. Finally, it is shown that the use of
a 2D rocking model may lead to unacceptably unconservative estimates of the 3D rocking and wobbling
seismic response. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

To the authors’ knowledge, the first modern interest in rocking structures stemmed from the need to
estimate the peak acceleration of ground motions by studying overturned blocks. In 1885, Milne [1]
published a study that hinges upon the assumption that the uplifting acceleration of a rigid block is
enough to overturn it. In 1927, in an effort to construct an acceleration measuring device,
Kirkpatrick [2] uncovered that the overturning of a block does not only depend on the ground
motion peak ground acceleration (PGA) and on the block slenderness but also on the ground motion
duration and the block size. In 1963, Housner [3] published his seminal paper where he explained
the remarkable properties of rocking structures: (i) the larger of two geometrically similar blocks can
survive the excitation that will topple the smaller block, and (ii) out of two acceleration pulses with
the same acceleration amplitude, the one with longer duration is more capable of inducing
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overturning. These properties, as well as the observation that modern and ancient structures that were
unintentionally designed to rock behaved well during earthquakes, have motivated engineers to try to
use uplifting of structures as a seismic response modification strategy.

The behavior of a simple, free-standing rigid rocking block has been systematically studied for more
than three decades [4–16]. The behavior of deformable solitary rocking oscillators has also been
studied [17–21], and it was concluded that deformable rocking structures also present remarkable
stability when excited by earthquakes. This favorable property is also present in the dynamic
behavior of assemblies or rocking bodies, such as multidrum ancient columns [22] or rocking
frames or walls [23–28]. Experiments show that the deterministic models of impact damping are not
easy to validate [18, 29–31], thus necessitating a probabilistic treatment [32–34]. Models to quantify
the effects of the prestressing tendons [35, 36] or viscous dampers [37] added to rocking blocks and
rocking frames have also been proposed.

All of the aforementioned works treat rocking as a 2D, in-plane, problem. The published research on
the dynamic response of 3D rocking of rigid bodies is much more limited. In [38–40], the motion of a
rigid cylinder under seismic excitation is studied. Other researchers studied the 3D response of ancient
conical or cylindrical columns numerically [41, 42] or experimentally [43–45]. Makris et al. [46]
experimentally tested scaled models of uplifting bridges. All the aforementioned studies conclude
that 3D motion is present (so-called wobbling), even under in-plane initial conditions and/or under
uniaxial horizontal component ground excitation. Stefanou et al. [47] proved the aforementioned
observation theoretically. In fact, when the initial spin tends to zero, the motion of a rigid cylinder
involves a sudden and rapid motion of the contact point around the circular base (wobbling) instead
of an impact (rocking). Srinivasian and Ruina [48] proved that the net angle of turn of the contact
point is nearly independent of initial conditions: instead, this angle of turn depends simply on the
geometry and the mass distribution of the body.

Beyond the scope of earthquake engineering, Moffat [49] described the motion of a toy, the ‘Euler’s
Disk’ (which is not related to Euler but is named after the Euler angles used to describe its motion). The
toy comprises a disk that is given an initial spin on a chromed concave base. The toy spins with an
increasing frequency and stops in an abrupt manner. Similar behavior is observed when spinning a
coin. Even though there is no evident engineering application of the toy, Moffat’s paper received
much attention and created a debate about the energy dissipation mechanisms involved in the
motion of Euler’s Disk [50–53].

The 3D behavior of non-cylindrical bodies has also recently received attention. Konstantinidis and
Makris [54] and Zulli et al. [55] studied the rocking motion of a 3D prism. Chatzis and Smyth [56]
studied the motion of a 3D prism on a deformable base, taking sliding into account as well as the
3D dynamics of a rigid body with wheels on a moving base [57]. Greenbaum [58] developed an
interesting computer vision method that allows for the experimental measurement of the rigid-body
translation and rotation time histories in three dimensions. Mathey et al. [59] studied the influence
of geometric defects on the 3D response of small-sized blocks. They concluded that the blocks with
imperfections are less stable than the theoretically perfect ones. Pappas et al. [60] numerically
explored the behavior of an ancient cylindrical column with a height of 6 m and a diameter of
0.66 m with the intension of defining proper ground motion intensity measures to characterize the
rocking response of such structures.

Dynamic models used in the research discussed earlier are multi-degree-of-freedom (MDOF)
models and assume unbounded 3D motion. They involve stepping or rolling rigid rocking bodies
out of their initial position. This behavior results to residual deformations. Thus, these models are
suitable for equipment but not for structural components designed to uplift. In contrast, a simpler
model is examined in this paper: a cylinder rocking and wobbling (rolling unsteadily) exclusively
above the initial position of its base, without sliding or rolling out (i.e., a 3D inverted pendulum). In
this sense, the investigated model is a direct extension of Housner’s model, which also constrains
the rocking body to restore to its original position. This simplified 3D bounded rocking and
wobbling motion model is developed because, if rocking is to be used for seismic response
modification, no residual displacement or rolling out of the body would be acceptable. Such motion
constraints could be implemented, for example, as a recess around the cylindrical column or via
methods presented in [61]. The accuracy of the model depends on how efficiently the constraints are

M. F. VASSILIOU ET AL.

Copyright © 2017 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2017)
DOI: 10.1002/eqe



implemented. The model investigated herein is much simpler and computationally cheaper than the
MDOF models, thereby allowing for extensive parametric studies and probabilistic seismic analysis.
Two versions of the model are developed and compared: one without and the other with damping.

2. UNDAMPED 3D BOUNDED MODEL OF A FREE-STANDING RIGID CYLINDER

2.1. Coordinate systems

The 3D bounded rocking and wobbling model of a free-standing rigid cylinder is shown in Figure 1.
The cylinder has a total mass, m; base radius, b; and height, 2h. Its semidiagonal is R, and its
slenderness is α (tanα = b/h). The assumptions are as follows:

1. The cylinder is considered rigid, homogeneous, and not damageable.
2. The supporting plane surface (ground) is considered rigid and not damageable.
3. The contact between the cylinder and the ground is pointwise. This assumption becomes more

accurate for smaller cylinders and for larger tilt angles.
4. The cylinder is constrained not to roll out of its initial position.
5. No sliding is allowed; that is, the friction between the cylinder and the supporting plane surface is

assumed to be large enough.

Figure 1. Top: geometry of the model. A rigid cylinder is allowed to uplift and wobble but is constrained not
to roll out of its original base. Bottom: ‘3–2–3’ Euler angles.
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6. The cylinder is always in contact with the support (i.e., it never flies). Therefore, the contact force
is always compressive.

7. No damping mechanism is included.

Given the aforementioned assumptions, the model has only two degrees of freedom: the tilt angle, θ,
and the rolling angle, φ. The latter determines the location of the contact point between the cylinder and
the supporting plane (Figure 2).

The following coordinate systems are used (Figure 1, bottom): XYZ is the inertial reference frame;
xyz originates at the center of the bottom of the cylinder, B, and has the same orientation as XYZ;
x3y3z3 originates at B and follows the rotations of the cylinder. At rest, all three coordinate systems
have the same orientation, and the last two coincide.

Coordinate systems XYZ and xyz differ only by a translation; system x3y3z3 is a rotation of xyz. The
so-called 3–2–3 Euler angles are used to describe this rotation [62]. The first angle (notated as φ, since
it can be proven that it is equal to the rolling angle) describes a rotation around the axis z. This leads to
a new coordinate system x1y1z1. The second angle (notated as θ, since it can be proven that it is equal to
the cylinder tilt angle) describes a rotation around the axis y1. This leads to the new coordinate system
x2y2z2. The third angle, ψ, describes a rotation around the axis y2. This leads to the new coordinate
system x3y3z3. Since it is assumed that the friction between the cylinder and the foundation is large,
it can be proven that ψ = �φ.

In order to derive the equation of motion of the cylinder, the translational and rotational motions of
the center of mass of the cylinder should be tracked, relative to the inertial reference frame XYZ.
Referring to Figure 2, the position vector of the center of mass, S, is as follows:

rO0
S¼rO0

OþrOBþrBS (1)

The components of the position vector are as follows (Figure 2):

rO0
O¼ugxIþugyJþ 0K (2)

rOB¼dxiþdyjþ dzk (3)

rBS¼0i3þ0j3 þ hk3 (4)

Figure 2. Left: vertical section passing through the center of mass of the rigid cylinder, S, and its contact
point with the ground T, the pivot point. Right, top view: the circle is the original configuration of the
cylinder and point Β0 is the vertical projection of point B on the ground. [Colour figure can be viewed at

wileyonlinelibrary.com]
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where i, j, and k are the unit vectors of each coordinate system (with case and indexes corresponding to
the notation of the corresponding axes) and ugx and ugy are the two horizontal components of the
earthquake ground motion excitation. The unit vectors are related through the following
transformations:

I

J

K

2
64

3
75 ¼ 1�

i

j

k

2
64

3
75and

i

j

k

2
64

3
75 ¼ A1�A2�A3�

i3

j3
k3

2
64

3
75 (5)

where 1 is the unit matrix and A1, A2, and A3 are the rotation matrices that correspond to the Euler
angles:

A1 ¼
cosφ � sinφ 0

sinφ cosφ 0

0 0 1

2
64

3
75 A2 ¼

cosθ 0 sinθ

0 1 0

� sinθ 0 cosθ

2
64

3
75 A3 ¼

cosφ sinφ 0

� sinφ cosφ 0

0 0 1

2
64

3
75 (6)

With reference to Equations (5) and (6), vector rBS can be written in XYZ coordinates as

rBS¼h� cosφ� sinθ�Iþh� sinφ� sinθ�Jþ h� cosθ�K (7)

or in vector coordinates as

rBS¼h

cosφ� sinθ
sinφ� sinθ
cosθ

2
64

3
75
XYZ

(8)

With reference to Figure 2, dx, dy, and dz from Equation (3) are

dx ¼ b� 1� cosθð Þ� cosφ
dy ¼ b� 1� cosθð Þ� sinφ
dz ¼ b� sinθ

(9)

giving vector rOB:

rOB¼b�
1� cosθð Þ� cosφ
1� cosθð Þ� sinφ

sinθ

2
64

3
75
XYZ

(10)

Therefore, Equation (1) can be written in XYZ coordinates as

rO0
S¼

ugx
ugy
0

2
64

3
75
XYZ

þ b�
1� cosθð Þ� cosφ
1� cosθð Þ� sinφ

sinθ

2
64

3
75
XYZ

þ h

cosφ� sinθ
sinφ� sinθ
cosθ

2
64

3
75
XYZ

(11)

2.2. Equations of motion

The Lagrangian equations of the rigid cylinder in Figure 1 are

d
dt

∂ K � Vð Þ
∂̇ qi

� �
� ∂ K � Vð Þ

∂qi
¼ 0 (12)
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where qi are the two degrees of freedom of the cylinder (θ and φ), while K and V are the kinetic and
potential energy of the system, respectively. The translational kinetic energy of the system is

K trans ¼ 1
2
m� ̇ rT

O
0
S
� ̇ rO0

S (13)

The angular velocity of the cylinder, in the x3y3z3 coordinates, is [62]

ω¼
� _φ� cosφ sinθ � _θ� sinφ
� _φ� sinφ sinθ þ _θ� cosφ

_φ� cosθ � _φ

2
64

3
75
x3y3z3

(14)

The rotational kinetic energy of the system is

Krot ¼ 1
2
ωT �Ι0�ω (15)

where I0 is the moment of inertia tensor of the cylinder around its principal axis:

Ι0 ¼
Ix 0 0

0 I y 0

0 0 I z

2
64

3
75 ¼

3mb2 þ 4mh2

12
0 0

0
3mb2 þ 4mh2

12
0

0 0
mb2

2

2
66666664

3
77777775

(16)

The potential energy V of the system is

V ¼ mg b sinθ þ h cosθð Þ (17)

Equations (10) through (17) give the equations of motion or the rigid cylinder (Figure 1):

I1 þ h2mþ b2m
� ��€θ þ bgm� cosθ � hgm� sinθ

þ I2 � I1 þ b2m� h2m
� �� cosθ� sinθ � I2 þ b2m

� �� sinθ � hbm� 1þ cosθð Þþ 2hbm�cos2θ� �� _φ2 ¼
¼ �hm�€ugx� cosφ� cosθ � bm�€ugx� cosφ� sinθ � hm�€ugy� sinφ� cosθ � bm�€ugy sinφ� sinθ

(18)

I1 � I2 þ h2m� b2m
� ��sin2θ þ 2� I2 þ b2m

� �� 1� cosθð Þ þ 2hbm� sinθ� 1� cosθð Þ� ��€φþ
2� I2 � I1 � h2mþ b2m
� �� sinθ� 1� cosθð Þ þ 2hbm� 2sin2θ þ cosθ � 1

� �þ 2� I1 þ h2m
� �� sinθ� ��̇ φ�̇ θ ¼

¼ �bm�€ugy� 1� cosθð Þ cosφþ bm�€ugx� sinφ� 1� cosθð Þ � hm�€ugy� sinθ cosφþ hm�€ugx� sinφ� sinθ
(19)

where I1 is Ix and I2 is Iz. Using Equation (16) and defining
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R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ b2

p
(20)

Equations (18) and (19) become

€θ ¼ �p2 sin α� θð Þ þ cos α� θð Þ cosφ�€ugx
g

þ sinφ�€ugy
g

� �� �

�
5
4
sin2α� 4

3
cos2α

� �
� cosθ� sinθ � 3

2
sin2α� sinθ�

� cosα� sinα� 1þ cosθð Þ þ 2 cosα� sinα�cos2θ

0
B@

1
CA� 1

5
4
þ 1
12

cos2α
� � _φ2

(21)

1
12

3� 18sin2αþ 13cos2a
� ��sin2θ þ 3sin2α 1� cosθð Þ þ 2 sinα cosα sinθ� 1� cosθð Þ

� �
R�€φþ

3sin2α sinθ þ 1
6
3� 18sin2αþ 13cos2α
� �

sinθ cosθ þ 2 cosα sinα 2sin2θ þ cosθ � 1
� �� �

R� _φ� _θ ¼

¼ sinαþ sin θ � αð Þð Þ €ugx sinφ� €ugy cosφ
� �

(22)

where p is the well-known frequency parameter used in the dynamic model of the 2D rocking block,
here associated with the tilting motion of the cylinder:

p2 ¼ mgR
Io

¼ 12
15þ cos2α

g
R

(23)

where Io is the moment of inertia of the cylinder around a point on the circumference of its base. By
setting ̇ φ ¼ 0 in Equation (21) and using single-horizontal-component ground excitation, one
recovers the equation of the 2D rocking motion of a cylinder. However, unlike the equations used to
describe the 2D rocking problem (which are non-smooth as they have to treat impact), the equations
presented herein are smooth: the tilt angle θ is always positive, and the change of contact point is a
continuous function of the rolling angle φ. There is no instantaneous impact, but the numerical
results presented in the following sections show that a very rapid (but continuous) change of the
pivot point may occur.

To solve the equations of motion (Equations (21) and (22)) numerically, 3D rocking-and-wobbling
motion has to be initiated: in the case of free vibration, via a non-zero initial spin, ̇ φ, and in the case of
an earthquake excitation, via applying a two-horizontal-component ground excitation. Such initiation
resembles numerical analysis of buckling using a second-order geometry method, where one needs
to apply an initial imperfection in order to observe buckling.

Using Equation (21) without the ground motion excitation and assuming a constant cylinder tilt
angle θ, one obtains the wobbling period of the cylinder as a function of the title angle θ:

T ¼ 2π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

5
4
sin2α� 4

3
cos2α

� �
� cosθ� sinθ � 3

2
sin2α� sinθ�

� cosα� sinα� 1þ cosθð Þ þ 2 cosα� sinα�cos2θ

0
B@

1
CA

sin α� θð Þ 5
4 þ 1

12 cos
2α

� �

vuuuuuut
(24)

Figure 3 plots the cylinder wobbling period T, normalized with respect to the cylinder frequency
parameter p (Equation (24)), against the normalized tilt angle of the cylinder for different values of
cylinder slenderness tanα. The Euler’s Disk case is represented by tanα = 1000. The normalized
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period of a 2D rocking block, as derived by Housner [3], is also plotted in Figure 3. The analogy
between 2D rocking and 3D bounded wobbling is evident. Note that Housner’s derivation is
linearized and holds only for small values of the slenderness angle α (then it is also independent of
the exact value of α).

2.3. Uplift condition

Uplift occurs when the total ground acceleration is larger than gtanα:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€u2gx þ €u2gy

q
≥g tanα (25)

The direction of uplift is along the D’Alembert inertia force vector at the instance of uplift. This
direction is given by the angle φ0:

cosφ0 ¼ � ugxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€u2gx þ €u2gy

q and sinφ0 ¼ � ugyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€u2gx þ €u2gy

q (26)

2.4. Free vibration response

The aforementioned equations are implemented in MATLAB and solved numerically. Figure 4 plots
three characteristic (R = 6 m and tanα = 0.2) rigid cylinder free rocking and wobbling motions from
three initial conditions. The responses of the model without damping are plotted in black, but for the
second and third cases, they are indistinguishable from the response of the damped model (see the
next section).For a very small initial spin (Figure 4a and b), the cylinder changes its pivot point
rapidly (but smoothly, as the solution is continuous). This is the quasi-rocking response mode. The
term ‘quasi’ is used because this numerical test confirms the experimentally observed [44, 46] and
theoretically proven result [47] that the planar motion of a cylinder is unstable: an initial angle of
turn as low as ̇ φ ¼ 10�8 rad=s induces a clear out-of-plane motion. Therefore, the change of pivot
point is defined by an angle of turn, slightly smaller than π, which compares well with the
prediction of [48]. Indeed, [48] gives an angle of turn equal to

Δφ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 13cos2α
15þ cos2α

r
¼ 3:0952 (27)

while the numerical calculations give Δφ = 3.058.
The abrupt change of the pivot point generates large vertical forces at the contact point (in the limit

case, they become infinite and the spinning motion tends to an impact). Therefore, one source of

Figure 3. Period–tilt angle relation for rocking and wobbling cylinders of different slenderness. [Colour
figure can be viewed at wileyonlinelibrary.com]
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damping of the rocking and wobbling motion of a rigid cylinder could be such a quasi-impact
mechanism. This damping mechanism is introduced in the next section.

During the change of pivot point, a jump in the tilt velocity, _θ, is observed. This is not a discontinuity
(since the equations are smooth) but rather a rapid change of value. It does not appear in the 2D
problem because in the 3D model θ is always positive and the change of pivot point does not
happen by θ changing sign, but by a rapid change of φ.

Figure 4. Left: orbits of the center of cylinder mass. Right: response time histories of the tilt magnitude and
velocity θ, ̇ θ, and the spin magnitude and velocity φ and ̇ φ for free vibration with different initial conditions.

[Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 4c and d plots the response of a rigid cylinder for an initial spin defined through
Equation (24). For every cylinder geometry and each tilt angle, there exists a unique initial spin that
can generate the response during which the tilt angle stays constant and the cylinder wobbles
without rocking. This is the pure wobbling response mode. Note the much smaller magnitudes at the
peak of the spin velocity, compared with the quasi-rocking response mode. It is also worth noting
that since the tilt angle stays constant, the tilt acceleration, €θ , is zero, and hence, the vertical force at
the contact point is constant and equal to the weight of the cylinder.

Figure 4e and f plots the response of a rigid cylinder due to a combination of the two pure response
modes discussed earlier. Even though the two pure response modes interact, the tilt angle never comes
close to zero. Note that the term ‘modes’ does not refer to modes of vibration resulting from modal
analysis but rather identifies distinct types of rigid cylinder response.

3. DAMPED 3D BOUNDED MODEL OF A FREE-STANDING RIGID CYLINDER

Since the publication of Lord Rayleigh’s classic monograph ‘Theory of Sound’ [63], researchers have
been using linear viscous dampers to model energy dissipation in structures. For MDOF systems, the
damping matrix is often assumed to be mass and stiffness proportional, to facilitate uncoupled modal
response analysis. This approach emerged from the necessity to model the decay of motion without
having to solve systems of non-linear ODEs, which is oftentimes impossible to do analytically.
Nowadays, the increase of computational power allows for the numerical solution of the equation of
motion and, therefore, allows for the use of different energy dissipation models that might better
describe the nature of the diminishing response of a moving structure. On the other hand, the use of
Rayleigh damping to describe energy dissipation in rocking structures (2D or 3D) has been shown
to be inadequate to describe the decay of the response and difficult to calibrate [[64] and references
therein]. Therefore, Rayleigh damping is avoided, and a different method, based on [64], is
suggested herein.

The energy dissipated by a rigid cylinder undergoing a pure wobbling motion on a rigid surface
(Figure 4c and d) is very small. A spinning coin or the Euler’s Disk offers empirical proofs of this
statement. There is an open debate on whether this energy dissipation originates from air viscosity
[49] or friction [50], but there is a consensus that the amount of dissipated energy is small compared
with the kinetic and potential energy quantities in the dynamic system. Furthermore, the cylinder
remains in contact with the support, and the force at the contact point is constant and equal to the
weight of the cylinder.

In the other extreme, in quasi-rocking motion (no spin ̇ φ and almost instantaneous change of pivot
point), damping clearly exists. Unless there is a fracture of the surfaces in contact, energy dissipation is
mainly due to radiation damping [65]. As Figure 4a and b shows, the contact force appears as a spike,
quasi-impact, at every rapid change of the contact point. Furthermore, the closer the motion to pure
rocking is, the larger the spike. In the limit case of instantaneous impact (Housner’s assumption for
the 2D rocking problem), the impact force becomes a Dirac function. The variation of the contact
force generates intense vibrations in the support (be it an infinite half-space or a real-world support)
that lead to the gradual decay of motion.

If it is the variation of the contact force that causes energy to be dissipated from the rocking and
wobbling rigid cylinder, it is reasonable to model this content using a linear spring in parallel with a
linear viscous damper at the contact point (Figure 5). The viscous damper dissipates energy only
when the contact point moves up and down and dissipates more energy when the point moves
faster. It will be shown that the exact value of the damping coefficient for this damper is important
only for free, quasi-rocking vibration, while knowing the exact damping coefficient value has
marginal importance for modeling the response to earthquake ground motion excitation, especially
when an intense excitation induces large-amplitude motion of the cylinder. Since the support is
assumed to be rigid, the spring stiffness is set to a numerically very large value.

This model is not to be confused with Winkler springs: the contact is pointwise, and the spring and
the dashpot are associated with the contact point, not distributed across the support surface. In a
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Winkler model, the vertical force deformation response of the support is not linear, when the rocking
body is uplifted, since more indentation of the body would mobilize more springs as the contact area
increases to balance the actions of the body. Non-linear compression-only springs and contact point
searches are avoided in the proposed model, making it much more computationally efficient, while
not less realistic than a Winkler model given the assumption of support rigidity. Note that the spring
and the dashpot are not used to describe the compressibility of the ground but are merely utilized to
dissipate energy during the rolling and wobbling motion of the rigid cylinder on a rigid surface. The
damped model (Figure 5) is described by the equations of motion

€θ ¼ �p2 sin α� θð Þ þ cos α� θð Þ cosφ�€ugx
g

þ sinφ�€ugy
g

� �� �
�

� €w
15þ cosα

sin α� θð Þ þ cos α� θð Þ cosφ�€ugx
g

þ sinφ�€ugy
g

� �� �

�
5
4
sin2α� 4

3
cos2α

� �
� cosθ� sinθ � 3

2
sin2α� sinθ�

� cosα� sinα� 1þ cosθð Þ þ 2 cosα� sinα�cos2θ

0
B@

1
CA� 1

5
4
þ 1
12

cos2α
� � _φ2

(28)

and

€w þ 2ζωn _wþ ω2
nw ¼ R cos α� θð Þ _θ2 � R sin α� θð Þ€θ (29)

and by Equation (22), which remains unchanged. The properties of the spring and dashpot system are

ωn ¼
ffiffiffiffi
k
m

r
and ζ ¼ c

2mωn
¼ c

ccr
(30)

Position w = 0 corresponds to a static equilibrium position of a titled cylinder, where the
deformation of the contact point spring under the cylinder self-weight is equal to mg/k.

The free rocking and wobbling responses of undamped and damped (R = 6 m and tanα = 0.2) rigid
cylinders from three initial conditions are compared in Figure 4. The responses are computed and
plotted for eight combinations of spring and damper properties, namely, for ωn = {200, 2000} rad/s
and ζ = {0.05, 0.5, 5, 50}. The plots overlap, indicating that the proposed 3D bounded rocking and

Figure 5. Model for energy dissipation (damping) at the contact point. [Colour figure can be viewed at
wileyonlinelibrary.com]
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wobbling motion model is not sensitive to the values of the stiffness and damping parameters of the
contact point spring and dashpot system (as long as the spring is stiff enough to represent a rigid
support). This perhaps counterintuitive outcome is similar to the observations of 2D rocking
response in [64] and is related to the fact that the impacts in rocking motion are not centric.
Nevertheless, the proposed model succeeds in dissipating energy during motions that tend to pure
rocking. In fact, Housner’s approach for a rigid cylinder would give a coefficient of restitution equal to

ffiffi
r

p
Housner ¼ e ¼

_θafter
_θbefore

¼ 1� mR2

Io
1� cos2αð Þ ¼ 1� sin2α

5
8 þ 1

24 �cos2α
¼ 0:942 (31)

Calculating the coefficient of restitution from the first five impacts shown in Figure 4b yields

ffiffi
r

p
Numerical ¼

0:1408
0:19

� �1=5

¼ 0:942 (32)

The two values are equal to three significant digits. Therefore, the response of the 3D bounded
rocking cylinder is not sensitive to the exact values of the spring and damper properties of the
damped model even when the response involves quasi-impacts and virtually instantaneous changes
of the contact point.

In the cases where the change of pivot point is not quasi-instantaneous (Figure 4c–f), there is zero
damping and the damped and undamped models have the exact same response.

4. GROUND MOTION RESPONSE OF A FREE-STANDING RIGID CYLINDER

When the analysis of the undamped and damped free rocking and wobbling response of a free-standing
3D bounded rigid cylinder is extended, the response of the two models (damped and undamped) to
earthquake excitation is going to be similar if wobbling motion dominates the response (i.e., quasi-
impacts do not occur, and the amount of dissipated energy is very small). If, however, quasi-impacts
occur, the damped model is going to dissipate non-negligible amounts of energy and the solutions
from the two models will start to diverge.

To test the aforementioned statement, the support surface of a rigid cylinder with R = 6 m and
tanα = 0.2 is excited bidirectionally using the two horizontal components of the 1940 Imperial
Valley, El Centro ground motion record, baseline corrected via a high-pass filter (based on Brune’s
source model [66]). Moreover, the two original components are rotated to determine the two
uncorrelated principal components [67, 68] (for reasons that will become clear in the next section).
The two components are shown in the bottom two rows of Figure 6. The x-direction excitation is
the EW component, and the y-direction excitation is the NS component of this motion, using the
coordinate system shown in Figure 1. Indeed, for the first 15 s of the response, the undamped and
damped solutions coincide. Then, a quasi-impact occurs, and the two solutions start to diverge. The
divergence is evident in the time history of the rolling angle φ, as the two models spin in opposite
directions; that is, the rolling angular velocities ̇ φ have opposite signs. However, up until the 19th
second of motion, the difference is barely visible in the time history of the tilt angle θ. Interestingly,
after 28 s, the two models spin in opposite directions; that is, the turn angles ̇ φ have opposite signs.
The damped and undamped models produce maximum tilt angles θ equal to 0.0668 and 0.0838 rad,
respectively, a 25% difference. Given all model approximations and uncertainties, this difference is
small but not negligible. However, a comparison of the undamped and damped 3D rigid cylinder
rolling and wobbling models using a single ground motion is not the most meaningful one: a more
meaningful comparison is one obtained from the statistics of the response of the two models to an
ensemble of ground motion that represent the same hazard. To this end, the so-called seismic
rocking response spectra are presented in the following section.
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5. SEISMIC PERFORMANCE ROCKING SPECTRA

In order to gain insight into the stability of rigid cylinders of different sizes under earthquake
ground motion excitation, rocking response spectra are constructed by scaling the 1940 El Centro
ground motion. Figure 7 plots the overturning spectra of El Centro ground motion (i.e., contour
plots of maximum tilt angle, θ), for a given cylinder slenderness tanα = 0.2 computed using the
undamped (left) and damped (right) models. The abscissa defines the size of the rigid cylinder
through its semidiagonal, R. The ordinate defines the normalized peak ground acceleration, PGA/

gtanα, where PGA ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2gx þ u2gy

q� �
. The main characteristic of rocking structures, in which

for a given slenderness, larger structures are harder to overturn, still holds. The damped and
undamped models give almost identical overturning spectra. Both components of the 1940 El
Centro ground motion record were scaled equally. Furthermore, the scale factors needed to
overturn large cylinders were large. Such scaling of a single recorded ground motion is not ideal
as it may produce unrealistic, strong ground motions. Nevertheless, the present pilot study adopts
this scaling model.

Figure 6. Rigid cylinder tilt θ, ̇ θ, spin φ, and ̇ φ and spring displacement w and velocity ̇ w response time
histories to the 1940 El Centro ground motion (bottom two rows). [Colour figure can be viewed at

wileyonlinelibrary.com]
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5.1. Ensemble of ground motions

Following the pioneer work of Yim et al. [4], the problem was studied using an ensemble of ground
motions, rather than a single one. The Rezaeian and Der Kiureghian [68–70] stochastic ground
motion model was used to create 10 ground motion records that have the same statistical properties
as the 1940 El Centro ground motion. In order for the model to be applicable, the original El Centro
ground motion was rotated by 22.33° so that its two components are uncorrelated. Figure 8 shows
the acceleration traces in the two orthogonal horizontal directions as well as the elastic pseudo-
acceleration response spectra of the generated artificial ground motion records. The top plot is the
original corrected El Centro ground motion, while the next 10 are the simulated ones. Note that the
simulated ground motions merely match the original ground motion in terms of selected response
quantities of a linear elastic single-degree-of-freedom oscillator. This does not guarantee that non-
linear or inelastic structures, such as rocking structures, will have similar responses to individual
ground motions in the generated ensemble.

5.2. Seismic rocking performance spectra

The 3D seismic response of a free-standing bounded rigid cylinder rocking and wobbling on a rigid
surface is monitored using two performance limit states:

1. Overturning, identified numerically as θ > π/2, and
2. Excessive tilting, identified as the first occurrence of the cylinder tilt angle θ exceeding one-third

of the cylinder slenderness α, that is, θ > α/3.

For each ground motion of Figure 8 and each value of the semidiagonal R, a series of 3D rigid
cylinder response analyses were carried out to identify the smallest normalized ground motion
intensity PGA/gtanα required to exceed a selected performance limit state of the rigid cylinder. The
slenderness ratio of the cylinder was held constant (tanα = 0.2). The resulting line in the R-PGA/
gtanα plane (Figure 9) plots this minimum ground motion intensity, normalized by the cylinder
aspect ratio, against the cylinder size (semidiagonal) R. The plots in Figure 9 show such seismic
performance rocking spectra for the overturning (left) and excessive tilting (right) performance limit
states for the Figure 8 ground motions computed using the undamped (solid lines) and damped
(dashed lines) 3D rolling and wobbling rigid cylinder models. For each R, the mean (among the 11
ground motions) was also computed and is plotted using a thick black line. Figure 10 plots such
mean spectra for seven performance goals.

The first observation is that the main property of rocking structures (for a given slenderness, the
larger objects are harder to overturn dynamically) holds in the 3D case as well.

The second observation (Figure 9, left) is that the undamped and damped models produce
essentially identical overturning seismic rocking performance spectra. The differences between the
excessive tilt seismic performance rocking spectra (Figure 9, right) for the individual motions are
small and practically vanish when the average spectra are compared. This indicates that the

Figure 7. Normalized tilt angle θ/α contour plots for different cylinder sizes, R, and for the normalized scaled
1940 El Centro ground motion intensity PGA/gtanα · tanα = 0.2. [Colour figure can be viewed at

wileyonlinelibrary.com]
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wobbling motion dominates the response of the rigid cylinder and that a few quasi-impacts that occur
are not consequential enough to change the seismic performance spectra. Therefore, the exact value of
the damping coefficient (associated with the viscous damper in the contact point damping model) is not
important. Furthermore, the undamped 3D rigid cylinder model can be used to construct the seismic
rocking performance spectra for 3D rocking and wobbling response of rigid cylinders with
sufficient accuracy.

The third observation is that the average seismic performance rocking spectra for all performance
limit states are almost straight lines, indicating that the average ground motion intensity to exceed a

Figure 8. Acceleration traces in two orthogonal horizontal directions and the corresponding elastic pseudo-
acceleration response spectra for the rotated 1940 El Centro ground motion (top) and the 10 generated
artificial ground motion records that match the spectral characteristics of the rotated record. [Colour figure

can be viewed at wileyonlinelibrary.com]

THE 3D SEISMIC BEHAVIOR OF INVERTED PENDULUM CYLINDRICAL STRUCTURES

Copyright © 2017 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2017)
DOI: 10.1002/eqe

http://wileyonlinelibrary.com


cylinder performance limit state is linearly related to the size of the cylinder, at least for a set of broad-
band ground motions that are compatible with the El Centro 1940 ground motion. This is contrast with
the overturning spectra for the analytical pulse ground motion excitation that exhibit a super-linear
behavior; that is, the overturning acceleration grows exponentially with a linear increase of the
rocking body size [6]. Nevertheless, this observation is of extraordinary importance as it may enable
a straightforward seismic performance-based design of rocking and wobbling free-standing
cylindrical structures. The slope of the spectrum will depend on the original ground motion, but a
detailed study of this correlation lies beyond the scope of this paper.

Finally, it is evident that the artificially generated ground motion records with similar linear elastic
oscillator response spectra do not have similar rocking spectra for the rigid cylinder. This is a strong
indication that the statistical parameters that correlate well with the seismic response of single-
degree-of-freedom oscillators with a linear and elastic restoring force are not representative of the
seismic response of a free-standing rocking structure, whose restoring capability stems only from its
own weight.

5.3. Influence of cylinder slenderness

Formal dimensional analysis for rocking structures excited by analytical pulse excitation shows that
their response depends both on the normalized excitation intensity PGA/gtanα and on the rocking

Figure 9. Seismic performance spectra for the three-dimensional rocking and wobbling bounded cylinder.
Right: overturning performance limit state. Left: excessive tilting performance limit state. Spectra for the
11 individual ground motions shown in Figure 8 are drawn using the same colors. The thick black lines plot

the average. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 10. Seismic performance spectra for the three-dimensional rocking and wobbling bounded cylinder.
Average (among all ground motions of Figure 8) of seismic performance rocking spectra. tanα = 0.2,

undamped model.

M. F. VASSILIOU ET AL.

Copyright © 2017 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2017)
DOI: 10.1002/eqe

http://wileyonlinelibrary.com


body slenderness α [6]. Figure 11 plots the average seismic rocking performance spectra for rigid
cylinders with slenderness ratios tanα = 0.1, 0.2, and 0.3, computed using the ground motions in
Figure 8 and the undamped 3D bounded rocking and wobbling rigid cylinder model. The spectra
too do not match exactly, because slenderness α cannot be omitted from the set of dimensionless
parameters that characterize the rocking problem but indicate that slenderness α (for a given PGA/
gtanα) has a very small influence on the seismic performance of the rocking and wobbling rigid
cylinder. Therefore, PGA/gtanα and R are sufficient to describe the seismic performance
(overturning or excessive tilting) of a rigid cylinder constrained to rock or wobble on its base
circumference, when excited by a class of ground motion records that have the same elastic spectra
characteristics as the 1940 El Centro ground motion record.

5.4. One-directional or bidirectional excitation

The 3D bounded rocking and wobbling model makes it possible to compare the bidirectional excitation
response computed using both horizontal components of the ground motion record to the unidirectional
responses computed using only one of the components. Namely, the same undamped 3D cylinder
model with slenderness ratio tanα = 0.2 is excited using both ground motion components
(bidirectional excitation) and using each component separately (unidirectional excitation). For
consistency, PGA denotes the intensity of the bidirectional excitation computed as

max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€u2gx þ €u2gy

q� �
, for all three models (3D and both 2D). The computed average seismic rocking

performance spectra for the ground motion records shown in Figure 8 are presented in Figure 12
(in black). It is clear that larger cylinders require a more intense ground motion to exceed a

Figure 11. Average seismic performance rocking spectra for a rigid cylinder with different slenderness α.
[Colour figure can be viewed at wileyonlinelibrary.com]

Figure 12. Average seismic performance rocking spectra for a rigid cylinder with slenderness ratio tanα = 0.2
computed using two-dimensional and three-dimensional ground motion excitations. [Colour figure can be

viewed at wileyonlinelibrary.com]
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performance limit state. However, overturning a cylinder with R = 10 m requires a bidirectional ground
motion with intensity PGA/tanα of about 4, while the intensities of unidirectional ground motion to
overturn the same cylinder are twice as high. A similar trend holds for the excessive tilt performance
limit state (Figure 12, right), as well as for a set of ground motions generated to match the San
Jose–Santa Teresa Hills record of the Loma Prieta 1989 earthquake (Figure 12, red). Therefore, the
outcomes of unidirectional seismic rocking performance analyses are grossly unconservative,
strongly indicating that the seismic performance of free-standing cylindrical structures, such as
ancient columns and chimneys, must be evaluated using bidirectional excitation. This finding is
consistent with the results reported for all the other 3D ‘unbounded’ rocking models found in literature.

6. CONCLUSIONS

A two-degree-of-freedom model (three when damping is included) that describes the 3D dynamic
behavior of a free-standing rigid cylindrical column that can uplift, rock, and wobble with the
constraint that it does not slide or roll out of its original position (i.e., an inverted pendulum) was
developed. It is the simplest 3D extension of the 2D Housner rigid-body rocking model. Two
versions of the model were developed: an undamped one and a damped one. The latter is equipped
with a damping mechanism such that the responses of a uniaxially excited 3D model and the 2D
Housner model match well. It was found that the 3D motion of a free-standing rigid cylinder is
dominated by wobbling, making the responses of the damped and undamped models essentially
identical. Therefore, the simpler, undamped, model of the rocking and wobbling 3D motion of a
bounded free-standing rigid cylinder can be used with confidence.

Seismic rocking performance spectra were constructed for the overturning and excessive tilting limit
states and an ensemble of synthetic non-pulse-like ground motions that have similar elastic spectra to
the 1940 El Centro and to the 1989 Loma Prieta ground motions. A comparison of the rigid cylinder
responses computed using the proposed 3D model and a 2D rocking model shows that even though
in both models the stability increases with block size (for a fixed slenderness), the 2D model is
unconservative. It was also found that, for these ground motions, the mean PGA to reach a specific
cylinder tilt angle increases almost linearly with cylinder size R. Therefore, the seismic rocking
performance spectra have a very simple, linear, form. It was shown that the slenderness of the
cylinder influences the seismic performance rocking spectra only through the non-dimensional
parameter PGA/gtanα.
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