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Abstract: This paper investigates the rocking response and stability analysis of an array of slender columns caped with a rigid beam which
are vertically restrained with elastic prestressed tendons that pass through the centerline of the columns while anchored at the foundation and
the cap-beam. Following a variational formulation, the nonlinear equation of motion is derived in which the stiffness and the prestressing
force of the tendons are treated separately. In this way, the postuplift stiffness of the vertically restrained rocking frame can be anywhere from
negative to positive depending on the axial stiffness of the vertical tendons. The paper shows that the tendons are effective in suppressing
the response of rocking frames with small columns subjected to long-period excitations. As the size of the columns, the frequency of the
excitations, or the weight of the cap-beam increases, the vertical tendons become immaterial given that most of the seismic resistance of tall
rocking frames originates primarily from the mobilization of the rotational inertia of their columns. The paper concludes with the presentation
and validation of an equivalent rigid-linear system so that the rocking response of vertically restrained rocking frames can be computed with
popular open-source or commercially available software simply by employing existing elastic-mutilinear elements. DOI: 10.1061/(ASCE)
ST.1943-541X.0001231. © 2014 American Society of Civil Engineers.

Introduction

The design of most modern structural framing systems is based on
three basic concepts that are deeply rooted in structural engineer-
ing. The first concept is that of creating statically indeterminate
(redundant) framing systems. When a “statically indeterminate”
structure is subjected to strong lateral loads and some joints develop
plastic hinges, there is enough redundancy in the system that other
joints maintain their integrity. The second concept, known as duc-
tility, is the ability of the structure to maintain sufficient strength at
large deformations. In this way, in the event of excessive lateral
loads that may convert all joints into plastic hinges, the ductile
behavior prevents collapse; however, in this case the structure may
experience appreciable permanent displacements together with se-
vere damage at the hinge zones. Therefore, in a strong earthquake
irreparable damage to structures is inevitable with this design
philosophy. The third concept that dominates modern structural
engineering is that of positive stiffness. When a structure behaves
elastically, forces and deformations are proportional. When yield-
ing is reached, the forces are no longer proportional to the defor-
mations; however, in most cases the stiffness at any instant of the
deformation history of the structure remains positive—that is, if
some force is needed to keep the structure away from equilibrium
at some displacement, then a larger force is needed to keep the
structure away from equilibrium at a larger displacement.

Fig. 1(a) illustrates the deformation pattern of a moment-
resisting, fixed base frame when subjected to a lateral load capable

of inducing yielding at the joints. The force-deformation curve
(P-u) is nonlinear and the behavior is ductile; nevertheless, the
lateral stiffness of the system remains positive at all times.

Along with the moment-resisting, ductile frame, Fig. 1(b) illus-
trates the deformation pattern of a freestanding, rocking frame
(two freestanding rigid columns caped with a freely supported rigid
beam) when subjected to a lateral load capable of inducing uplifting
of the columns. The force-displacement relationship (P-u) of the
rotating frame shown at the bottom of Fig. 1(b) indicates that the
articulated system has “infinite” stiffness until uplift is induced and,
once the four-hinge frame is set into rocking motion, its restoring
force decreases monotonically, reaching zero when the rotation of
the columns, θ ¼ α ¼ arctanðb=hÞ. Accordingly, the freestanding
rocking frame shown in Fig. 1(b) is a four-hinge mechanism that
exhibits negative lateral stiffness. Furthermore, during the oscilla-
tory rocking motion of a freestanding rocking frame, the force-
displacement curve does not enclose any area; therefore, the
ductility of the system is zero given that energy is lost only during
impact when the angle of rotation reverses.

In summary, Fig. 1 indicates that, whereas most modern struc-
tural engineers are trained to design statically indeterminate and
ductile structures that exhibit positive stiffness, ancient builders
were designing entirely different structural systems—that is, articu-
lated mechanisms that exhibit marginal ductility and negative stiff-
ness. What is remarkable about these “unconventional” articulated
structures, such as the Late Archaic Temple of Aphaia in the island
of Aegina near Athens (Makris and Vassiliou 2013), is that they
have endured the test of time by surviving several strong seismic
motions during their 2.5-millenia life. Recently the concept of
negative stiffness has received increasing attention for the seismic
protection of structures, to the extent that elaborate mechanical as-
semblies [negative stiffness device (NSD)] that involve highly com-
pressed springs have been proposed (Pasala et al. 2012; Sarlis
et al. 2012).

Despite the documented remarkable seismic performance of
ancient articulated temples (Konstantinidis and Makris 2005;
Papaloizou and Komodromos 2009; Ambraseys and Psycharis
2011; Vassiliou and Makris 2012; Makris and Vassiliou 2013,
2014; DeJong and Dimitrakopoulos 2014), the number of modern
structures that have been intentionally designed to rock on their
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foundations is limited (Mander and Cheng 1997; Chen et al. 2006;
Cheng 2008). Two state-of-the-practice examples may be found
in New Zealand: the South Rangitikei Railway Bridge (Beck
and Skinner 1973), and an industrial chimney at the Christchurch
Airport (Sharpe and Skinner 1983). Along the same concept is
the design of the piers of the Rion–Antirion Bridge in Greece
(Pecker 2005).

In view of the appreciable damage to the hinge zones and the
resulting permanent lateral displacements that are inherent to cur-
rent seismic-resistant, ductile design practice, during the last two
decades there has been a growing effort to rediscover the unique
advantages of rocking structures. Mander and Cheng (1997) intro-
duced the damage avoidance design (DAD), where the columns of
a frame are allowed to rock on both the pile cap and the pier cap
without inducing damage. This is achieved by terminating the lon-
gitudinal reinforcement of the columns before reaching the beam-
column and the column-foundation interfaces. In the DAD, central
post-tensioned steel tendons inside the columns are provided to
increase lateral resistance, as shown in Figs. 2(a and b). In fact,
the force-deformation curve presented in Fig. 2.2 of Mander and
Cheng (1997) indicates that the axial stiffness of the steel tendon
is large enough that the postuplift stiffness of the rocking frame
is positive. By introducing such a stiff tendon that reverses the neg-
ative stiffness associated with rocking, one creates a stronger sys-
tem; nevertheless, at present it is not well understood to what extent
stiff vertical tendons that offer a positive lateral stiffness enhance
the seismic stability of the rocking frame. A subsequent publica-
tion by Cheng (2008) presented shaking-table test results from the
seismic response of a two-column rocking frame with vertical
restrainers. The effect of the various parameters of the system was
examined in detail, and although some configurations in the Cheng
(2008) study maintained negative stiffness (i.e., the R30PNK250
test), the physical significance and the effect of increasing the stiff-
ness of the tendon were not discussed.

The pressing need for bridges to recenter after a strong
seismic event motivated several studies (Palermo et al. 2005;

Mahin et al. 2006; Sakai et al. 2006; Cheng 2007; Kam et al.
2010 and references therein), which invariably used the basic con-
cept of restraining the bridge piers with vertical tendons and reduc-
ing or even terminating the longitudinal reinforcement of the
columns before reaching their bottom and top interfaces, as was
originally proposed by Mander and Cheng (1997). The same idea
became popular in prefabricated-bridge technology, where again
the bridge piers of the so-called hybrid rocking frame are connected
to the foundation and the deck with vertically post-tensioned
tendons that pass through the axis of the column together with a
lighter longitudinal mild-steel reinforcement that runs near the cir-
cumference of the columns (Wacker et al. 2005; Cohagen et al.
2008, among others). With this design, during earthquake loading
most of the deformation is concentrated at the pier–foundation and
pier–cap-beam interfaces and the overall deformation pattern of the
post-tensioned frame resembles the deformation pattern of the
freestanding rocking frame (Makris and Vassiliou 2013, 2014).
Nevertheless, the prevailing practice is to offer the hybrid rocking
frame enough lateral moment resistance so that its lateral stiffness is
invariably positive.

More than a decade ago, Makris and Zhang (2001) and Makris
and Black (2002) investigated the rocking response and overturning
of anchored rigid blocks and equipment, and concluded that ver-
tical restrainers are more effective in preventing the overturning of
small blocks when subjected to low-frequency pulses. As the size
of the block increases, its rotational inertia increases with the
square of its size, and the seismic stability of large, freestanding
columns originates primarily from the difficulty in mobilizing their
large rotational inertia rather than from marginal contribution of the
restrainers. Part of the motivation of this study is to build on Makris
and Zhang’s (2001) and Makris and Black’s (2002) work and bring
forward that the ample seismic resistance of tall rocking frames
with heavy cap-beams atop originates primarily from the difficulty
in mobilizing the large rotational inertia of the system (Makris
2014) when the effect of vertical restraining tendons becomes more
marginal as the size of the columns of the rocking frame increases.

Fig. 1. Fundamental difference in the behavior of (a) a traditional moment-resisting frame; (b) a rocking frame with freestanding columns that are
allowed to rock
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Dynamics of the Vertically Restrained Rocking
Frame

The main motivation for this study is to establish the dynamics of
the vertically restrained rocking frame, which emerges as a most
promising alternative design concept for tall bridges (Mander and
Cheng 1997; Cheng 2008). This analysis goes beyond the one-bay
configuration introduced in Mander and Cheng (1997), which es-
sentially represents the transverse motion of the bridge system as
shown in Fig. 2(a) and examines the planar rocking response of
an array of N identical vertically restrained columns capped with
a rigid beam that is clamped with vertical restrainers. This configu-
ration, shown in Fig. 2(b), idealizes the longitudinal motion of a
multispan bridge.

When the elasticity, EA, of the restrainer is small compared
to the weight of the rocking columns, mcg, on uplifting, the lateral
stiffness of the system remains negative as in the free rocking case.
As EA increases, the lateral stiffness of the rocking frame increases
gradually from negative to positive as shown in Fig. 2(c).

Assuming that the rocking column will not topple, it will recen-
ter, impact will happen at the new pivot point, and subsequently
the column will rock with opposite rotations. During rocking, the
dependent variables uðtÞ and vðtÞ of the center of mass of the
cap-beam with mass mb are given for θðtÞ < 0 and θðtÞ > by
the following expressions:

uðtÞ ¼ ∓2R½sinα − sinðα� θÞ� ð1Þ

vðtÞ ¼ 2R½cosðα� θÞ − cosα� ð2Þ

In these equations, whenever there is a double sign (say ±)
the top sign is for θ < 0 and the bottom sign is for θ > 0.
Regardless of the sign of the rotation θðtÞ, during an admissible
rotation δθ the variation of the work δW done by the external
filed forces is

δW ¼
�
mb þ

N
2
mc

�
ðügδuþ gδvÞ ð3Þ

(c)

(a) (b)

(d)

Fig. 2. (a) Transverse and (b) longitudinal sections of the vertically restrained rocking frame together with moment-rotation diagrams for various
values of the dimensionless stiffness of (c) tendon EA=mcg; (d) dimensionless prestressing force Po=mcg
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Case 1: θ�t� < 0

During an admissible rotation δθ, the variation of the work, δW, and
the variations of the displacements, δu and δv, are

δW ¼ dW
dθ

δθ ð4Þ

δu ¼ du
dθ

δθ ð5Þ

δv ¼ dv
dθ

δθ ð6Þ

After differentiating Eqs. (1) and (2) for θ < 0with respect to the
independent variable, θ, Eqs. (5) and (6) give

δu ¼ 2R cosðαþ θÞδθ ð7Þ
δv ¼ −2R sinðαþ θÞδθ ð8Þ

Substitution of Eqs. (7) and (8) into Eq. (3) in association with
Eq. (4) gives

dW
dθ

¼ 2R

�
mb þ

N
2
mc

�
½üg cosðαþ θÞ − g sinðαþ θÞ�; θ < 0

ð9Þ

During the rocking motion of the vertically restrained rocking
frame, in addition to the work of the external field forces, W, there
is work done by the axial force in the tendon, P ¼ ðEA=2hÞe,
where e is the elongation of the tendon due to the rocking motion.
With reference to Figs. 2(a and b),

e ¼ 2R sinα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − cos θÞ

p
ð10Þ

In this configuration, where the tendons also clamp the horizon-
tal beam, the elongation in the tendons is twice the elongation dur-
ing the uplift of the restrained solitary column (Vassiliou 2010).

In addition to the elongation, e, included in this analysis is an
initial elongation, eo, in the tendon due to an initial prestressing,
Po ¼ ðEA=2hÞeo. Accordingly, regardless of the sign of the rota-
tion θðtÞ, the potential energy due to the axial force along the
tendon is

V ¼ 1

2

EA
2R cosα

ðeþ eoÞ2 ð11Þ

Substitution of Eq. (10) into Eq. (11) and differentiation with
respect to the independent variable, θ, yields

dV
dθ

¼ 2R sinα sin θ

�
EA tanαþ Poffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 2 cos θ
p

�
ð12Þ

During rocking motion, Lagrange’s equation should be satisfied

d
dt

�
dT

dθ̇

�
− dT

dθ
¼ − dW

dθ
− dV

dθ
ð13Þ

In this equation, T is the kinetic energy of the system whereas
dW=dθ and dV=dθ are given by Eqs. (9) and (12), respectively. In
either case, θðtÞ<0 or θðtÞ>0, the kinetic energy of the system is

T ¼ N
2
Ioθ̇

2ðtÞ þ 1

2
mb½u̇ðtÞ2 þ v̇ðtÞ2� ð14Þ

The substitution of Eqs. (9), (12), and (14) into Lagrange
Eq. (13) results in the equation of motion of the vertically restrained
rocking frame for θðtÞ < 0

2

3
Rð1þ 3γÞθ̈ðtÞ ¼ −

�
1

2
þ γ

�
½üg cosðαþ θÞ − g sinðαþ θÞ�

− sinα sin θ

�
EA
mc

tanαþ Po

mc

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2 cos θ

p
�
ð15Þ

where γ ¼ mb=Nmc.
Eq. (15) simplifies to

θ̈ðtÞ ¼ − 1þ 2γ
1þ 3γ

p2

�
− sinðαþ θÞ þ üg

g
cosðαþ θÞ

�

− 2

1þ 3γ
p2 sinα sin θ

�
EA
mcg

tanαþ Po

mcg
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 2 cos θ
p

�
ð16Þ

where p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcRg=Io

p
= frequency parameter of the solitary col-

umns. For a rectangular column, Io ¼ 4=3mcR2 and the frequency
parameter assumes the value p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3g=4R
p

.

Case 2: θ�t� > 0

For the case where the rotation is positive [θðtÞ > 0], the varia-
tion of the work, δW, done by the external field forces on the rock-
ing frame is given again by Eq. (3) whereas, according to Eqs. (1)
and (2), the variations of the dependent variables u and v are

δu ¼ 2R cosðα − θÞδθ ð17Þ

δv ¼ 2R sinðα − θÞδθ ð18Þ
By following a similar derivation as for the case θðtÞ < 0, the

equation of motion of the vertically restrained rocking frame for
θðtÞ > 0 is

θ̈ðtÞ ¼ − 1þ 2γ
1þ 3γ

p2

�
sinðα − θÞ þ üg

g
cosðα − θÞ

�

− 2

1þ 3γ
p2 sinα sin θ

�
EA
mcg

tanαþ Po

mcg
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 2 cos θ
p

�
ð19Þ

Eq. (16), for θðtÞ < 0, and Eq. (19), for θðtÞ>0, can be expressed
in a compact equation:

θ̈ðtÞ ¼ − 1þ 2γ
1þ 3γ

p2

�
sinðαsgnθ − θÞ þ üg

g
cosðαsgnθ − θÞ

�

− 2

1þ 3γ
p2 sinα sin θ

�
EA
mcg

tanα|fflfflfflfflffl{zfflfflfflfflffl}
elasticity

þ Po

mcg
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 2 cos θ
p|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
prestressing

�

ð20Þ

The first bracket in Eq. (20) describes the dynamics of the free
standing rocking frame (Makris and Vassiliou 2013, 2014); the
second bracket describes the contribution of the vertical tendons.

During the oscillatory rocking motion of the vertically re-
strained rocking frame, the moment-rotation behavior that depends
on the elasticity of the tendons and the level of prestressing is
expressed with one of the curves shown in Figs. 2(c and d) that do
not enclose any area. Energy is lost only during impact, when the
angle of rotation reverses. It is assumed that, at this instant, the
rotation continues smoothly and that the impact forces concentrate
at the new pivot points at the base and heads of the columns. During
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impact [θðtÞ ¼ 0] the elongation of the tendon, e, given by Eq. (10)
is zero, and any finite force due to prestressing assumes the same
value before and after the impact. Accordingly, any forces in the
tendons at the instant of impact do not create any change in the
moment of momentum before and after the impact. Following
this reasoning, the ratio of the kinetic energy of the rocking frame
before and after the impact is offered by the same expression that
was derived in Makris and Vassiliou (2013) from the conservation
of the moment of momentum of the freestanding rocking frame
(no vertical restrainers):

r ¼ θ̇22
θ̇21

¼
�
1 − 3

2
sin2αþ 3γ cos 2α

1þ 3γ

�
2

ð21Þ

Effect of the Restraining Tendons and the Mass of
the Cap-Beam

The mathematical structure of Eq. (20) offers some valuable infor-
mation regarding the effectiveness of vertical restrainers in associ-
ation with column size and cap-beam weight. The term associated
with the first bracket of Eq. (20) expresses the dynamics of the
freestanding rocking frame (Makris and Vassiliou 2013, 2014).
The quantity p̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 2γ=1þ 3γÞp

p is the frequency parameter
of the freestanding rocking frame showing that its dynamic re-
sponse is identical to the rocking response of a single freestanding
column with the same slenderness but with a larger size—that is, a
more stable configuration.

The term associated with the second bracket of Eq. (20) ex-
presses the contribution of the vertical restrainers. As the size of
the columns increases (smaller p), the effectiveness of the vertical
restrainers is suppressed with p2; the effectiveness of the restrainers
further reduces as the weight of the cap-beam increases (large γ).
Simply stated, the combination of a heavy deck atop tall columns
enhances the seismic stability of the freestanding rocking frame and
reduces the effectiveness of the vertical restrainers.

On the other hand, at the limiting case of a massless rigid cap-
beam (γ ¼ 0), Eq. (20) indicates that the vertically restrained rock-
ing frame experiences an apparent restraining stiffness that is four
times larger and an apparent prestressing force that is two times
larger than the corresponding values of the solitary rocking column
that is vertically restrained with the same tendon [same EA=mcg
and same Po=mcg; (Vassiliou 2010)].

From Negative to Positive Stiffness

In the vertically restrained rocking frame, the negative stiffness
originates from the fact that as the rotation increases the restoring
weight vectors of the columns and the cap-beam approach the pivot
point; the positive stiffness originates from the presence of the ver-
tical elastic restrainers, which offer an increasing restoring moment.

Without loss of generality, the focus here is the case of positive
rotations [θðtÞ > 0]. Eq. (19) indicates that the rotation-dependent
restoring moment is

MðθÞ ¼ mcgR

�
sinðα − θÞ

þ 2

1þ 2γ
sinα sin θ

�
tanα

EA
mcg

þ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ

p Po

mcg

��
ð22Þ

Using sinðα − θÞ ¼ sinα cos θ − cosα sin θ, after rearranging
terms Eq. (22) assumes the form

MðθÞ
mcgR

¼ sinα

�
cos θþ sin θ

�
2

2γ þ 1
tanα

EA
mcg

þ 2

2γ þ 1

1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ

p Po

mcg
− cotα

��
ð23Þ

Fig. 2(c) plots the expression given by Eq. (23) for various val-
ues of the dimensionless elastic force EA=mcg for a column with
slenderness α ¼ 10°. Clearly, as the elasticity of the tendon in-
creases, the slope of the restoring moment goes from negative to
positive. Furthermore, Figs. 2(c and d) reveal that, whereas the
right-hand side of Eq. (23) is nonlinear, the restoring moment
exhibits a nearly linear dependence with the rotation θ. For small
rotations, 1 − cos θ≈ θ2=2, and given that Eq. (23) is for θðtÞ > 0,
the term

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ

p ≈ θ. Accordingly, Eq. (23) gives

MðθÞ
mcgR

¼ sinα

�
cos θþ sin θ

θ
2

2γ þ 1

Po

mcg

þ sin θ

�
2

2γ þ 1
tanα

EA
mcg

− cotα

��
ð24Þ

Eq. (24) is further linearized up to first-order terms by taking
sin θ≈ θ and cos θ≈ 1

MðθÞ
mcgR

¼ sinα

�
1þ 2

2γ þ 1

Po

mcg
þ θ

�
2

2γ þ 1
tanα

EA
mcg

− cotα

��
ð25Þ

The factor of the rotation θ in Eq. (25) is the stiffness of the
system on uplifting, and therefore the condition for the linearized
system to exhibit a positive stiffness is

EA
mcg

>

�
1

2
þ γ

�
1

tan2α
ð26Þ

For instance, when α ¼ 10°, according to expression (26) a
vertically restrained rocking frame exhibits a positive stiffness if
EA=mcg > 48.25 for γ ¼ 1 and EA=mcg > 80.41 for γ ¼ 2. When
inequality (26) becomes an equality, the vertically restrained rock-
ing column exhibits a rigid-plastic behavior without enclosing any
area. It can be confirmed that the linearization of the system as pre-
sented by Eq. (26) offers dependable results even for values of the
rotation θ as large as the slenderness α. As an example, when one
works with the nonlinear expression given by Eq. (23), the exact
value of EA=mcg that keeps the derivative dMrðθÞ=dðθÞ positive is
(Vassiliou 2010)

EA
mcg

>

�
1

2
þ γ

��
1þ tan2α
tan2α

�
ð27Þ

The difference between inequalities Eqs. (26) and (27) is less
than 3.0% for a rocking frame with columns having slenderness
α ¼ 10°.

Minimum Acceleration Needed to Initiate Uplift of
the Vertically Restrained Rocking Frame

With reference to Fig. 2(b) during an admissible rotation, δθ, the
application of the principle of virtual work gives�

mb þ
N
2
mc

�
ügδu ¼

�
mb þ

N
2
mc

�
gδvþ NðPþ PoÞδe ð28Þ
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where N = number of columns; P ¼ ðEA=2hÞe = axial force in the
tendon that develops during uplifting; Po = possible initial pre-
stressing force; and δe = first variation of the elongation, e, given
by Eq. (10) and expressed as

δe ¼ de
dθ

δθ ¼ 2R sinα
sin θffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos θ
p δθ ð29Þ

Without loss of generality, it is assumed that the rocking frame
undergoes a positive rotation [θðtÞ > 0]. Substitution of Eqs. (17),
(18), and (29) into Eq. (28) gives�
mb þ

N
2
mc

�
üg cosðα − θÞ ¼

�
mb þ

N
2
mc

�
g sinðα − θÞ

þ NðPþ PoÞ sinα
sin θffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos θ
p

ð30Þ

At the initiation of uplift θ≈ 0 and e≈ 0; therefore, Eq. (30),
after dividing with Nmc, simplifies to�

γ þ 1

2

�
üg cosα ¼

�
γ þ 1

2

�
g sinαþ Po

mc
sinα ð31Þ

given that
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ

p ≈ θ and that P ¼ ðEA=2hÞe ¼ 0.
According to Eq. (31), the minimum uplifting acceleration of the
vertically restrained rocking frame is

üupg ¼ g tanα

�
1þ 2

2γ þ 1

Po

mcg

�
ð32Þ

Eq. (32) indicates that as the ratio of the weight of the deck to the
weight of the columns increases (larger γ ¼ mb=Nmc), the effect of
the prestressing force, Po, reduces and the uplift acceleration tends
to that of the freestanding rocking frame—that is, g tanα (Makris
and Vassiliou 2013, 2014).

Rocking Spectra of the Vertically Restrained
Rocking Frame: Self Similar Response

The various mathematical idealizations of coherent pulse-type
ground motions as described in several publications over the last
half century (e.g., Veletsos and Newmark 1960; Veletsos et al.
1965; Bertero et al. 1978; Hall et al. 1995; Makris 1997; Makris
and Chang 2000; Alavi and Krawinkler 2001; Mavroidis and
Papageorgiou 2003; Makris and Psychogios 2006; Baker 2007;
Vassiliou and Makris 2011) are invariably characterized by a pulse
period, Tp, and a pulse acceleration amplitude, ap.

The current established methodologies for estimating the pulse
characteristics of a wide class of records are of unique value be-
cause the product, apT2

p ¼ Lp, is a characteristic length scale of
the ground excitation and is a measure of the persistence of the
most energetic pulse to generate inelastic deformation (Makris
and Black 2004a, b). It is emphasized that the persistence of the
pulse, apT2

p ¼ Lp, is different from the strength of the pulse that
is measured with the peak pulse acceleration, ap. The reader may
recall that among two pulses with different acceleration amplitude
(say ap1 > ap2) and different pulse durations (say Tp1 < Tp2) the
inelastic deformation does not scale with the peak pulse accelera-
tion (most intense pulse) but with the strongest length scale (larger
apT2

p = most persistent pulse) (Makris and Black 2004a, b, Makris
and Psychogios 2006; Karavassilis et al. 2010).

The pulse excitation shown as an inset in the subplots of
Figs. 3 and 4 is a scaled expression of the second derivative of the

Gaussian distribution, e−t2=2, known in the seismological literature
as the symmetric Ricker wavelet (Ricker 1943, 1944)

ψðtÞ ¼ ap

�
1 − 2π2t2

T2
p

�
e−1=2 ð2π2t2=T2

pÞ ð33Þ

The wavelet given by Eq. (33) or its time derivative

ψðtÞ ¼ ap
β

�
4π2t2

3T2
p

− 3

�
2πtffiffiffi
3

p
Tp

e−1=2ð4π2t2=3T2
pÞ ð34Þ

satisfactorily approximates the coherent pulse of several pulse-like
ground motions (Apostolou et al. 2007; Vassiliou and Makris 2011
and references therein). The value of Tp ¼ 2π=ωp is the period that
maximizes the Fourier spectrum of the wavelet; the factor β in
Eq. (34) is equal to 1.3801, so the antisymmetric Ricker wavelet
has a maximum equal to ap.

The choice of the specific functional expression to approximate
the main pulse of pulse-type ground motions has limited signifi-
cance in this work. What is important is that several strong ground
motions contain a distinguishable acceleration pulse that is respon-
sible for most of the inelastic deformation of structures (see refer-
ences at the beginning of this section). A mathematically rigorous
and easily reproducible methodology based on wavelet analysis
to construct the best-matching wavelet was recently proposed by
Vassiliou and Makris (2011).

The first two terms in the right-hand side of Eq. (20) express
the response of the free standing rocking frame, which is fully
described by five independent dimensionless variables (Makris
and Vassiliou 2013), Πθ ¼ θ, Πω ¼ ωp=p, Πa ¼ tanα, Πγ ¼ γ ¼
mb=Nmc, and Πg ¼ ap=g, where ap and ωp ¼ 2π=Tp are the ac-
celeration amplitude and cyclic frequency of the excitation pulse,
respectively. The contributions of the elasticity, E, and the pre-
stressing force of the tendon, Po, enter Eq. (20) in a dimensionless
form, ΠE ¼ EA=mcg and ΠP ¼ Po=mcg.

With the seven dimensionless Π terms established, the dy-
namic response of the vertically restrained rocking frame can be
expressed as

θðtÞ ¼ φ

�
ωp

p
; tanα; γ;

ap
g
;
EA
mcg

;
Po

mcg

�
ð35Þ

Contingency of Resonance

Eq. (25) indicates that the linearized rotational stiffness of the ver-
tically restrained rocking column is given by

Kr ¼ mcgR sinα

�
2

2γ þ 1
tanα

EA
mcg

− 1

tanα

�
ð36Þ

When EA=mcg is sufficiently large and satisfies inequality
[Eq. (26)], Kr is positive, and on uplifting (θ ≠ 0) the rotational
frequency of the vertically restrained rocking frame becomes

ω2
r ¼

mcgR sinα

�
2

2γ þ 1
tanα

EA
mcg

− 1

tanα

�
Io

ð1þ 3γÞ
ð1þ 2γÞ

ð37Þ

Recognizing that p2 ¼ mcgR=Io and that for slender columns
sinα≈ tanα, Eq. (37) gives

ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γ
1þ 3γ

s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2γ þ 1
tan2α

EA
mcg

− 1

s
ð38Þ
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In Eq. (38), the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γ=1þ 3γ

p
p ¼ p̂ is the fre-

quency parameter of the freestanding rocking frame (Makris and
Vassiliou 2013, 2014).

At resonance, ωp ¼ ωr, and this happens when

ωp

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γ
1þ 3γ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2γ þ 1
tan2α

EA
mcg

− 1

s
ð39Þ

or, in terms of dimensionless products, the vertically restrained
rocking column is at resonance when

Πω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Πγ

1þ 3Πγ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ 2Πγ
Π2

αΠE − 1

s
ð40Þ

For instance, according to Eq. (39) when α ¼ 10°, γ ¼ 1, and
EA=mcg ¼ 100 > 48.25, the system is at resonance when
ωp=p ¼ 0.90, whereas when, EA=mcg ¼ 200 the system is at
resonance when ωp=p ¼ 1.54.

Fig. 3 shows the rocking spectra of a vertically restrained rock-
ing frame for two levels of ground excitation (Πg=Πα ¼ 2 and 4)
and three values of the elasticity of the tendon (freestanding ¼
EA=mcg ¼ 0, 50, and 200) as the weight of the cap-beam (deck)
increases (γ ¼ 0, 2, and 4). The ground excitation is the symmetric
Ricker pulse (Mexican Hat) expressed by Eq. (33). Next to the re-
sponses of the rocking frame, the response of the solitary column is

also shown. When the configuration is freestanding (no restrainers),
the enhanced seismic stabilty of the rocking frame due to the pres-
ence of the cap-beam (deck) is shown at the top of Fig. 3. Clearly,
as the weight of the cap-beam increases (larger γ), for a given value
of the elasticity of the restrainers the lateral stiffness of the rocking
frame decreases [Eq. (25)].

Fig. 4 shows the rocking spectra of a vertically restrained frame
with slenderness α ¼ 10° and γ ¼ 4 for different values of the
dimensionless products Πg, ΠE, and Πp when subjected to a
symmetric Ricker pulse (Mexican Hat wavelet). The left-hand plots
are for ap ¼ 0.352 g (Πg=Πα ¼ ap=g tan a ¼ 2), the center plots
are for ap ¼ 0.528 g (Πg=Πα ¼ 3), and the right-hand plots are
for ap ¼ 0.705 g (Πg=Πα ¼ 4). All plots show that at small
values of ωp=p (rocking frames with short columns or long
duration pulses), the vertically restrained frames exhibit large
rotation overturning; when the stiffness is positive [ΠE ¼ EA=
mg > f½ð1=2Þ þ γ�=tan2αg], they exhibit the expected amplifica-
tion in the neighbourhood of resonance

Πω ¼ ωp

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3γ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tan2a
1þ 2γ

EA
mcg

− 1

s

On the other hand, as ωp=p increases (larger columns or shorter
duration pulses), the response from all configurations reduces to a

(a) (b)

Fig. 3. Rocking spectra for different values of the dimensionless products Πg ¼ ap=g, ΠE ¼ EA=mcg, and Πγ ¼ γ when a vertically restrained
rocking framewith columns having slenderness α ¼ 10° (Πα ¼ tanα ¼ 0.176) and Po ¼ 0 is subjected to a symmetric Ricker wavelet; in tall rocking
frames (large values of ωp=p) the effect of vertical restrainers is marginal: (a) Πg=Πα ¼ ap=g tanα ¼ 2; (b) Πg=Πα ¼ ap=g tanα ¼ 4
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single curve showing that the effect of the vertical restrainers
becomes marginal compared to the seismic resistance that origi-
nates from the mobilization of the rotational inertia of the columns.

The same conclusion is reached from Figs. 5 and 6, which
present similar trends from the dynamic response of the vertically
restrained rocking frame with slenderness α ¼ 10° when subjected
to an antisymmetric Ricker wavelet expressed by Eq. (34).

At this point it is worth translating the dimensionless prod-
ucts of Fig. 4 to physical quantities of typical bridges. First the
case of 9.6-m-tall piers with width 2b ¼ 1.6 m (R ¼ 4.87,
p ¼ 1.23 rad=s, and tanα ¼ 1.6=9.6 ¼ 0.166) is considered.
These are typical dimensions for bridge piers of highway over-
passes and other smaller bridges in Europe and the United States
(Zhang et al. 2004; Makris and Zhang 2004). Assume that this
rocking frame with p ¼ 1.23 rad=s, tanα ¼ 0.166, and γ ¼ 4 is
excited by the Ricker pulse that approximates the strong 1992
Erzincan, Turkey, record (ap ¼ 0.35 g, Tp ¼ 1.44 s). This gives
Πω ¼ ωp=p ¼ 2π=pTp ¼ 3.54. Fig. 4(a), which is for ap ¼
0.352 g, shows that at ωp=p ¼ 3.54 the restrainer effects are mar-
ginal and that the freestanding rocking frame experiences approx-
imately the same uplift as the vertically restrained rocking frame

with EA ¼ 200mcg. Fig. 4(b) indicates that when the acceleration
amplitude of the 1.44-s-long Ricker pulse is increased to ap ¼
0.53 g (that is, a most strong excitation), the freestanding rocking
frame is at the verge of overturning; however, its stability is appre-
ciably enhanced even with the use of relative flexible restrainers
(say EA ¼ 50mcg) that maintain a negative lateral stiffness.

Now the case of a 24-m-tall bridge pier with 2b ¼ 4.0 m
(R ¼ 12.17 m, p ¼ 0.778 rad=s, and tanα ¼ 4=24 ¼ 0.166) is
considered. Such tall piers are common in valley bridges (Makris
et al. 2010). Again assume that this rocking frame with
p ¼ 0.778 rad=s, tanα ¼ 0.166, and γ ¼ 4 is excited by a Ricker
pulse with ap ¼ 0.35 g and Tp ¼ 1.44 s. This gives Πω ¼
ωp=p ¼ 2π=pTp ¼ 5.61. For such a value of ωp=p, the free-
standing rocking frame with 24 × 4-m piers survives the 1.44-s-
long acceleration pulse even when its acceleration amplitude is
as high as ap ¼ 0.705 g, as shown in Fig. 4(c). The main conclu-
sion that emerges from Fig. 4 is that as the size of the columns (or
the frequency of the excitation) increases, the effect of the vertical
restrainers becomes immaterial given that most of the seismic re-
sistance originates from the mobilization of the rotational inertia of
the columns.

(a) (b) (c)

Fig. 4. Rocking spectra, Πα ¼ tanα ¼ 0.176 (α ¼ 10°), Πγ ¼ γ ¼ 4, for different values of the dimensionless products. Πg ¼ ap=g,
ΠE ¼ EA=mcg, and ΠP ¼ Po=mcg when the vertically restrained rocking frame with column slenderness α ¼ 10° (Πα ¼ tanα ¼ 0.176) and
Πγ ¼ γ ¼ 4 is subjected to a symmetric Ricker wavelet; for values of Πω ¼ ωp=p > 4, the response of the freestanding rocking frame is essentially
identical to the response of the restrained frame, showing that for tall rocking frames the effect of vertical restrainers is marginal;
(a) Πg=Πα ¼ aD=g tanα ¼ 2; (b) Πg=Πα ¼ aD=g tanα ¼ 3; (c) Πg=Πα ¼ aD=g tanα ¼ 4
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Equivalent Rigid-Linear System

Eq. (20) describes the full nonlinear dynamic response of the
vertically restrained rocking frame. During rocking motion the re-
storing moment rides one of the moment-rotation curves shown in
Figs. 2(c and d) without enclosing any area; energy is dissipated
only during impact because the postimpact angular velocity isffiffiffi
r

p
times the preimpact angular velocity. The theoretical maximum

value of the coefficient of restitution, r, ensures that the rocking
motion is given by Eq. (21). In this section an equation of motion
is derived, equivalent to Eq. (20), which corresponds to a
rigid-linear single-degree-of-freedom system. With this equivalent
equation, the response of the vertically restrained rocking frame can
be easily computed with open-source or commercially available
software such as OpenSees (Mazzoni et al. 2006) simply by
employing existing elastic-multilinear elements. This analysis
investigates separately the cases for θðtÞ < 0 and θðtÞ > 0.
Eq. (15)—that is, θðtÞ < 0 can be expressed as

1

p2

1þ 3γ
1þ 2γ

θ̈þ sinα

�
− cos θþ sin θ

�
2

1þ 2γ
tanα

EA
mcg

þ 2

1þ 2γ
1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos θ
p Po

mcg
− cotα

��
¼ − üg

g
cosðαþ θÞ

ð41Þ
where p2 ¼ 3g=4R.

For small values of θ1 − cos θ≈ θ2=2; in this case θðtÞ < 0.
Accordingly, for θðtÞ < 0,

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ

p ≈ jθj and Eq. (41) as-
sumes the form

1

p2

1þ 3γ
1þ 2γ

θ̈þ sinα

�
− cos θþ sin θ

jθj
2

1þ 2γ
Po

mcg

þ sin θ

�
2

1þ 2γ
tanα

EA
mcg

− cotα

��
¼ − üg

g
cosðαþ θÞ ð42Þ

Eq. (42) is further linearized up to first-order terms by taking
sin θ≈ θ and cos θ ¼ cosðαþ θÞ≈ 1; recall that the frequency
parameter of the rocking frame is p̂ ¼ pð1þ 2γÞ=ð1þ 3γÞ

θ̈ðtÞ − p̂2 sinα

�
1þ 2

1þ 2γ
Po

mcg

�
þ ω2

rθðtÞ ¼ −p̂2
ügðtÞ
g

ð43Þ

In Eq. (43), ω2
r is given by Eq. (38). When EA=mcg is suffi-

ciently large and satisfies Eq. (26), the linear branch of the stiffness
of the system shown at the bottom in Fig. 2 is positive and ωr is the
system’s natural frequency. When EA=mcg does not satisfy
Eq. (26), ω2

r is negative and the system’s free-vibration response
is described by hyperbolic sines and cosines (Makris and Roussos
2000).

For positive rotations [θðtÞ > 0], following a similar derivation
yields

(a) (b)

Fig. 5. Rocking spectra for different values of the dimensionless products Πg ¼ ap=g, ΠE ¼ EA=mcg, and Πγ ¼ γ when a vertically restrained
rocking frame with columns having slenderness α ¼ 10° (Πα ¼ tanα ¼ 0.176) and Po ¼ 0 is subjected to an antisymmetric Ricker wavelet; in tall
rocking frames (large values of ωp=p) the effect of vertical restrainers is marginal: (a) Πg=Πα ¼ ap=g tanα ¼ 2; (b) Πg=Πα ¼ ap=g tanα ¼ 4
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θ̈þ p̂2 sinα

�
1þ 2

1þ 2γ
Po

mcg

�
þ ω2

rθ ¼ −p2
üg
g

ð44Þ

Eqs. (43) and (44) can be combined in a single equation that
describes a rigid-linear system with either positive (ω2

r > 0) or neg-
ative (ω2

r < 0) stiffness:

θ̈ðtÞ þ p̂2 sinα

�
1þ 2

1þ 2γ
Po

mcg

�
sgnθðtÞ þ ω2

rθðtÞ ¼ −p̂2
üg
g

ð45Þ

where sgnθ = sign of the rotation of the vertically restrained rocking
frame. On uplifting, Eq. (45) becomes a linear equation and de-
scribes a special case of the wide class of multilinear-elastic sys-
tems (Kam et al. 2010). Eq. (45) shows in a direct way the
increasing stability of a rocking frame as the size of its columns
increases (smaller values of p) because, according to the dynamics
of rocking, the apparent input excitation is suppressed with the
square of the frequency parameter [p̂2ðüg=gÞ].

Eq. (45) describes the rigid-linear behavior of a single DOF sys-
tem schematically shown at the bottom in Fig. 2. Given that the
rigid linear curves do not enclose any area, the equation describes

the response of an undamped system. Rocking frames dissipate
energy during impact, and research-oriented codes account for
this energy loss by reducing the angular velocity of the column
just after the impact according to some coefficient of restitution
[e.g., Eq. (21)]. In routine structural engineering software, which
offers elastic-multilinear elements, the capability of detecting the
instant of impact to reduce the angular velocity is limited; therefore,
there is a need for inserting some equivalent linear damping propor-
tional to the angular velocity. An equivalent linear damping of the
form cθ̇ needs to have the same units as Iθ̈. Accordingly, the units
of the damping coefficient, c, are ½M�½L�2½T�−1. Formal dimensional
analysis gives that (Vassiliou et al. 2014)

c ¼ λmcg1=2R3=2 ð46Þ
where λ = unknown scalar quantity to be determined from the best
fit of the nonlinear rocking response. From Eq. (46) and after recall-
ing that p2 ¼ mcgR=Io, it is determined that, for rectangular col-
umns (p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3g=4R
p

), the damping coefficient of the angular
velocity, θ̇ðtÞ, is c=Io ¼

ffiffiffiffiffiffiffiffiffiffiffið3=4Þp
λp. About a decade ago, Makris

and Konstantinidis (2003) proposed an empirical expression for the
equivalent viscous damping ratio, β ¼ −0.34 lnðr) that is needed to
account for the decay of the free vibrations of freestanding rocking

(a) (b) (c)

Fig. 6. Rocking spectra, Πα ¼ tanα ¼ 0.176 (α ¼ 10°), Πγ ¼ γ ¼ 4, for different values of the dimensionless products; Πg ¼ ap=g,
ΠE ¼ EA=mcg, and ΠP ¼ Po=mcg when the vertically restrained rocking frame with column slenderness α ¼ 10° (Πα ¼ tanα ¼ 0.176) and
Πγ ¼ γ ¼ 4 is subjected to an antisymmetric Ricker wavelet; for values of Πω ¼ ωp=p > 3, the response of the freestanding rocking frame is
essentially identical to the response of the restrained frame, showing that for tall rocking frames the effect of vertical restrainers is marginal;
(a) Πg=Πα ¼ ap=g tanα ¼ 2; (b) Πg=Πα ¼ ap=g tanα ¼ 3; (c) Πg=Πα ¼ ap=g tanα ¼ 4
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columns. This empirical expression, β ¼ −0.34 lnðrÞ was sub-
sequently validated experimentally by Cheng (2007). Given the di-
rect correspondence between the rocking frame and a taller solitary
freestanding column (Makris and Vassiliou 2013), the scalar
coefficient

ffiffiffiffiffiffiffiffiffiffiffið3=4Þp
λ can be replaced with 2β ¼ −0.68 lnðrÞ,

where r is the coefficient of restitution needed to sustain the
rocking motion as offered by Eq. (21).

Based on the previous discussion, the undamped Eq. (45),
which describes the response of a rigid-linear system, can be up-
graded to a damped equation in an effort to approximate the
damped response of the rocking frame

θ̈ðtÞ þ 0.68 lnðrÞp̂ θ̇ðtÞ þ p̂2 sinα

�
1þ 2

1þ 2γ
Po

mcg

�
sgnθðtÞ

þ ω2
rθðtÞ ¼ −p̂2

üg
g

ð47Þ

Fig. 7 plots the rotation response histories of a smaller bridge
rocking frame (9.6-m-tall columns) and a larger bridge rocking
frame (24-m-tall columns) when subjected to the Takarazuka/
000 ground motion recorded during the 1995 Kobe, Japan, Earth-
quake. The slenderness of the columns in both frames is Πα ¼
tanα ¼ 0.166 and γ ¼ mb=Nmc ¼ 4. The heavy lines show the
response obtained with the full nonlinear Eq. (20); the thin lines
show the response obtained with the viscously damped, equivalent
rigid-linear elements described by Eq. (47). In all cases, the peak
rotations calculated with the equivalent rigid-linear system are in
very good agreement with the rigorous nonlinear solution given
by Eq. (20) whereas the response history of the equivalent
rigid-linear system appears to be underdamped. In any event,
the rotation history predicted with the equivalent rigid-linear sys-
tem is on the conservative side. Fig. 7 shows that both rocking
frames exhibit comparable peak rotations regardless of whether
they are freestanding or restrained with restrainers that are as stiff

(a) (b)

Fig. 7. Rotation response histories for Takarazuka/000 ground motion recorded during the 1995 Kobe, Japan, Earthquake: (a) medium-size rocking
frame supported on 9.6-m-tall columns: 2h ¼ 9.60 m, p ¼ 1.23 rad=s; (b) larger rocking frame supported on 24-m-tall columns: 2h ¼ 24 m,
p ¼ 0.777 rad=s; the peak rotation of both rocking frames is essentially independent of the axial stiffness of the restrainers
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as EA=mcg ¼ 200. This is because most of the seismic resistance
of tall rocking frames originates from the difficulty in mobilizing
the large rotational inertia of the tall columns (proportional to R2)
whereas the effect of the vertical restrainers becomes marginal.

Conclusions

This paper investigates the rocking response and stability of an ar-
ray of slender columns caped with a rigid beam which are vertically
restrained with elastic prestressed tendons that pass through the
centerlines of the columns. Whereas the lateral stiffness of a free-
standing rocking frame is negative, the lateral stiffness of a verti-
cally restrained rocking frame can be anywhere from negative to
positive depending on the axial stiffness of the restraining tendons.

Following a variational formulation, the paper shows that the
restraining tendons are effective in suppressing the response of
rocking frames with small columns when subjected to long-period
excitations. As the size of the columns, the frequency of the exci-
tation, or the weight of the cap beam increases, the vertical
restraining tendons become immaterial given that most of the seis-
mic resistance of tall rocking frames originates primarily from the
mobilization of the rotational inertia of their columns.

The paper also shows that for rocking frames up to a medium
size, where the concept of vertical restrainers may be attractive,
there is engineering merit in the vertical tendons being flexible
enough that the overall lateral stiffness of the rocking frame re-
mains negative. In this way, the pivot points are not overloaded with
high compressive forces but the rocking structure enjoys ample
seismic stability by avoiding resonance because of the negative
stiffness.

Finally, the paper proposes and validates a rigid linear system
whose dynamic response is equivalent to that of the vertically re-
strained rocking frame. With this equivalent system, the dynamic
response of a vertically restrained rocking frame can be easily com-
puted with popular open-source or commercially available software
simply by employing the ready-to-use elastic-multilinear element.
It is recommended that the final design of a rocking structure be
validated with time-history analysis using the methodology
presented here.
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