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SUMMARY

This paper extends previously developed models to account for the influence of the column and the founda-
tion masses on the behavior of top-heavy deformable elastic cantilever columns rocking on a rigid support
surface. Several models for energy dissipation at impact are examined and compared. A novel Vertical Ve-
locity Energy Loss model is introduced. Rocking uplift and overturning spectra for the deformable elastic
cantilever model excited by sinusoidal ground motions are constructed. The effects of non-dimensional
model parameter variations on the rocking spectra and the overturning stability of the model are presented.
It is shown that the remarkable overturning stability of dynamically excited large cantilever columns is not
jeopardized by their deformability. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The response of rigid blocks allowed to uplift and rock on a rigid foundation under seismic ground motion
excitation has been studied for more than a century (Milne [1]). Housner [2] demonstrated a size effect that
characterizes the rocking response of rigid blocks subjected to a ground motion excitation: (i) larger
objects need a larger ground acceleration to overturn, and (ii) earthquakes with longer dominant periods
have a larger overturning capability than those shorter dominant periods. The fundamental reason for
this size effect is the inertia term in the equation of motion of a rigid block that is proportional to the
4th power of the linear dimension characterizing the size of the block, while all other terms are
proportional to the 3rd power of the block size. The above results were presented in the form of rocking
spectra for pulse-like ground motion records by Zhang and Makris [3] and Makris and Konstantinidis
[4]. Makris and Vassiliou [5, 6] have studied rigid blocks assemblies and have concluded that a class of
top-heavy rocking block assemblies is, counter-intuitively, stable. This explains the survival of ancient
Greek and Roman top-heavy temple structures in regions of high seismicity despite the lack of
historical evidence that ancient engineers were aware of the size effect in rocking.

This size effect has led researchers to propose free rocking as a seismic response modification
technique. Structures designed to uplift at the base and rock are characterized by small residual
displacements and small forces transmitted to foundations (Apostolou et al. [7], Gelagoti et al. [8],
Makris and Vassiliou [5], Antonellis and Panagiotou [9], Makris [10, 11]). It should be stated that
the concept of free rocking is different from the concept of controlled rocking of post-tensioned
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moment resisting frame and shear wall systems described in [12–19] and references therein. Controlled
rocking structures uplift and rock, but utilize post-tensioning cables and special-purpose energy
dissipation elements installed at the rocking connections to reduce lateral displacements.

Large structures, such as tall chimneys and tall bridges, are ideal candidates for rocking seismic
response modification because of the size effect. A 60-m tall bridge that uses rocking in such
manner has already been built across the Rangitikei River in New Zealand in 1981 [20, 21].
Moreover, a 33-m tall chimney at the Christchurch New Zealand airport has been designed to uplift
(Sharpe and Skinner [22]). Furthermore, three 30-m to 38-m tall chimneys in Piraeus, Greece, have
been retrofitted taking into account their rocking behavior [23].

Large slender structures are, however, deformable: they deform to the extent that the rigid body
assumption cannot be justified. To this end, several models for rocking of deformable bodies have
been proposed by Psycharis [24], Oliveto et al. [25], Apostolou et al. [7], Ma [26], Chopra and Yim
[27] and Vassiliou et al. [28]. Recently, Acikgoz and DeJong [29] refined Olivetto et al.’s [25]
model (a massless elastic column with a concentrated mass at the top on a rigid massless base) and
studied the behavior of this model using dimensional analysis. They concluded that structural
deformability modifies the response of rocking structures, but that it does not jeopardize their
dynamic stability.

Modeling rocking response of elastic structures whose mass is distributed along their height as well
as structures with foundations whose mass cannot be neglected, requires an extension of the Oliveto
et al. [25] model to include the mass of the column and the mass of the foundation (Figure 1). A
model for uplifting and rocking of such structures on a rigid support surface excited by horizontal
ground motion excitation is developed herein. Verification and validation of this model are
presented in the companion paper [30]. The observations stemming from this model are compared to
the findings of Acikgoz and DeJong [29]. Housner-like coefficients of restitution are derived,
assuming conservation of angular momentum as was done in [10, 31]. Rocking spectra are
constructed and the influence of deformability on the overturning stability of the model is
investigated. Possible candidates for rocking response modification strategies that are qualitatively
well described by a rocking top-heavy deformable cantilever structure are wind turbines. Therefore,
rocking spectra are constructed for non-dimensional parameter values that correspond to wind
turbine structures.

2. PROPOSED ROCKING MODEL

2.1. Equations of motion

A deformable rocking column with a uniformly distributed stiffness EI and mass, and a concentrated
mass on the top supported by a rigid massive base is shown in Figure 1. The column mass is
uniformly distributed along its length, totaling mc. The concentrated mass m on the top that has no
moment of inertia. The base has a mass mb and a moment of inertia around its center of its mass Ib.

Figure 1. Deformable rocking structure with two lumped masses at the top and the base, and a column with a
uniformly distributed mass.
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The thickness of the base is negligible compared to the height, H, of the column. The width of the base
is 2B. The slenderness, α, of the system is defined as α= atan(B /H). The base rotation is defined as θ,
and the horizontal displacement of the top of the column with respect to the bottom of the column is
defined as u (see Figure 1). The column and the foundation are rigidly connected such that uplifting
and rocking occur as shown in Figure 1. The rocking surface is assumed to be rigid. This
assumption is adequate to describe the small-scale models studied in the companion paper [30]. For
real structures, such as tall bridge columns, chimneys or wind turbines, rocking on the ground (or on
a rigid foundation that rests on the ground) this assumption might lead to unrealistically intense
impacts which may, in turn, lead to more intense high frequency elastic vibration. Rocking on
deformable ground lies beyond the scope of this paper.

The column is treated as a continuous dynamic system with the following deformation shape
function:

ψ ξð Þ ¼ 3ξ2

2H2 �
ξ3

2H3 (1)

where ξ is the absolute distance measured from the base of the column. Because the system has
distributed mass, the shape function (1) is an approximation that gives relatively accurate results for
fixed base systems [32]. Hence, the deformation of the column is given by:

uξ ξ; tð Þ ¼ u tð Þψ ξð Þ: (2)

When there is no uplift, the motion of the system is described using only one degree of freedom, the
relative displacement of the top of the column, u. The equation of motion of the column is:

€u þ 2ζωn _uþ ωn
2u ¼ �eΓ€ug (3)

where:

ωn ¼
ekem ; (4)

ek ¼ ∫
H

0
EI ψ″ ξð Þ� �2

dξ ¼ 3EI

H3 ; (5)

em ¼ ∫
column

ψ ξð Þð Þ2dmþ m ¼ mþ 33
140

mc; (6)

eΓ ¼
mþ ∫

column
ψ ξð Þdm

mþ ∫
column

ψ ξð Þð Þ2dm
¼ mþ 3

8mc

mþ 33
140mc

: (7)

In equation (3), ζ is the damping ratio associated with energy dissipated in the column while it
vibrates, but not with the energy dissipation at the rocking interface. This damping is assumed to be
viscous and classical.

Two degrees of freedom, the base rotation θ and the relative displacement of the column u, are used
to describe the motion of the model when the base uplifts. Using a Lagrangian formulation (see
Appendix) the following equations of motions are obtained:
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Ibc þ mc B2 þ H2

3

� �
þ 33
140

mcu
2 � sign θð Þ3

4
Bumc þ m B2 þ H2

� �� sign θð Þ2Bumþ mu2
� �

€θ ¼

¼ � 33
70

mc þ 2m

� �
u _u _θ � 11

40
mc þ m

� �
H€u þ sign θ

3
4
mc þ 2m

� �
B _u _θþ

þ€ug �sign θð Þ mþ mc þ mbð ÞB sin θ � mc

2
þ m

� �
Hcos θ þ 3

8
mc þ m

� �
u sin θ

� �
þg �sign θð Þ mþ mc þ mbð ÞΒ cos θ þ mc

2
þ m

� �
H sin θ þ 3

8
mc þ m

� �
u cos θ

� �
;

(8)

33
140

mc þ m

� �
€u þ 11

40
mc þ m

� �
H€θ ¼ � 3EI

H3 u� c _uþ 3
8
mc þ m

� �
g sin θþ

þ 33
140

mc þ m

� �
u� sign θð Þ 3

8
mc þ m

� �
B

� �
_θ
2 � 3

8
mc þ m

� �
€ug cos θ

(9)

where Ibc is the moment of inertia of the base around the pivot point. Equation (8) expresses moment
equilibrium around the pivot point, and equation (9) expresses force equilibrium in the direction of
deformation u in the deformed configuration.

2.2. Modal analysis

It has been shown [27, 29] that an uplifted column has a larger eigenfrequency compared to the same
column before uplifting. To compute this frequency, equations (8) and (9) are linearized, and the
gravity and forcing terms are neglected. Equation (8) gives:

Ibc þ mc B2 þ H2

3

� �
þ m B2 þ H2

� �� 	
€θ þ 11

40
mc þ m

� �
H€u ¼ 0: (10)

Equation (9) gives:

33
140

mc þ m

� �
€u þ 11

40
mc þ m

� �
H€θ þ c _uþ 3EI

H3 u ¼ 0: (11)

Equations (10) and (11) can be written in matrix form:

M€UþC _U_þKU¼0 (12)

where:

M ¼
33
140

mc þ m

� �
11
40

mc þ m

� �
H

11
40

mc þ m

� �
H Ibc þ mc B2 þ H2

3

� �
þ m B2 þ H2

� �
26664

37775; (13)

C ¼ c 0

0 0

� 	
; (14)
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K ¼
3EI

H3 0

0 0

24 35; (15)

U ¼ u

θ

� 	
: (16)

The eigenfrequency equation:

K�ωup
2M



 

 ¼ 0 (17)

gives:

ωup;1 ¼ 0 and ωup;2 ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ibc þ mc

H2

3 þ B2
� �

þ m H2 þ B2
� �

Ibc þ mc
H2

3 þ B2
� �

þ m H2 þ B2
� �� mþ11

40mcð Þ2H2

mþ 33
140mc

:

vuuuuut (18)

Because the uplifted structure is a mechanism, the first eigenmode represents rigid body motion
around the pivot point. The damping ratio of the second eignemode (that involves deformation of
the column) is:

ζ up ¼ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ibc þ mc

H2

3 þ B2
� �

þ m H2 þ B2
� �

Ibc þ mc
H2

3 þ B2
� �

þ m H2 þ B2
� �� mþ11

40mcð Þ2H2

mþ 33
140mc

:

vuuuuut (19)

For a massless column and a massless base the above equations give:

ωup;2 ¼ ωn
R

B
and ζ up;2 ¼ ζ

R

B
: (20)

These values were first obtained by Chopra and Yim [27].
Equations (18) and (19) show that the fundamental vibration frequency and the damping ratio of the

uplifted column are larger than those of the corresponding fixed-base column. The difference is the
largest for massless base and column. In the limit case of a very large base, where Ibc → ∞, the
fundamental vibration frequency and the damping ratio of the uplifted column tend to those of the fixed-
base column.

2.3. Uplift

The overturning (ot) and the restoring (rt) moments of the column in Figure 1, taken about the pivot
corner point, are, respectively:

Mot ¼ � m€utotalH þ ∫
column

€utotalψ ξð Þξdm
� �

¼ �€uH mþ 11
40

mc

� �
� mþ mc

2

� �
€ugH; (21)
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Mrt ¼ mb þ mc þ mð ÞgB∓ 3
8
mc þ m

� �
gu (22)

where the upper and the lower signs denote moments about the right and the left pivot corner point,
respectively. Hence, the condition for uplift is:

± Mot þMrtð Þ > 0: (23)

Equations (3) and (21–23) define the uplift condition:

±H mþ 11
40

mc

� �
ω1

2uþ 2ζω1 _uþ eΓ€ug� �
∓ mþ mc

2

� �
€ugH � mb þ mc þ mð ÞBg± 3

8
mc þ m

� �
ug > 0:

(24)

For undamped systems with u<<B and mc<<m the above equation can be simplified to [29]:

uj j > mb þ m

m

Bg

Hωn
2
: (25)

This is the simplified uplift condition for the system in Figure 1.

2.4. Impact

Because Housner published his seminal paper [2] in 1963, numerous researchers working on rocking
of rigid structures used the coefficient of restitution defined therein. This coefficient is based on the
assumptions that the impact is instantaneous and that all of the impact forces are concentrated at the
impacting corner point. This approach enabled Housner to use the conservation of angular
momentum theorem (taken about the impacting corner) to compute the restitution coefficient.
Accordingly, the energy lost in every impact is a function of the geometry of the rocking body
alone, and it does not depend on the impact velocity or on the mechanical properties of the
impacting surfaces. Intuition and experiments [21, 26, 33, 34] suggest that this does not hold. This
has led researchers to consider the coefficient of restitution as an independent parameter of the
problem [35, 36], or to use different impact models [37, 38].

Olieveto et al. [23] claimed that Chopra and Yim [27] and Psycharis [39] models, when applied to
stiff rocking structures, develop inexplicably large elastic deformations. This has led to the
development of new models. Olivetto [25] and Acikgoz and DeJong [29] models (both considering
a massless deformable column on a massless rigid base with a lumped mass on the top) force the
column base at incipient impact (Figure 2) to either stick on the ground and experience a full
contact phase, or to immediately uplift about the opposite corner and continue to rock. The choice
between these two possible states is made by considering the minimum of the total energy of the
rocking system in conjunction with the constraint that the post-impact kinetic energy must be less
than the pre-impact kinetic energy. This approach is an extension of Housner’s approach. The latter
constraint is enforced because the application of conservation of angular momentum on deformable
rocking columns (as opposed to rigid rocking bodies) leads, in certain cases, to energy increase after
impact. The conditions when such inconsistency occurs and graphical proofs that the energy
increases are shown in Figure 2. In these cases, Acikgoz and DeJong enforced energy decrease by
changing the conservation principle used [29, 40] from the Hounser-like conservation of the angular
momentum to conservation of the horizontal momentum.

Even though another rocking state transition approach will be used in this paper, the Acikgoz and
DeJong approach for modeling energy dissipated at impact is extended (ADJex) to the deformable
rocking column model in Figure 1 for completeness and to allow for experimental validation in the
companion paper [30]. Conservation of the angular momentum around the impacting corner gives
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two expressions for the kinetic energy of the system, one for the full contact phase and the other for the
immediate rocking phase. Note that the potential energy of the system does not change, because the
system does not change position during the impact; thus, the kinetic energy expressions are
sufficient to describe the change in the total energy of the system. In the full contact phase:

_u2 ¼
Ibc � 2mbB2 þ mc �B2 þ H2

3 þ 33
140 u

2
� �

þ m �B2 þ H2 þ u2
� �� �

11
40mc þ m
� �

H
_θ1 þ _u1 (26)

for impact on either the right or the left corner. The indices ‘1’ and ‘2’ denote the pre- and the post-
impact states of the system in Figure 1. The kinetic energy in the full contact phase is:

E2;f c ¼ 1
2

mþ 33
140

mc

� �
_u2

2 (27)

with θ2 ¼ _θ2 ¼ 0 and, because the impact is instantaneous, u2 = u1.
In the immediate rocking phase there are two unknown quantities, the post-impact angular velocity

of the base, _θ2 and the post-impact relative horizontal velocity of the top mass with respect to the
bottom of the column, _u2 . Hence, an additional equation is needed. Acikgoz and DeJong [29]
assumed that the relative horizontal velocity remains the same after impact (i.e. _u2 ¼ _u1). Adopting
this assumption and applying conservation of angular momentum around the impacting corner [40]
gives:

_θ2 ¼
Ibc � 2B2mb

� �þ mc �B2 þ H2

3 þ 33
140 u1

2
� �

þ m �B2 þ H2 þ u12
� �

Ibc þ mc B2 þ H2

3 þ 33
140 u1

2± 3
4Bu1

� �
þ m B2 þ H2 þ u12±2Bu1

� � _θ1 (28)

where the upper sign corresponds to impact on the left corner and the lower to impact on the right
corner. The kinetic energy of the immediate rocking phase is:

Figure 2. Let vector vr1 denote the velocity of the top of the column because of rotation velocity _θ_1 and vec-
tor v1 denote the total velocity of the top of the column before impact. Let _u_1 denote the pre- and post-impact
horizontal velocity of the top of the column, assumed to remain the same before and after impact in the
Acikgoz and DeJong approach [29]. In the Full Contact phase, v2 is the total post-impact velocity vector.
In the Immediate Rocking phase vr2 is the post-impact velocity component because of rotation _θ_2 and v2
is the total post-impact velocity vector. Conservation of angular momentum and the geometric relation be-
tween vectors v1 and v2 indicate that the post-impact energy of the system, E2, is larger than the pre-impact

energy of the system, E1.
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E2;r ¼
1
2
Ibc _θ

2 þ 1
2
mc B2 þ H2

3
þ 33
140

u2±
3
4
Bu

� �
_θ2

2 þ 33
140

_u2
2 þ 11

20
H _θ2 _u2

� �
þ

þ 1
2
m B2 þ H2 þ u2±2Bu
� �

_θ2
2 þ _u2

2 þ 2H _θ2 _u2
� � (29)

with the sign convention adopted for equation (22).
Let E1 be the prior-to-the-impact energy of the system in Figure 1. In the case when min(Er,Efc)>E1

(which is possible, as shown in Figure 2), conservation of horizontal momentum is applied to yield:

_u2 ¼
mc
2 þ m
� �

H
3
8mc þ m

_θ1 þ _u1: (30)

The ADJex model for energy dissipation at impact has the following shortcomings: (i) the choice of
model state based on minimum energy is not theoretically consistent; (ii) because, in certain cases, the
energy loss does not emerge naturally, it has to be enforced; and (iii) the ‘double impact’ mode of the
ADJex model was not observed in experiments presented in the companion paper [30].

Therefore, a modification of Chopra and Yim [27] model, the Vertical Velocity Energy Loss
(VVEL) model for energy dissipation at impact, is proposed, and equations that describe the rocking
motion of the model shown in Figure 1 are derived. The VVEL model is based on the assumption
that the kinetic energy associated with the vertical components of the velocities of the model in
Figure 1 is lost at impact. The kinetic energy involving the horizontal component of the pre-impact
velocity is given by:

E1;vh ¼ 1
2
m H _θ1 þ _u1
� �2 þ 1

2
mc

H2

3
_θ1

2 þ 11
20

H _θ1 _u1 þ 33
140

_u1
2

� �
: (31)

Equating equations (27) and (31), the post-impact elastic velocity becomes:

_u2 ¼ sign H _θ1 þ _u1
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m H _θ1 þ _u1
� �2 þ mc

H2

3
_θ1

2 þ 11
20H

_θ1 _u1 þ 33
140 _u1

2
� �
mþ 33

140mc

vuut
: (32)

For rigid models, the above equations gives E2/E1= cosα, while Housner’s approach gives E2/
E1=cos2α. Hence, the proposed VVEL model dissipates less energy than the Housner model.

The response obtained by the proposed VVEL model is compared to that obtained using the ADJex
model for the system in Figure 1 subjected to the same one-cycle sinusoidal pulse horizontal support
acceleration used by Acikgoz and DeJong [29]. The responses of the two models are compared in
Figures 3 and 4. Quantities α, the slenderness of the rocking system, ucr, the relative displacement
of the elastic column when uplift occurs, Eref, the reference energy, and τ, the normalized time, are
defined in the next section. The response of the models, in terms of the rotation angle, relative
horizontal displacement of the top of the column and the kinetic energy of the system are compared
in Figure 3 for the first three rocking impacts. Figure 4 shows zoomed-in views of the rotation angle
and the kinetic energy graphs at the first (at about 0.9 s) and the second impact (at about 2.5 s). The
VVEL model dissipates less energy than the ADJex model, as it is clearly seen in Figure 3. The
‘double impact’ mode occurs in the ADJex model as shown in Figure 4. The VVEL model for
energy dissipation at impact is chosen for further study, even though it is noted that it might
overestimate the elastic part of the rocking response of stiff deformable columns. Such cases point
to the need to further refine the model for energy dissipation at impact.
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3. DIMENSIONAL ANALYSIS OF THE ROCKING DEFORMABLE CANTILEVER

Physically realizable ground motion pulses can adequately describe the impulsive character of near-
fault ground motions both qualitatively and quantitatively. Two parameters are needed to describe
such pulses. These parameters are either the acceleration amplitude, ap, and dominant cyclic
frequency, ωp, or the velocity amplitude, vp, and dominant cyclic frequency, ωp of the pulse [41, 42].
The response of the model in Figure 1 with VVEL energy dissipation model to an idealized
acceleration pulse characterized by its amplitude, ap, and dominant cyclic frequency, ωp, [43] is
examined. The response is a function of 12 variables:

Figure 3. Rotation (top left), relative horizontal displacement (top right) and kinetic energy (bottom left) re-
sponse of the model in Figure 1 when subjected to a one cycle sinusoidal pulse excitation (bottom right) for

A/(gtanα) = 1.30, ωn/p = 11.9, ω/p = 5.1, α=0.2 and ζ=0.005.

Figure 4. Zoomed-in views of the first two impacts at 0.9 s and 2.5 s in Figure 3.
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u; θð Þ ¼ f EI;m;mc;mb; Ib; ζ ; α;Ro; g;ωp; ap; t
� �

(33)

involving three fundamental dimensions. According to Buckingham’s Π-theorem [44] the response can
be described by 12-3= 9 dimensionless parameters:

u

ucr
;
θ
θcr

� �
¼ φ

ωn

p
;
ωp

p
; γmc

; γmb
; γIb ; ζ ; α;

ap
g tan α

; τ
� �

(34)

where

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3EI
H3

mþ 33
140mc

� �s
; (35)

p ¼
ffiffiffi
g

R

r
; (36)

γmc
¼ mc

m
; γmb

¼ mb

m
; γIb ¼

Ibc
4
3mbB2

 !
; (37)

τ ¼ pt: (38)

A critical rotation angle of the rigid rocking block is defined as the angle of unstable equilibrium:

θcr ¼ tan�1 mþ mb þ mc

mþ mc
2

B

H

� �
: (39)

A critical displacement ucr is defined as the elastic displacement of the columnwhen base statically uplifts:

ucr ¼ mþ mb þ mcð ÞBg
mþ 11

40mc

� �
Hωn

2 þ 3
8mc þ m
� �

g
: (40)

Following Acikgoz and DeJong, the total energy of the system is normalized by Eref, which is
defined as the difference in the potential energy of the rigid, top-heavy rocking column between the
position of unstable equilibrium and the at-rest position.

3.1. Range of interest of dimensionless parameters

The range of values of the dimensionless parameters for a model in Figure 1 that corresponds to a wind
turbine prototype structure is examined below.

• Dimensionless structural frequency: ωn
p

Prowel and Veels [45] state that the empirical relations between height and fundamental vibration pe-
riod for buildings are not appropriate for wind turbines. They propose the relation:

Tn ¼ 0:015h1:183 (41)

where Tn is given in seconds and h in meters. Assuming h≈R the above equation gives:

ωn

p
¼ 133:7

h0:683
(42)
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where h is in meters. The tallest massively produced wind turbine is about 140m tall [46], giving
ωn/p=4.57. Given the need for even taller wind turbines a lower bound of ωn/p=2.5, corresponding
to a height of 340m is chosen.

• Dimensionless structural size: ωp

p

Given that energetic pulses from near source records can be as long as 2 s and wind turbines can be as
tall as 140m, ωp/p for a design earthquake could be as large as 12.7. A bound of ωp/p=10 is chosen
because larger values correspond to unrealistically large overturning accelerations.

• Slenderness of the structure α

Damping because of impact is strongly influenced by slenderness: the squatter the structure is, the
more energy it loses in every impact. Thus, accurate modeling of the energy dissipated at impact
for structures with large α is important. Typical slenderness values for wind turbine structures were
judged to be smaller than 0.2. Hence, only structures with slenderness α=0.1 and α= 0.2 are
studied.

• Dimensionless masses γmc, γmb and γIb

Figure 5. Comparison of the response of flexible (left) and stiff (right) deformable rocking columns.
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Wind turbine nacelles and propellers amount a top mass of the order of 100 tons [47] making
γmc< 2. The diameter of a circular mat foundation for a conventional 100m tall on-shore wind tur-
bine needs to be smaller than 20m to give the structure a slenderness ratio of α<0.2. Conventional
reinforced concrete mat foundations of this size would be 50 to 100 times heavier than the turbine
tower, the generator and the propeller together. Hence, a lighter foundation, e.g. a prefabricated
space truss foundation, is needed to let the structure uplift during an earthquake. To this end, a
maximum value of γmb=2 is examined. Ratio γIb is equal to 1.0 for a rectangular foundation, to

Figure 6. Rocking spectra (maximum base rotation, θ/α) of deformable rocking structures with mass only on
the top for different dimensionless stiffness subjected to a one-cycle sine ground motion.
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0.95 for a disk foundation and to 1.125 for a circular hoop foundation. Therefore, γIb= 1 for the
subsequent analyses.

• Structure damping ratio: ζ

Wind turbine towers are intended to remain elastic during their response to design-basis excita-
tion. Therefore, their fixed base structural damping is expected to be no larger than 0.01. The in-
crease of damping in the uplifted state predicted by equation (19) was not experimentally
observed [30]. Therefore, as proposed in [30], a damping ratio of 0.01/S (where S is equal to

Figure 7. Rocking spectra (maximum base rotation, θ/α) of deformable rocking structures with γmb = γmc = 1
and different dimensionless stiffness values subjected to a one-cycle sine ground motion.
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the square root term in equation (19)) is used. This way the uplifted damping will be constant and
equal to 0.01.

3.2. General observations on the dynamic response of the deformable rocking cantilever

The dimensionless response of two deformable (one flexible and one stiff, but not rigid) rocking
cantilever column models (Figure 1) subjected to a one-cycle sinus acceleration pulse with
amplitude equal to ap and cyclic frequency equal to ωp was computed and is plotted in Figure 5.

Figure 8. Rocking spectra (maximum base rotation, θ/α) of deformable rocking structures with γmb = γmc = 2
and different dimensionless stiffness values subjected to a one-cycle sine ground motion.
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The flexible model has ωn/p= 5 and the stiff model has ωn/p= 20. Based on equation (42) these values
correspond to 123m and 16m tall wind turbines with fundamental vibration periods of 4.5 s and 0.4 s,
respectively. The slenderness value for both wind turbines is 0.1. The structure damping ratio is
ζ=0.005. The response is a superposition of a low frequency rocking motion and a high frequency
elastic oscillation around a value of u slightly smaller than ucr.

In the uplifted state, both models oscillate elastically with a frequency higher than that for the
corresponding fixed-base case. Counting cycles gives that the flexible model oscillates with a
frequency ω/p=23.83 and the stiff one with a frequency ω/p=92.59. Equation (18) gives 23.08 and
93.32, respectively. The apparent damping ratio in the uplifted state is also much larger than that of
the corresponding fixed-base column.

The use of a low structure damping ratio (ζ=0.005) reveals another phenomenon, not previously
observed. Because elastic oscillation amplitudes decay at a rate proportional to ζ upωup, the time
interval between two impacts is long enough for the elastic oscillations of the stiff model to damp
out. However, this is not the case for the flexible model. Hence, the flexible model impacts while
still oscillating. As it will be shown in the next section, this phenomenon affects the shape of the
rocking spectra.

Another major difference between the stiff and the flexible cases is the relative amplitude (u/ucr) of
the elastic oscillations. As observed experimentally [40, 30, 48], stiff structures oscillate strongly after
every impact. These oscillations can be so strong that, in the case shown in Figure 5 (right), they result
in larger displacements of the rocking model than those of the corresponding fixed-base model.

Figure 9. Overturning spectra for deformable rocking structures subjected to a one-cycle sine ground
motion.
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However, in the flexible case, the oscillations are much smaller and the maximum displacements are
smaller than those of the fixed-base counterpart.

3.3. Rocking spectra

Figures 6–8 plot the rocking spectra (maximum rotation θ vs. ωp/p and ap/gtanα) of the deformable
rocking cantilever model (Figure 1) subjected to a one-cycle sinus acceleration pulse with amplitude
equal to ap and cyclic frequency equal to ωp. Figure 9 plots the contour plot of maximum rotation θ.
The contour lines represent the border between overturning and remaining upright. The most
important finding is that deformable rocking columns qualitatively retain the size effect inherent to
rigid rocking columns: a very intense pulse (one with a very high acceleration) is needed to overturn
a very large rocking column regardless of its deformability. In case of overturning without impact
(blue area in Figures 6–8) the values of overturning acceleration are only slightly affected by
deformability of the rocking column: more flexible columns need slightly lower accelerations to
overturn than stiffer (and rigid) ones. However, for overturning after one impact (brown area in
Figures 6–8), even though the size effect still qualitatively exists, the rocking spectra of the

Figure 10. Rotation, elastic displacement, elastic velocity and energy time histories for a stiff (red) and two
flexible (blue and green) deformable rocking cantilever structures excited by one-cycle sine ground motions

(black) with different intensities.
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deformable rocking cantilever (Figure 1) have two characteristics that are not present in the rigid
column rocking spectra:

(1) For small values of ωp/p (ωp/p< 4) the overturning-with-impact area of the rocking spectrum
descends (‘sinks’, as pointed out by Acikgoz and DeJong [29]). This phenomenon is more pro-
nounced as the base, i.e. γmb, becomes larger. Evidently, spectral accelerations of fixed-base col-
umns with ωp/p values in this range are larger than PGA. However, even for earthquakes with a
pulse period as long as Tp=2 s, the threshold of ωp/p=4 corresponds to a cantilever structure
with R≈ 16m (p≈ 0.79). Based on equation (41), an R=16m wind turbine is relative stiff
(dimensionless stiffness ωn/p≈ 20) resulting in small ‘sinking’ of the overturning-with-impact
area compared to the rocking spectra of a rigid rocking cantilever.

(2) For larger values of ωp/p (ωp/p> 4), i.e. for larger and more deformable structures and for rel-
atively flexible smaller structures, the overturning-with-impact area for deformable rocking can-
tilevers ceases to have the well-known smooth shape that it has for rigid rocking structures, as
well as for the flexible ones presented in [29]. This phenomenon is more pronounced: (i) for
heavier bases and for smaller column stiffness (i.e. for smaller uplifted frequencies); and (ii)
for more squat structures where the energy dissipation at every impact is larger, hence more im-
portant. Figure 10 illustrates this behavior. Plotted are: the response of a stiff structure with mass
only on the top that overturns after one impact (hence it belongs in the smooth brown area of the
bottom-right spectrum of Figure 6); and the response of a flexible structure with γmb= γmc=2
(top-right spectrum of Figure 8) for different one-cycle sine pulse amplitudes. The flexible
structure survives the stronger pulse (ap/gtanα=15) but is overturned by the weaker pulse
(ap/gtanα=14.5). The reason for this is that the flexible structure still oscillates at the instant
of impact. It so happens that in the case of the stronger pulse (green line) the prior-to-impact
elastic displacements and velocities, u and _u are smaller (in absolute value) than in the case of
the weaker pulse (blue line). Hence, according to equations (26) and (27) the energy loss in
the case of the stronger pulse is larger, as seen in the 4th plot of Figure 10. In other words, if
the structure has not stopped vibrating elastically before the impact happens, then the position
of its masses will depend on the deformed vibration shape at the instant of impact and will be
essentially random. Thus, the value of the eccentricity of the oscillating structure is changing
as it oscillates, causing the coefficient of restitution at impact to change randomly. This causes
the non-smoothness of the spectra. The relation of the eccentricity of a rocking object and the
coefficient of restitution is studied in [49].

4. CONCLUSIONS

A model to compute the rocking response of a deformable rocking cantilever with a distributed mass
and a massive base and top (Figure 1) has been proposed. This model extends the previously developed
models [25, 26, 29] and introduces a novel model for energy dissipation at impact. The proposed
modified model was verified and validated by comparing the computed response to the response
measured in a suite of deformable rocking column experiments described in the companion paper
[30]. The proposed model was then used to construct rocking spectra for deformable rocking
structures exposed to sinusoid pulse ground motion excitations. The presence of the column and
base masses decreases the uplifted frequency (compared to the model with a single mass at the top)
and therefore emphasizes the effect of column flexibility. However, it was shown that for large
structures or relatively high frequency sinusoid pulses, the effect of flexibility is still not detrimental
to the stability of the structure. Thus, large deformable cantilever structures, such as tall bridge
columns, chimneys and wind turbines, uplift and rock without overturning under dynamic ground
motion excitation. This remarkable property can be used to limit the design bending moments and
shear forces at the base of large deformable structures, thus making them more economical to
construct while keeping the risk of overturning less than or equal to the risk of collapse of the
corresponding fixed base structures.
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APPENDIX: DERIVATION OF THE EQUATIONS OF MOTION

With reference to Figure 1 and after placing the origin of the axis at the pivot point, the position vector
of a point of the column is:

r ¼ �sign θð ÞB cos θ þ ξ sin θ þ uψcos θ

sign θð ÞB sin θ þ ξ cos θ � uψsin θ

� 	
(A1)

and the velocity vector of the same point is

_r ¼ sign θð ÞB sin θ� _θ þ ξ cos θ� _θ þ _uψ cos θ � uψsin θ� _θ
sign θð ÞB cos θ� _θ � ξ sin θ� _θ � _uψ sin θ � uψcos θ� _θ

" #
; (A2)

_rk k2 ¼ B2 þ ξ2 þ u2ψ2 � sign θð Þ2Buψ� �
_θ
� �2 þ ψ2 _u2 þ 2ξψ _u _θ: (A3)

The kinetic energy of the system is:

T ¼ 1
2
Ibc _θ

2 þ 1
2
mc B2 þ H2

3
þ 33
140

u2 � sign θð Þ3
4
Bu

� �
_θ
2 þ 33

140
_u2 þ 11

20
H _u _θ

� �
þ

þ 1
2
m B2 þ H2 þ u2 � sign θð Þ2Bu� �

_θ
2 þ _u2 þ 2H _u _θ

� �
:

(A4)

The potential energy (from gravity, D’ Alembert forces and strain energy) is:

V ¼ g
sign θð ÞmbB sin θ þ mc sign θð ÞB sin θ þ H

2
cos θ � 3

8
u sin θ

� �
þ

þm sign θð ÞB sin θ þ H cos θ � u sinθð Þ

0B@
1CAþ

þ€ug
�sign θð ÞmbB cos θ þ mc �sign θð ÞB cos θ þ H

2
sin θ þ 3

8
u cos θ

� �
þ

þm �sign θð ÞB cos θ þ H sin θ þ u cos θð Þ

0B@
1CAþ

þ1
2
3EI

H3 u
2:

(A6)

Lagrange equations:

d

dt

∂ T � Vð Þ
∂ _θ

� ∂ T � Vð Þ
∂θ

¼ 0; (A7)

d

dt

∂ T � Vð Þ
∂ _u

� ∂ T � Vð Þ
∂u

¼ �c _u (A8)

give equations (8) and (9).
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