
Dynamics of the Vertically Restrained Rocking Column
Michalis F. Vassiliou1 and Nicos Makris, M.ASCE2

Abstract: This paper investigates the rocking response of a slender column that is vertically restrained with an elastic tendon that
passes through its centerline. Following a variational formulation, the nonlinear equation of motion is derived, in which the stiffness
and the prestressing force of the tendon are treated separately. In this way, the post-uplift stiffness of the system can be anywhere from
negative to positive depending on the axial stiffness of the vertical tendon. This paper shows that vertical tendons are effective in suppressing
the response of smaller columns subjected to long-period excitations. As the size of the column or the frequency of the excitation increases,
the effect of the vertical tendon becomes immaterial given that most of the seismic resistance of large rocking columns originates
primarily from the mobilization of their rotational inertia. DOI: 10.1061/(ASCE)EM.1943-7889.0000953. © 2015 American Society of
Civil Engineers.

Introduction

During the last two decades, there has been a growing effort to
direct the attention of bridge engineers to the unique advantages
associated with allowing bridge piers to uplift or, more generally,
to rotate intentionally at specific locations by mobilizing a lower
failure mechanism. In this way, the seismic demand on other critical
locations of the structure is reduced while permanent displacements
also remain small due to the inherent recentering tendency of the
rocking mechanism.

In view of the appreciable damage to the hinge zones and the
resulting permanent lateral displacements that are inherent to the
current ductile, seismic-resistant design practice, Mander and
Cheng (1999) introduced the damage avoidance design (DAD)
in which the columns of a frame are allowed to rock on both the
pile cap and the pier cap beam without inducing damage. This is
achieved by terminating the longitudinal reinforcement of the col-
umns before reaching the beam-column and the column-foundation
interfaces. In the DAD, central post-tensioned steel tendons inside
the columns are provided to increase the lateral resistance of the
articulated structure. In fact, the force-deformation curve presented
in Fig. 2.2 of the Mander and Cheng (1999) report indicates that the
axial stiffness of the steel tendons is large enough that the post-uplift
stiffness of the rocking frame is positive. By introducing such a stiff
tendon that reverses the negative stiffness associated with rocking,
one creates a stronger system; nevertheless, at present, it is not well
understood towhat extent a stiff vertical tendon that offers a positive
lateral stiffness enhances the seismic stability of a tall rocking
pier. A subsequent publication by Cheng (2008) presented shaking
table test results from the seismic response of a two-column rock-
ing frame with vertical restrainers. The effect of the various param-
eters of the system was examined in detail, and although some

configurations in the Cheng (2008) study exhibited negative stiff-
ness (i.e., R30PNK250 test), the physical significance and the effect
of increasing the stiffness of the tendon were not discussed.

The pressing need for bridges to recenter after a strong seismic
event motivated several studies (Priestley and Tao 1993; Palermo
et al. 2005; Cheng 2007; Mahin et al. 2006; Sakai et al. 2006; Kam
et al. 2010) that invariably use the basic concept of post-tensioning
the bridge piers with vertical tendons while reducing or even ter-
minating the longitudinal reinforcement of the columns before
reaching their bottom and top interfaces, as was originally proposed
by Mander and Cheng (1999). The same concept receives attention
in the prefabricated bridge technology, where again the bridge piers
are connected to the foundation and the deck with vertically post-
tensioned tendons that pass through the axis of the column together
with a lighter longitudinal mild-steel reinforcement that runs near
the circumference of the columns (Wacker et al. 2005; Cohagen
et al. 2008). With this design, during earthquake loading, the ma-
jority of deformation is concentrated at the interface between the
pier and the foundation and at the interface between the pier and the
cap beam. The overall deformation pattern of the post-tensioned
frame resembles the deformation pattern of the free-standing rock-
ing frame (Makris and Vassiliou 2013, 2014). Nevertheless, the
prevailing practice at present is to offer enough lateral moment re-
sistance to the hybrid rocking frame so that its lateral stiffness is
invariably positive. The same concept has been applied to buildings
by using beams prestressed with unbonded tendons (Pampanin
2005; Christopoulos et al. 2002).

More than a decade ago, Makris and Zhang (2001) and Makris
and Black (2002) investigated the rocking response and overturning
of rigid blocks and equipment anchored with brittle restrainers, and
concluded that vertical restrainers are more effective in preventing
overturning of small blocks when subjected to low-frequency
pulses. As the size of the column increases, the rotational inertia
of the free-standing single column increases with the square of
its size, and the seismic stability of large, free-standing columns
originates primarily from the difficulty to mobilize their large rota-
tional inertia, rather than from the marginal effect of the restrainers.
Part of the motivation of this study is to build upon the previously
referenced work and bring forward that the ample seismic resistance
of tall rocking columns originates primarily from the difficulty to
mobilize their rotational inertia, whereas the effect of the restraining
vertical tendon becomes increasingly marginal as the size of the
rocking column increases.
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Notable Limitation of the Equivalent Static Lateral
Force Analysis

Seismic Resistance of Free-Standing Columns under
Equivalent Static Lateral Loads

Consider a free-standing rigid column with size R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ h2

p
and

slenderness ðb=hÞ ¼ tanα as shown in Fig. 1(a). Let the base of
the column move (say to the left) with a slowly increasing accel-
eration, üg (say a very long-duration acceleration pulse that
allows for an equivalent static analysis). Uplift of the block
(recentering moment; mgb) happens when the seismic demand
(overturning moment; mügh) reaches the seismic resistance
(recentering moment; (mgb). When uplifting is imminent, static
moment equilibrium of the block about the pivoting point O gives

mügh|fflffl{zfflffl}
demand

¼ mgb|{z}
resistance

or üg|{z}
demand

¼ g
b
h
¼ g tanα|fflfflffl{zfflfflffl}

resistance

ð1Þ

Eq. (1), also known as West’s formula (Milne 1885; Kirkpatrick
1927), shows that the block <b; h > will uplift when üg ≥ g tanα.
Now, given that this is a quasi-static lateral inertial loading, the
inertia moment due to the nearly zero rotational accelerations
of the blocks is negligible [θ̈ðtÞ ¼ 0]. Once uplift has occurred,
the rocking block experiences a positive rotation, θðtÞ; therefore,
the seismic demand is mügR cos½α − θðtÞ�, whereas the seismic re-
sistance is merely mgR sin½α − θðtÞ� because θ̈ðtÞ ¼ 0. For θ > 0,
the resistance of the rocking block upon uplifting under quasi-static
lateral loading is tan½α − θðtÞ�, which is smaller than tanα. Accord-
ingly, once the block uplifts, it will also overturn. From this analy-
sis, one concludes that, under quasi-static lateral loading, the
stability of a free-standing column depends solely on its slender-
ness (g tanα) and is independent of the size (R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ h2

p
).

Seismic Resistance of Free-Standing Columns
Subjected to Dynamic Loads

In reality, earthquake shaking, üg, is not a quasi-static loading,
and once uplifting has occurred, the block will experience a finite
rotational acceleration [θ̈ðtÞ ≠ 0]. In this case, dynamic moment
equilibrium gives

−mügðtÞR cos½α − θðtÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
seismic demand

¼ Ioθ̈ðtÞ þmgR sin½α − θðtÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
seismic resistance

; θ > 0

ð2Þ
where Io = the rotational moment of inertia of the column about the
pivot point at the base—a quantity that is proportional to the square
of the size of the column, R. As an example for rectangular col-
umns, Io ¼ ð4=3ÞmR2, and Eq. (2) simplifies to

−ügðtÞR cos½α − θðtÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
seismic demand

¼ 4

3
R2θ̈ðtÞ þ gR sin½α − θðtÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

seismic resistance

; θ > 0

ð3Þ

Eq. (3) indicates that when a slender free-standing column is
set into rocking motion, the seismic demand (overturning seismic
moment) is proportional to R (first power of the size), whereas the
seismic resistance (opposition to rocking) is proportional to R2

(second power of the size). Consequently, Eq. (3) dictates that,
for a given ground motion, regardless of how slender a column is
(small α) and how intense the ground shaking, üg, is (large seismic

demand), when a rotating column [θ̈ðtÞ = finite] is large enough,
the second power of R on the right-hand side (seismic resistance)
can always ensure stability. Simply stated, Housner’s (1963) size-
frequency effect is merely a reminder that a quadratic term even-
tually dominates over a linear term, regardless of the values of their
individual coefficients.

Fig. 1(b) schematically shows the relations with size R of
the seismic demand (linear relation) and the seismic resistance
(quadratic relation). From its very conception the “equivalent
static lateral force analysis” is not meant to deal with any rota-
tional acceleration term; a fact that leads to its notable failure
to capture the seismic stability (resistance) of tall free-standing
structures.

When a column is vertically restrained with a tendon that
passes along its centerline, as shown in Fig. 2, the restoring moment
of the tendon is also proportional to the first power of the width of
the column. Accordingly, as the size of the column increases, the
seismic resistance that originates from the difficulty to mobilize the
rotational inertia of the column increases with R2, and eventually it
will dominate over the resistance from the tendon (proportional to
R sinα)—even if the tendon is very stiff—as is shown in this paper.

Dynamics of a Rocking Column with a Vertical
Restrainer along Its Centerline

This section examines the dynamics of the solitary rocking column
with a vertical elastic restrainer along its centerline, as shown in
Fig. 2(a). Following Housner’s (1963) approach, both the column
and the underlying soil are assumed to be rigid. For rocking on
deformable support, the reader is referred to Chatzis and Smyth
(2011), and for rocking of flexible bodies, the reader is referred
to Acikgoz and DeJong (2012) and Vassiliou et al. (2014). This
assumption would represent a relatively stiff column rocking on
a rigid foundation. When the elasticity, EA, of the restrainer is small
compared to the weight of the rocking columns, mcg, the lateral
stiffness of the systems remains negative upon uplifting, as is in
the free rocking case. As the elasticity, EA, of the restrainer

Fig. 1. (a) Geometric characteristics of a free-standing rocking column
together with its moment rotation diagram; (b) during earthquake shak-
ing that sets the column in rocking motion [θ

̈
ðtÞ ≠ 0], the seismic

resistance is proportional to R2, whereas the seismic demand is propor-
tional to R; consequently, when a free-standing column is sufficiently
large, it can survive large horizontal accelerations even if it is very
slender
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increases, the lateral stiffness of the vertical rocking column in-
creases gradually from negative to positive, as shown in Fig. 2(b).
Depending on the characteristics of the column, a linear spring
could be connected in series so that the system remains elastic
for the expected range of rotations (Cheng 2008). In that case,
the term EA=2h in the following equations should be replaced
by the equivalent stiffness of the spring-tendon system.

Assuming that the rocking column will not topple, it will
recenter, impact will happen at the new pivot point, and sub-
sequently it will rock with opposite rotations. During rocking,
the horizontal and vertical displacement of the center of mass,
uðtÞ and vðtÞ, are given for θðtÞ < 0 and θðtÞ > 0 by the following
expressions:

uðtÞ ¼ ∓R½sinα − sinðα� θÞ� ð4Þ

vðtÞ ¼ R½cosðα� θÞ − cosα� ð5Þ

In Eqs. (4) and (5), whenever there is a double sign (such as∓),
the top sign is for θ < 0 and the bottom sign is for θ > 0.

Regardless of the sign of the rotation θðtÞ, during an admissible
rotation, δθ, the variations of the work, δW, done by the external
field forces is

δW ¼ −mcðügδuþ gδvÞ ð6Þ

Case 1 θ�t� > 0

During this admissible rotation δθ, the variation of the work, δW,
and the variations of the displacements δu and δv are

δu ¼ du
dθ

δθ ð7Þ

and δv ¼ dv
dθ

δθ ð8Þ

After differentiating Eqs. (4) and (5) for θ > 0 with respect to θ,
Eqs. (7) and (8) give

δu ¼ R cosðα − θÞδθ ð9Þ

δv ¼ R sinðα − θÞδθ ð10Þ

Substitution of Eqs. (9) and (10) into Eq. (6) gives

dW
dθ

¼ −mcR½üg cosðα − θÞ þ g sinðα − θÞ�; θ > 0 ð11Þ

During rocking motion of the vertically restrained column, in
addition to the work of the external field forces, W, work is done
by the axial force in the tendon, P ¼ ðEA=2hÞ e, where e is the
elongation of the tendon due to the rocking motion. With reference
to Fig. 2(a):

e ¼ R sinα
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cos θÞ

p
ð12Þ

In addition to the elongation, e, this analysis includes an initial
elongation, eo, in the tendon due to a possible initial post-
tensioning, Po ¼ ðEA=2hÞ eo. Accordingly, regardless of the sign
of the rotation θðtÞ, the potential energy due to the axial force along
the tendon is

V ¼ 1

2

EA
2R cosα

ðeþ eoÞ2 ð13Þ

In the previous equation, it is assumed that the tendon force is
constant along its length.

Substituting Eq. (12) into (13), and after differentiation with
respect to the independent variable, θ, one obtains

dV
dθ

¼ R sinα sin θ

�
EA

2 cosα
sinαþ Poffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 2 cos θ
p

�
ð14Þ

During rocking motion, Lagrange’s equation shall be satisfied:

d
dt

�
dðT − VÞ

dθ̇

�
− dðT − VÞ

dθ
¼ dW

dθ
ð15Þ

where T = the relative-to-the-ground kinetic energy of the system,
whereas dW=dθ and dV=dθ are given by Eqs. (11) and (14),
respectively.

In either case where θðtÞ < 0 or θðtÞ > 0, the kinetic energy of
the system is

T ¼ 1

2
Ioθ̇

2ðtÞ ð16Þ

The substitution of Eqs. (11), (14), and (16) into Lagrange’s
Eq. (15) results in the equation of motion of the rocking column
with a vertical restrainer along its centerline for θðtÞ > 0:

Fig. 2. (a) Vertically restrained rocking column with slenderness
tanα ¼ b=h and size R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ h2

p
(b) and its moment rotation dia-

gram for various values of the dimensionless stiffness of the tendon
EA=mcg

© ASCE 04015049-3 J. Eng. Mech.
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Ioθ̈ðtÞ ¼ −mcR½üg cosðα − θÞ þ g sinðα − θÞ�

− R sinα sin θ

�
1

2
EA tanαþ Poffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − cos θÞp �

ð17Þ

Eq. (17) further simplifies to

θ̈ðtÞ ¼ −p2

�
sinðα − θÞ þ üg

g
cosðα − θÞ

þ sinα sin θ

�
1

2

EA
mcg

tanαþ Fo

mcg
1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − cos θÞp �	

ð18Þ

where p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcRg=Io

p
= the frequency parameter of the column.

For a rectangular column, Io = ð4=3ÞmcR2 and the frequency
parameter assumes the value p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3g=4R
p

.
Similar derivations for θ < 0 lead to a single equation:

θ̈ðtÞ ¼ −p2

�
sinðαsgnθ − θÞ þ üg

g
cosðαsgnθ − θÞ

þ sinα sin θ

�
1

2

EA
mcg

tanα

þ Po

mcg
1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − cos θÞp �

elasticity prestressing

	
ð19Þ

which is identical to the preyield expression (without prestress)
given in Dimitrakopoulos and DeJong (2012). However, unlike
the approach used by Dimitrakopoulos and DeJong, the restraining
mechanism in this case is assumed to behave elastically. An
approximate expression of Eq. (19) has been presented by Barthes
et al. (2010).

During the oscillatory rocking motion of the vertically re-
strained rigid column, the moment-rotation behavior that depends
on the elasticity of the tendon and the level of prestressing is ex-
pressed with one of the curves shown in Fig. 2(b) without enclosing
any area. Energy is lost only during impact when the angle of ro-
tation reverses. At this instant, it is assumed that the rotation con-
tinues smoothly from points O to O 0, and that the impact force is
concentrated at the new pivot point. With this idealization, the im-
pact force does not apply any moment about the new pivot point O 0,
hence the new impact force does not influence the moment of mo-
mentum of the rocking column after the impact. Similarly, during
impact ½θðtÞ ¼ 0�, the elongation of the tendon, e, given by Eq. (12)
is zero, whereas any finite force due to prestressing shall be the
same prior to and after the impact. Accordingly, any forces in
the tendon at the instant of impact do not create any change in
the moment of momentum prior to and after the impact. Following
this reasoning, the ratio of the kinetic energy after and before the
impact is offered by the same expression derived from the conser-
vation of the moment of momentum of the free-standing column:

r ¼ θ̇22
θ̇21

¼
�
1 − 3

2
sin2α

�
2

ð20Þ

This reasoning has been used to address the dynamics of more
complex configurations (Vassiliou and Makris 2012).

From Negative to Positive Stiffness

In the vertically restrained rocking column, the negative stiffness
originates from the fact that as rotation increases, the restoring
weight vector of the column approaches the pivot point, whereas

the positive stiffness originates from the presence of the vertical
elastic restrainer, which offers an increasing restoring moment.

Without loss of generality, this study concentrates on the case
of positive rotations ½θðtÞ > 0�. Eq. (17) indicates that the rotation-
dependent restoring moment is

MrðθÞ ¼ mcgR

�
sinðα − θÞ þ sinα sin θ

�
tan a
2

EA
mcg

þ Po

mcg
1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cos θ
p

��
ð21Þ

which after rearranging terms assumes the form

MrðθÞ
mcgR

¼ sinα

�
cos θþ sin θ

�
Po

mcg
ffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ

p

þ 1

2
tanα

EA
mcg

− cotα

��
ð22Þ

Fig. 2(b) plots the expression given by Eq. (22) for various
values of the dimensionless elastic force, EA=mcg, for a column
with slenderness α ¼ 10° and for Po=mcg ¼ 0. Furthermore,
Fig. 2(b) reveals that, whereas the right-hand side of Eq. (22) is
nonlinear, the restoring moment exhibits a nearly linear dependence
on the rotation, θ. When linearizing Eq. (22) [1 − cos θ≈ θ2Þ=2;
sin θ ≈ θ cos θ ≈ 1]:

MrðθÞ
mcgR

¼ sinα

�
1þ Po

mcg
þ θ

�
1

2
tanα

EA
mcg

− cotα

��
ð23Þ

Clearly, Fig. 2(b) and Eq. (23) show that as the elasticity of
the tendon increases, the initial slope of the restoring moment goes
from negative to positive. The factor of the rotation θ in Eq. (23) is
the stiffness of the system upon uplifting, and therefore, the con-
dition for the linearized system to exhibit a positive stiffness is

EA
mcg

> 2
1

tan2α
ð24Þ

For instance, according to expression (24), a vertically rocking
column exhibits a positive stiffness when ðEA=mcgÞ > 64.32
for α ¼ 10° and when ðEA=mcgÞ > 32.17 for α ¼ 14°. When ex-
pression (24) becomes an equality, the vertically restrained rocking
column exhibits a rigid-plastic behavior, as shown in Fig. 2(b). It
can be confirmed that the linearization of the system as presented by
Eq. (23) offers dependable results, even for values of the rotation θ as
large as the slenderness α. As an example, when one works with the
nonlinear expression given by Eq. (22) (Vassiliou 2010), the exact
value of EA=mcg that keeps the derivative dMrðθÞ=dðθÞ positive is

EA
mcg

> 2
1þ tan2α
tan2α

ð25Þ

The difference between inequalities (24) and (25) is 3.0% when
α ¼ 10° and 6.0% when α ¼ 14°.

Rocking Spectra of the Vertically Restrained
Solitary Column: Self-Similar Response

The various mathematical idealizations of coherent pulse-type
ground motions as described in several publications over the
last half century (Veletsos and Newmark 1960; Veletsos et al.
1965; Bertero et al. 1978; Hall et al. 1995; Makris 1997; Makris
and Chang 2000; Alavi and Krawinkler 2001; Mavroeidis and
Papageorgiou 2003, Makris and Psychogios 2006; Baker 2007;

© ASCE 04015049-4 J. Eng. Mech.
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Vassiliou and Makris 2011, among others) are invariably character-
ized by a pulse period, Tp, and a pulse acceleration amplitude, ap.

The current established methodologies for estimating the pulse
characteristics of a wide class of records are of unique value, be-
cause the product, apT2

p ¼ Lp, is a characteristic length scale of the
ground excitation and is a measure of the persistence of the most
energetic pulse to generate inelastic deformation (Makris and Black
2004a, b; Karavasilis et al. 2010). It is emphasized that the persist-
ence of the pulse, apT2

p ¼ Lp, is a different characteristic than the
strength of the pulse, which is measured with the peak pulse accel-
eration, ap. The reader may recall that among two pulses with dif-
ferent acceleration amplitudes (such as ap1 > ap2) and different
pulse durations (such as Tp1 < Tp2), the inelastic deformation does
not scale with the peak pulse acceleration (most intense pulse) but
with the strongest length scale (larger apT2

p = most persistent pulse)
(Makris and Black 2004a, b; Karavasilis et al. 2010).

The heavy dark line in Fig. 3 (bottom left) is a scaled expression
of the second derivative of the Gaussian distribution, e−t2=2, known
in the seismological literature as the symmetric Ricker wavelet
(Ricker 1943, 1944):

ψðtÞ ¼ ap

�
1 − 2π2t2

T2
p

�
e
−1

2
2π2 t2

T2p ð26Þ

The wavelet given by Eq. (26) or its time derivative can satis-
factorily approximate the coherent pulse of several pulse-like

ground motions (Gazetas et al. 2009; Vassiliou and Makris
2011). The value of Tp ¼ 2π=ωp is the period that maximizes
the Fourier spectrum of the symmetric Ricker wavelet.

The choice of the specific functional expression to approximate
the main pulse of pulse-type ground motions has limited signifi-
cance in this work. What is important to recognize is that several
strong ground motions contain a distinguishable acceleration
pulse that is responsible for most of the inelastic deformation
of structures (Hall et al. 1995; Makris and Chang 2000; Alavi
and Krawinkler 2001; Makris and Black 2004a, b; Makris and
Psychogios 2006, among others). A mathematically rigorous and
easily reproducible methodology based on wavelet analysis to
construct the best matching wavelet has been recently proposed
by Vassiliou and Makris (2011).

The first two terms on the right-hand side of Eq. (19) express
the response of the solitary free-standing column, which is fully
described by four independent dimensionless variables (Makris
and Vassiliou 2013): Πθ ¼ θ, Πω ¼ ωp=p, Πa ¼ tanα, and
Πg ¼ ap=g, where ap and ωp ¼ 2π=Tp are the acceleration ampli-
tude and the cyclic frequency of the excitation pulse.

The contributions of the elasticity, E, and the prestressing force
of the tendon, Po, are entered into Eq. (19) in a dimensionless form,
ΠE ¼ EA=mcg and ΠP ¼ Po=mcg.

With the six dimensionless Π terms established, the dynamic
response of the vertically restrained solitary column can be ex-
pressed as a function of six nondimensional variables:

Fig. 3. Rocking spectra for different values of the dimensionless products,Πg ¼ ap=g,ΠE ¼ EA=mcg, andΠp ¼ Po=mcg, when the solitary rocking
column with slenderness α ¼ 10° (Πα ¼ tanα ¼ 0.176) is subjected to a symmetric Ricker wavelet; for values of Πω ¼ ωp=p > 5, the response of
the free-standing column is essentially identical to the response of the restrained column

© ASCE 04015049-5 J. Eng. Mech.

J. Eng. Mech. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
T

H
-B

ib
lio

th
ek

 o
n 

07
/2

0/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



θðtÞ ¼ φ

�
ωp

p
; tanα;

ap
g
;
EA
mcg

;
Po

mcg
;pt

�
ð27Þ

Contingency of Resonance

Eq. (23) indicates that the linearized rotational stiffness of the
vertically restrained rocking column is given by

Kr ¼ mcgR sinα

�
1

2
tanα

EA
mcg

− 1

tanα

�
ð28Þ

When EA=mcg is sufficiently large and satisfies inequality (24),
Kr is positive, and upon uplifting (θ ≠ 0), the rotational frequency
of the system is

ω2
r ¼

mcgR sinαð1
2
tanα EA

mcg
− 1

tanαÞ
Io

ð29Þ

The rocking system is not a linear system. It follows a bilinear
law and it dissipates energy at each impact. Hence, in a strict sense,
it does not have a frequency. However, it has been shown (Makris
and Kampas 2013) that a term similar to the one offered by Eq. (29)
is a meaningful quantity that can be used as a frequency to predict
quasi-resonance effects.

Recognizing that p2 ¼ mcgR=Io and that, for slender columns,
sinα≈ tanα, Eq. (29) gives

ωr ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
tan2α

EA
mcg

− 1

s
ð30Þ

At resonance, ωp ¼ ωr, and this happens when

ωp

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
tan2α

EA
mcg

− 1

s
ð31Þ

or in terms of dimensionless products, the vertically restrained
rocking columns are at resonance when

Πω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Π2

αΠE − 1

r
ð32Þ

For instance, according to Eq. (32), when α ¼ 10° and
ðEA=mcgÞ ¼ 100 > 64.33, the system is at resonance when
ωp=p ¼ 0.75, whereas when EA=mcg ¼ 200, the system is at res-
onance when ωp=p ¼ 1.45. Eq. (32) is expected to give a better
approximation of the resonance frequency when the system moves
more along the post-uplift branch of the M-θ curve.

Interpretation of the Dynamic Response

Fig. 3 shows rocking spectra for different values of the dimension-
less products Πg, ΠE, and ΠP when the solitary column with

Fig. 4. Rocking spectra for different values of the dimensionless products,Πg ¼ ap=g,ΠE ¼ EA=mcg, andΠp ¼ Po=mcg, when the solitary rocking
column with slenderness α ¼ 14° (Πα ¼ tanα ¼ 0.26) is subjected to a symmetric Ricker wavelet; for values ofΠω ¼ ωp=p > 5, the response of the
free-standing column is essentially identical to the response of the restrained column
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slenderness α ¼ 10°ðΠα ¼ tanα ¼ 0.176Þ is subjected to a sym-
metric Ricker pulse (Mexican hat).

When a free-standing column with slenderness α is subjected to
a horizontal ground acceleration, with peak value ap, the column
uplifts only when ap > g tanα. In the case where a vertical tendon
is present, at the initiation of motion ½θðtÞ ¼ 0�, the tendon
will exert a finite restoring moment only if it is prestressed
(Po ≠ 0). In this case, moment equilibrium about the imminent
pivot point gives the minimum uplift acceleration:

üupg ¼ g tanα

�
1þ Po

mcg

�
ð33Þ

Accordingly, rocking will take place only when Πg=Πα ¼
ðap=g tanαÞ > 1þ ðPo=mcgÞ ¼ 1þΠp.

The left plots in Fig. 3 are for ap ¼ 0.352 g ðΠg=Πa ¼
ap=g tanα ¼ 2Þ and the center plots are for ap ¼ 0.528 g
ðΠg=Πa ¼ 3Þ, whereas the right plots are for ap ¼ 0.705 g
ðΠg=Πa ¼ 4Þ. All plots show that, at small values of ωp=p (small
columns or long duration pulses), the free-standing columns over-
turn, whereas the restrained columns with positive stiffness ½ΠE ¼
ðEA=mgÞ > 2=ðtan2αÞ� exhibit the expected amplification in the

neighborhood of resonance ½Πω ¼ ωp=p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2ÞΠ2

αΠE − 1
p

�.
On the other hand, as ωp=p increases, the responses from all con-
figurations reduce to a single curve, showing that the effect of the
vertical tendons is marginal compared to the seismic resistance that
originates from the mobilization of the rotational inertia of the
column.

At this point, it is worth translating the dimensionless products
of Fig. 3 to physical quantities of typical bridges. First, a 9.6-m-tall
pier with width 2b ¼ 1.6 mðR ¼ 4.87 m;p ¼ 1.23 rad=s, and
tanα ¼ 1.6=9.6 m ¼ 0.166Þ is considered. These are typical
dimensions of bridge piers of highway overpasses and other
smaller bridges in Europe and the United States (Zhang et al. 2004;
Makris and Zhang 2004). With reference to Fig. 3, the 9.6 × 1.6 m
free-standing column is excited by the Ricker pulse that approxi-
mates the strong 1992 Erzincan, Turkey record (ap ¼ 0.35 g,
Tp ¼ 1.44 s). This gives Πω ¼ ωp=p ¼ 2π=pTp ¼ 3.54. Fig. 3
(left) that is plotted for a given value of ap ¼ 0.352 g, shows that
at ωp=p ¼ 3.54, the effect of the restrainers is marginal and that the
free-standing column experiences approximately the same uplift as
the column with a restrainer with EA ¼ 200mcg. Fig. 3 (center)
indicates that if the acceleration amplitude of the 1.44-s-long
Ricker pulse is increased to ap ¼ 0.53 g, the 9.6 × 1.6 m

Fig. 5. Rocking spectra (peak uplift rotation) of vertically restrained columns with slenderness α ¼ 10°, various values of the elasticity of the tendon
(ΠE ¼ EA=mcg), and zero prestressing (Πp ¼ Po=mcg ¼ 0)

Table 1. Earthquake Records Used for the Seismic Response Analysis of the Free-Standing Rocking Bridge Bent

Earthquake Record Magnitude (Mw) Epicentral distance (km) PGA (g) PGV (m=s) ap (g) Tp (s)

1966 Parkfield CO2/065 6.1 0.1 0.48 0.75 0.41 0.6
1971 San Fernando Pacoima Dam/164 6.6 11.9 1.23 1.13 0.38 1.27
1986 San Salvador Geotech Investigation Center 5.4 4.3 0.48 0.48 0.34 0.8
1992 Erzincan Erzincan/EW 6.9 13 0.50 0.64 0.34 0.9
1994 Northridge Jensen Filter Plant/022 6.7 6.2 0.57 0.76 0.39 0.5
1995 Kobe Takarazuka/000 6.9 1.2 0.69 0.69 0.50 1.1

Note: PGA = peak ground acceleration; PGV = peak ground velocity.
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free-standing column overturns; however, its stability is appreci-
ably enhanced even with the use of a flexible tendon (EA=mcg ¼
50), which maintains a negative stiffness.

A 24-m-tall bridge pier with width 2b ¼ 4.0 mðR ¼ 12.17 m,
p ¼ 0.778, and tanα ¼ 4=24 ¼ 0.166Þ is now considered. Such
tall piers are common in valley bridges (Makris et al. 2010).
It is assumed that the 24 × 4 m free-standing pier is excited by the
Ricker pulse shown in Fig. 3 with ap ¼ 0.35 g and Tp ¼ 1.44 s.
This gives Πω ¼ ωp=p ¼ 2π=pTp ¼ 5.61. For such a large value
of ωp=p, the 24 × 4 m free-standing pier survives the 1.44 s long
acceleration pulse, even when its acceleration amplitude is as high
as ap ¼ 0.705 g. The main conclusion is that as the size of the
column increases or the frequency of the pulse increases, the
effect of vertical tendons becomes immaterial given that most of
the seismic resistance originates from the mobilization of the rota-
tional inertia of the column.

Fig. 4 shows rocking spectra for different values of the dimen-
sionless products Πg, ΠE, and ΠP when a more squat solitary
column (slenderness α ¼ 14°; Πα ¼ tanα ¼ 0.26Þ is subjected
to a symmetric Ricker pulse (Mexican hat). The results are

qualitatively similar to the case of the more slender (α ¼ 10°)
column.

The seismic response analysis of the vertically restrained soli-
tary column has been studied in this section by using acceleration
pulses as ground excitation. The acceleration amplitude, ap, and
the duration, Tp, of any acceleration wavelet allow the use of
the dimensional analysis presented in this work and the derivation
of the associated Π products, which improve the understanding of
the physics that govern the problem together with the organization
and presentation of the response. The response analysis proceeds
by producing rocking spectra of vertically restrained columns when
subjected to six strong-motion historic records listed in
Table 1. The values of the acceleration amplitudes, ap, and pulse
periods, Tp, shown in the last two columns of Table 1 have been
determined with the extended wavelet transform (Vassiliou and
Makris 2011).

Fig. 5 plots rocking spectra (peak uplift rotation) of vertically
restrained columns with slenderness α ¼ 10° as their size
R increases. The reader is reminded that the size R of the
columns is related to the frequency parameter of the column,
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Fig. 6. Rotation response histories of a 9.6-m-tall column (a) and a 24-m-tall column (b) when subjected to the 1992 Erzincan, Turkey earthquake
record; both columns have slenderness α ¼ 10°; peak rotation of both columns is essentially independent of the stiffness of the restrainer
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p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcgR=Io

p
. The columns are subjected to the six strong earth-

quake records listed in Table 1. Fig. 5 indicates that when the
size R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ h2

p
of the columns is larger than 5 m, their uplift

response is essentially independent of whether the column is
free standing or restrained with a tendon that is as stiff as
EA ¼ 200mcg. The other important information offered by Fig. 5
is that a free-standing column as slender as α ¼ 10°ðtanα ¼ 0.167Þ
survives any of the six strong motions listed in Table 1 when its size
R is larger than 4.0 m (R > 4 m). Furthermore, Fig. 5 shows that
for medium-size columns (4 < R < 6 m), a relative flexible tendon
that maintains a negative stiffness in the system offers a seismic
response comparable to stiffer tendons that induce unnecessary
high stresses into the system at the pivot points both during the
rocking phase and during the impact.

Fig. 6 plots the rotation response histories of a 9.6-m-tall col-
umn and a 24-m-tall column when subjected to the 1992 Erzincan,
Turkey earthquake record. The slenderness of both columns is
α ¼ 10°. Fig. 6 indicates that when the stiffness of the tendon in-
creases, the decay of the system response is more feeble due to the
energy that is stored in the tendon.

Conclusions

This paper investigated the rocking response of a slender column
that is vertically restrained with an elastic tendon that passes
through its centerline.

Whereas the stiffness of a free-standing column is negative, the
stiffness of a vertically restrained column can be anywhere from
negative to positive, depending on the stiffness of the tendon.
Following a variational formulation, the paper shows that vertical
tendons are effective in suppressing the response of smaller
columns subjected to long-period excitations. As the size of the
column or the frequency of the excitation increases, the effect of
the vertical tendon becomes increasingly immaterial given that
most of the seismic resistance of large rocking columns originates
primarily from the mobilization of the rotational inertia of the col-
umn. The paper shows that, for medium-size rocking columns
where the concept of vertical restrainers may be attractive, there
is a merit for the vertical tendons to be flexible enough so that
the overall lateral stiffness of the system remains negative. In this
way, the pivot points are not overloaded with high compressive
forces, while at the same time the rocking structure enjoys ample
seismic stability.
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