
Technical Note

Are Some Top-Heavy Structures More Stable?
Nicos Makris, M.ASCE1; and Michalis F. Vassiliou2

Abstract: This technical note investigates the dynamic response and stability of a rocking frame that consists of two identical free-standing
slender columns capped with a freely supported rigid beam. Part of the motivation for this study is the emerging seismic design concept of
allowing framing systems to uplift and rock along their plane in order to limit bending moments and shear forces— together with the need to
stress that the rocking frame is more stable the more heavy is its cap-beam, a finding that may have significant implications in the pre-
fabricated bridge technology. In this technical note, a direct approach is followed after taking dynamic force and moment equilibrium
of the components of the rocking frame, and the remarkable results obtained in the past with a variational formulation (by the same authors)
is confirmed—that the dynamics response of the rocking frame is identical to the rocking response of a solitary, free-standing column with the
same slenderness, yet with larger size, which produces a more stable configuration. The motivation for reworking this problem by following a
direct approach is to show, in the simplest possible way, that the heavier the freely supported cap beam, the more stable is the rocking frame,
regardless of the rise of the center of gravity of the cap beam. The conclusion is that top-heavy rocking frames are more stable that when they
are top-light. DOI: 10.1061/(ASCE)ST.1943-541X.0000933. © 2014 American Society of Civil Engineers.

Author keywords: Rocking frame; Seismic isolation; Articulated structures; Prefabricated bridges; Seismic design; Seismic effects.

Introduction

It is common experience that a small, slender, free-standing, top-
heavy object (such as a vase) may easily overturn due to a horizon-
tal shaking, while a racing car with a low center of gravity remains
stable even under the large horizontal forces that develop during a
sharp turn. Whenever the stability of a free-standing object is an
issue, the obvious, intuitive measure is to lower its center of gravity.

At the same time, ancient free-standing columns with aspect
ratio as high as 6=1 supporting heavy free-standing epistyles to-
gether with the even heavier frieze atop have survived the test of
time and remain stable for several hundred years in areas with
appreciable seismic hazard (Konstantinidis and Makris 2005).

The remarkable seismic stability of tall, free-standing solitary
columns was understood some 50 years ago by Housner (1963),
who uncovered a size-frequency scale effect that explained why
(1) the larger of two geometrically similar blocks survives an ex-
citation that will topple the smaller block, and (2) of two acceler-
ation pulses with the same amplitude, the one with the longer
duration is more capable of overturning. Following Housner’s
pioneering work, several studies from other investigators (Aslam
et al. 1980; Yim et al. 1980; Spanos and Koh 1984; Tso and Wong
1989; Shenton 1996; Makris and Rousos 2000; Zhang and Makris
2001; Dimitrakopoulos and DeJong 2012) showed that the
uplifting and rocking of solitary, tall, free-standing columns has
beneficial effect to their seismic resistance, similar to the way that
sliding reduces the base shears of heavy low-rise structures
(Skinner and Robinson 1993; Kelly 1997; Konstantinidis and
Makris 2009, 2010).

Results on the dynamic response of two free-standing columns
capped with a freely supported beam have been presented by Allen
et al. (1986), who adopted a Lagrangian formulation. In the
Allen et al. (1986) paper, it was assumed that the mass of each
column, mc, is much less than the mass of the freely supported
beam, mb, and therefore, the equation of motion derived was for
mb=mc → ∞. Furthermore, the results presented were obtained
by solving the linearized equation of motion.

In this technical note, it is shown that the exact nonlinear
equation of motion can be derived and solved without making
any approximations and results are offered for any finite value
of γ ¼ mb=2mc. Furthermore, while the governing equation for
the rocking frame appearing in the Allen et al. (1986) paper shows
clearly that the response involves the slenderness, α, and size, R, of
the columns of the rocking frame, the Allen et al. (1986) paper does
not make any attempt to associate the dynamic response/stability
of the rocking frame with that of the solitary rocking column.

Within the context of a planar rocking motion, this technical
note shows that the dynamic response of the four-hinge free-
standing rocking frame shown in Fig. 1 is more stable than the
dynamic response of one of its columns when standing alone. Most
importantly, this technical note shows that the heavier the freely
supported beam, the more stable is the rocking frame, regardless
of the rise of the center of gravity of the system. The conclusion
is that rocking frames are more stable than when they are top-heavy
than when they are top-light. Numerical studies with the discrete
element method by Papaloizou and Komodromos (2009) are in
agreement with our analytical result—that the planar response of
free-standing columns supporting epistyles is more stable than
the response of the solitary, free-standing column.

Dynamics of the Rocking Frame

With reference to Fig. 1, and assuming that the coefficient of
friction is large enough that there is no sliding, the equations of
motion of a free-standing column with size R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ h2

p
and

slenderness α ¼ tan�1ðb=hÞ, and subjected to a horizontal ground
acceleration ügðtÞ when rocking around pivot points O and O 0,
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respectively, is (Yim et al. 1980; Hogan 1989; Makris and Roussos
2000; Zhang and Makris 2001)

Ioθ̈ðtÞ ¼ mgR sin½αþ θðtÞ� −mügðtÞR cos½−α − θðtÞ�; θðtÞ < 0

ð1Þ

Ioθ̈ðtÞ ¼ −mgR sin½α − θðtÞ� −mügðtÞR cos½α − θðtÞ�; θðtÞ > 0

ð2Þ

For a rocking motion to be initiated, ügðtÞ > g tanα at some
time in its excitation history. The equations can be expressed in
the compact form

θ̈ðtÞ ¼ −p2

�
sin½αsgnðθðtÞÞ − θðtÞ� þ üg

g
cos½αsgnðθðtÞÞ − θðtÞ�

�

ð3Þ

where p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mRg=Io

p
The oscillation frequency of a rigid block

under free vibration is not constant, because it strongly depends
on the vibration amplitude Housner (1963). Nevertheless, the quan-
tity p is a measure of the dynamic characteristics of the block.
For rectangular blocks, Io ¼ ð4=3Þ mR2 and the frequency param-
eter assumes the value p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3g=4R
p

Fig. 1(b) shows the moment-rotation relationship during the
rocking motion of a free-standing column. The rocking system
has infinite stiffness until the external horizontal forces induce a
moment as high as mgR sinα, and once the column is rocking,
its restoring force decreases monotonically, reaching zero when
θ ¼ α.

Equations of Motion of the Rocking Frame

The free-standing rocking frame shown in Fig. 1 is a single DOF
structure with size R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ h2

p
and slenderness α ¼ tan−1ðb=hÞ.

The only additional parameter that influences the dynamics of the
rocking frame is the ratio of the mass of the cap beam, mb, to the

mass of its two columns, mc, γ ¼ mb=2mc. As in the case of the
single rocking column, the coefficient of friction is large enough that
sliding does not occur at the pivot point at the base and at the cap-
beam. Accordingly, the horizontal translation displacement uðtÞ and
vertical lift vðtÞ of the cap beam are functions of the single DOF
θðtÞ. For a positive horizontal ground acceleration (the ground is
accelerating to the right), the rocking frame will initially rock to
the left [θðtÞ < 0], as shown in Fig. 2. Assuming that the rocking
frame will not topple, it will recenter, impacts will happen at the
pivot points (at the base and the top of the columns with the
cap-beam), and subsequently it will rock to the right [θðtÞ > 0].
During rocking, the dependent variables uðtÞ, vðtÞ and their time
derivatives are given for θðtÞ < 0 and θðtÞ > 0 by the following
expressions:

u ¼ ∓2Rðsinα − sin½α� θ�Þ ð4Þ

_u ¼ 2R cosðα� θÞ_θ ð5Þ

ü ¼ 2Rð∓ sin½α� θ�½ _θ�2 þ cos½α� θ�θ̈Þ ð6Þ
and

(a)

(b)

Fig. 1. A large free-standing column with size R and slenderness α is more stable than a geometrically similar smaller column shown at the far left of
the figure; a free-standing rocking frame with columns having the same size R and same slenderness α is more stable than a solitary rocking column;
a heavier freely supported cap-beam renders the rocking frame even more stable, regardless of the rise of the center of gravity of the system

Fig. 2. Rocking frame with negative rotation (θ < 0) together with the
free-body diagram of the cap-beam
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v ¼ 2Rðcos½α� θ� − cosαÞ ð7Þ

_v ¼ ∓2R sinðα� θÞ_θ ð8Þ

v̈ ¼ −2Rðcos½α� θ�½ _θ�2 þ sin½α� θ�θ̈Þ ð9Þ

In the Eqs. (4)–(9), whenever there is a double sign (say �) the
top sign is for θðtÞ < 0 and the bottom sign is for θðtÞ > 0.

With reference to Fig. 2, moment equilibrium of each column
about their pivot point O1 and O2 at the ground gives

Ioθ̈þmcügR cosðαþ θÞ ¼ mcgR sinðαþ θÞ − Fx12R cosðαþ θÞ
þ Fz12R sinðαþ θÞ ð10Þ

Ioθ̈þmcügR cosðαþ θÞ ¼ mcgR sinðαþ θÞ − Fx22R cosðαþ θÞ
þ Fz22R sinðαþ θÞ ð11Þ

Given that Eqs. (10) and (11) are for θ < 0, the argument α − jθj
has been replaced with αþ θ. Subtraction of Eq. (11) from
Eq. (10) gives

Fx2 − Fx1 ¼ −ðFz1 − Fz2Þ tanðαþ θÞ ð12Þ

Force equilibrium of the cap-beam along the horizontal direc-
tion gives

mbðüg þ üÞ ¼ Fx1 þ Fx2 ð13Þ

and subtraction of Eq. (12) from Eq. (13) gives

−2Fx1 ¼ −ðFz1 − Fz2Þ tanðαþ θÞ −mbðüg þ üÞ ð14Þ

Substitution of the expression of −2Fx1 given by Eq. (14) into
Eq. (10) gives

Ioθ̈
R

þmcüg cosðαþ θÞ ¼ mcg sinðαþ θÞ þ ðFz1 þ Fz2Þ sinðαþ θÞ
−mbðüg þ üÞ cosðαþ θÞ ð15Þ

Eq. (15) is a statement of the dynamic equilibrium of the
rocking frame; nevertheless, the vertical reactions, Fz1 and Fz2 are
functions of θ̈ðtÞ, which needs to appear explicitly in the equation
of motion.

Force equilibrium of the cap-beam along the vertical direction
gives

mbðgþ v̈Þ ¼ Fz1 þ Fz2 ð16Þ

Substitution of Eq. (16) into (15) and after rearranging terms
gives

Ioθ̈
R

¼ −ðmc þmbÞüg cosðαþ θÞ þ ðmc þmbÞg sinðαþ θÞ
þmb½v̈ sinðαþ θÞ − ü cosðαþ θÞ� ð17Þ

Replacing the relative horizontal and vertical accelerations ü
and v̈ with the expressions given by Eqs. (6) and (9), and after can-
celling the quadratic angular velocity terms, Eq. (17) simplifies to

�
Io
R
þ 2mbR

�
θ̈
g
¼ ðmc þmbÞ sinðaþ θÞ

− ðmc þmbÞ
üg
g
cosðαþ θÞ ð18Þ

Using that for rectangular columns, Io ¼ 4=3 mcR2, and if
γ ¼ mb=2mc, Eq. (18) assumes the form

θ̈ðtÞ ¼ − 1þ 2γ
1þ 3γ

3g
4R

�
sin½aþ θðtÞ� − ügðtÞ

g
cos½aþ θðtÞ�

�
;

θðtÞ < 0 ð19Þ

When the rotation of the rocking frame is positive [θðtÞ > 0],
moment equilibrium of each column about their pivot point O1

and O2 at the ground gives,

Ioθ̈þmcügR cosðα− θÞ ¼ −mcgR sinðα− θÞ þFx12R cosðα− θÞ
− Fz12R sinðα− θÞ ð20Þ

Ioθ̈þmcügR cosðα− θÞ ¼ −mcgR sinðα− θÞ þFx22R cosðα− θÞ
− Fz22R sinðα− θÞ ð21Þ

By following an equivalent approach to the case for θðtÞ < 0, the
equation of motion of the rocking frame for θðtÞ > 0 is

θ̈ðtÞ ¼ − 1þ 2γ
1þ 3γ

3g
4R

�
− sin½a − θðtÞ�

− ügðtÞ
g

cos½a − θðtÞ�
�
; θðtÞ > 0 ð22Þ

As in the case of the solitary free-standing rocking column
Eqs. (19) and (22) can be expressed in the compact form

θ̈ ¼ − 1þ 2γ
1þ 3γ

p2

�
sin½asgnðθðtÞÞ − θðtÞ�

þ ügðtÞ
g

cos½asgnðθðtÞÞ − θðtÞ�
�

ð23Þ

where p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3g=4R

p
, is the frequency parameter of the solitary

rocking column of the rocking frame.
Eq. (23), which describes the planar motion of the free-standing

rocking frame, is precisely the same as Eq. (3), which describes
the planar rocking motion of a solitary free-standing rigid column
with the same slenderness α, except that in the rocking frame,
the term p2 is multiplied by the factor ð1þ 2γÞ=ð1þ 3γÞ.
Accordingly, the frequency parameter of the rocking frame is,
p̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2γ=1þ 3γ
p

p, in which γ ¼ mb=2mc.
Eq. (23) indicates that the rocking response and stability analy-

sis of the free- standing rocking frame with a cap-beam supported
on columns having slenderness α and size R is that of a solitary
column with the same slenderness α and a larger size

R̂ ¼ 1þ 3γ
1þ 2γ

R ¼
�
1þ γ

1þ 2γ

�
R ð24Þ

During rocking motion of a free-standing frame, the moment-
rotation curve follows the curve shown in Fig. 1(b) without en-
closing any area. Energy is lost during impact when the angle
of rotation reverses. At this instant, it is assumed that the rotation
continues smoothly and that the impact force is concentrated at the
new pivot points. Application of the angular momentum-impulsive
theorem in association with the change of the linear momentum of
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the cap-beam (Makris and Vassiliou 2013) offers the ratio of the
kinetic energy of the rocking frame after and before impact

r ¼
� _θ2
_θ1

�2

¼
�
1 − 3

2
sin2αþ 3γ cos 2a

1þ 3γ

�
2

ð25Þ

Eq. (25) indicates that the maximum coefficient of restitution,ffiffiffi
r

p
, of the rocking frame that is needed to engage into rocking

motion is always smaller (therefore, more energy is dissipated)
than the maximum coefficient of restitution of the solitary
column = 1–ð3=2Þ sin2 α (Housner 1963), which is recovered
when γ ¼ mb=2mc ¼ 0

Experimental studies on the dynamic response of the rocking
frame (trilith) have been presented by Peña et al. (2008). In that
study, the slenderness of the columns is tanα ¼ 2b=2 h ¼
0.22=0.8 ¼ 0.275ðα ¼ 15.38°Þ, the size of the column is
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0.4 mÞ2 þ ð0.11 mÞ2

p
¼ 0.415 m, the frequency parameter

of the columns, p ¼ 4.21 rad=s and γ ¼ 265 kg=265 kg ¼ 0.434.
With these values, the frequency parameter of the rocking frame
is p̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2γ=1þ 3γ
p

p ¼ 0.9p ¼ 3.79 rad=s. Fig. 11 of the
Peña et al. (2008) paper plots response histories of the columns
and cap-beam of the trilith when subjected to a constant sine
excitation with amplitude uo ¼ 5 mm ¼ 0.005 m and frequency
f ¼ 3.3 Hz. With these values, the amplitude of the base excitation
is ügo ¼ uoð2πfÞ2 ¼ 2.15 m=s2 ¼ 0.219 g. Accordingly, the
peak base excitation ügo ¼ 0.219 g is smaller than g tanα ¼
0.275 g which is the minimum acceleration that is needed for
uplifting of the rocking frame [trilith, see Eq. (23) and Makris
and Vassiliou (2013)].

Given that ügo ¼ 0.219 g < g tanα ¼ 0.275 g, the trilith tested
by Peña et al. (2008) apparently did not experience a pure rocking
motion as depicted schematically in Fig. 2; but rather it experienced
an inferior vibration mode, due to possible minor anomalies of
the contact surfaces. It is possible that these anomalies are respon-
sible for the highly three-dimensional behavior of the rocking
frame that was recorded by Peña et al. (2008). Given that such
anomalies may be present in future implementations of the concept
of the rocking frame, the potential sliding during impact can be
prevented with the creation of a recess at the base of the columns
and at the cap-beam.

Emerging Concept of Rocking Isolation for Bridges

The concept of allowing the piers of tall bridges to rock is not new.
For instance, the beneficial effects that derive from uplifting and
rocking have been implemented since the early 1970s in the
South Rangitikei Bridge in New Zealand (Beck and Skinner 1974).

Nevertheless, despite the successful design of the South
Rangitikei Bridge and the ample dynamic stability of the rocking
frame as documented in Makris and Vassiliou (2013) and further
confirmed in this work, most modern tall bridges (with tall slender
piers) are protected from seismic action via base (shear) isolation
of the deck, rather than from (the most natural) rocking isolation.
Part of the motivation of this work is to show in the simplest pos-
sible way that in the event that a rocking system is selected, a heavy
deck atop tall slender columns not only does not harm the stability
of the columns, but enhances the stability of the entire system, as
shown by Eq. (23).

Our work comes to support the emerging design concept
(mainly advanced by the prefabricated bridge technology) of con-
centrating the inelastic deformations of bridge frame at the locations
where the bridge piers meet the foundation and the deck (Mander
and Cheng 1997; Sakai and Mahin 2004; Wacker et al. 2005;

Cheng 2008; Cohagen et al. 2008). It shall, however, be stressed
that in prefabricated bridge technologies, the bridge piers and the
deck are not free-standing; therefore, the structural system is essen-
tially a hybrid system in between the rocking frame examined in
this work and a traditional ductile moment-resisting frame.

At present, the equivalent static lateral force procedure is deeply
rooted in the design philosophy of the structural engineering com-
munity, which is primarily preoccupied with how to improve the
ductility and performance of the seismic connections, while the
ample dynamic rocking stability that derives from the beneficial
coexistence of negative stiffness and gravity as described by
Eq. (23) is ignored. At the same time, it should be recognized that
during the last decade there have been several publications which
have voiced the need to go beyond the elastic response spectrum
and the associated equivalent static lateral force procedure (Makris
and Konstantinidis 2003; Apostolou et al. 2007; Resemini et al.
2008; Acikgoz and DeJong 2012). The time is therefore ripe for
the development of new, physically motivated response/design
curves which are relevant (in a technically sound way) to the
response/design of large, slender structures. Part of the motivation
for this paper is to bring forward the ample seismic stability asso-
ciated with the free rocking of large, slender structures and the
corresponding rocking frame.

Conclusions

In this technical note, we investigated the dynamic response and
stability analysis of the rocking frame that consists of two identical
free-standing, rigid columns capped with a freely supported rigid
beam. Following a direct formulation after taking force and
moment equilibrium of the components of the rocking frame, the
technical note confirms the remarkable result obtained in the past
by the same investigators with a variational formulation (Makris
and Vassiliou 2013), namely, that the dynamic response of the rock-
ing frame is identical to the rocking response of a solitary free-
standing column with the same slenderness as the columns of the
frame, yet with larger size, which is a more stable configuration.
Consequently, the presence of the freely supported cap-beam atop
the columns renders the rocking frame a more stable structure, de-
spite the rise of the center of gravity. Most importantly, the study
shows, via the derivation of Eq. (23), that the heavier the freely
supported cap beam is, the more stable the rocking frame, implying
that top-heavy rocking frames are more stable that when they are
top-light.

The ultimate goal of this technical note is to accept and establish
the rocking frame and its inherent hinging mechanism not just as a
limit-state mechanism, but as an operational state (seismic protec-
tion) mechanism for large slender structures, as was accepted more
than 2.5 millennia ago by the builders of archaic and classical
temples.
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