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isolated structures subjected to pulse-like ground motions

and their implications in analysis
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SUMMARY

In this paper the seismic response of isolated structures supported on bearings with bilinear and trilinear
behavior is revisited with dimensional analysis in an effort to better understand the relative significance
of the various parameters that control the mechanical behavior of isolation systems. An isolation system
that consists of lead rubber bearings or of single concave spherical sliding bearings exhibits bilinear
behavior; whereas, when a double concave configuration is used the behavior is trilinear. For the case of
bilinear behavior it is well known that the value of the normalized yield displacement is immaterial to
the response of the isolated superstructure—or, in mathematical terms, that the response of the bilinear
oscillator exhibits complete similarity in the dimensionless yield displacement. Similarly, for the case of
trilinear behavior the paper shows that the presence of the intermediate slope is immaterial to the peak
response of most isolated structures—a finding that shows the response of the trilinear oscillator exhibits
a complete similarity in the difference between the coefficients of friction along the two sliding surfaces
as well as in the ratio of the intermediate to the final slope. This finding implies that even when the
coefficients of friction of the two sliding surfaces are different, the response of isolated structures for
most practical configurations can be computed with confidence by replacing the double concave spherical
bearings with single concave spherical bearings with an effective radius of curvature and an effective
coefficient of friction. Copyright � 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

During the last three decades seismic isolation enjoyed substantial growth, major improvements
in its performance and an increasing worldwide acceptance [1, 2]. Several design documents are
now available that offer guidelines on how to design structures equipped with this new seismic
protection technology (FEMA [3, 4], AASHTO [5], IBC [6], among others). The most widely used
isolation bearings are lead rubber bearings [1, 2] and spherical sliding bearings [7–9]. Until the
early years of this decade most spherical sliding bearings used involved only a single concave
sliding surface, and the bilinear model was sufficient to approximate the behavior of both lead
rubber and sliding spherical bearings. The only appreciable difference between the shape of the
bilinear curve of the lead rubber and the sliding bearing is the size of the yield displacement, uy .
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Figure 1. Cross section of a double concave spherical sliding (DCSS)
bearing with different radii of curvature.

Figure 2. Left: Generic force–displacement loop of the DCSS bearing (heavy line). Right: Values of the
transition slope, ktr, used in this parametric study.

In the case of lead rubber bearing, uy is of the order of centimeters (0.01−0.03m) or even more;
whereas, in the case of spherical sliding bearing, uy =0.00025m=0.25mm or even less [8, 10].

Earlier parametric studies by Makris and Chang [11] concluded that when seismic isolated
structures are excited by strong ground motions, the value of the yield displacement has marginal
effects on the superstructure response. This conclusion was subsequently confirmed and generalized
by Makris and Black [12] via the use of dimensional analysis and it was demonstrated that the
response of the bilinear oscillator exhibits complete similarity in the normalized yield displacement.

The rapid growth of seismic isolation generated the need for more compact size, large-
displacement capacity, long-period bearings. Such needs are served with the double concave
spherical sliding bearing—its configuration is shown schematically in Figure 1 (Hyakuda et al.
[13], Constantinou [14], Tsai et al. [15], Fenz and Constantinou [16], Tsai et al. [17], among
others). When the double concave spherical bearing has sliding surfaces with the same coef-
ficient of friction, � (no need for same radii of curvature) it becomes like a traditional single
concave spherical bearing with isolation period Tb =2�

√
(R1 + R2 −h1 −h2)/g and coefficient of

friction �.
When the coefficients of friction along the sliding interfaces are different the behavior of the

double concave friction spherical bearing is trilinear and it can be modeled using two traditional
single concave spherical bearings acting in series together with a point mass representing the
articulated slider. With this mathematically rigorous model one can capture the shaved portions of
the hysteretic loops at the initiation and at the reversal of motion (see Figure 2) when, initially,
the sliding surface with the lower coefficient of friction is mobilized. Nevertheless, the imple-
mentation of two spring-slider elements in series may challenge the convergence of commer-
cially available software which are used routinely by practitioner engineers. This convergence

Copyright � 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2011; 40:1103–1121
DOI: 10.1002/eqe



SEISMIC RESPONSE OF ISOLATED STRUCTURES 1105

challenge is accentuated when large structural systems are of interest such as multispan isolated
bridges with isolation bearings and occasionally nonlinear dampers at the center piers and end
abutments.

In this paper it is shown that when trilinear behavior prevails (see Figure 2), as it results from
practical double concave spherical sliding (DCSS) bearings, the presence of the intermediate slope,
ktr, and the shaving of the loops when the motion reverses (which is the result of the difference
in the coefficient of friction along the two interfaces) is immaterial to the response of the isolated
superstructure for most practical values of the coefficients of friction used in seismic isolation of
civil structures. In more rigorous mathematical terms this finding shows that the response of the
trilinear oscillator exhibits complete similarity in the difference of the coefficient of friction along
the two sliding surfaces as well as in the ratio of the intermediate to the final slope. This finding
implies that under strong shaking an isolated bridge exhibits the same maximum displacement
regardless of whether it is supported on a DCSS (R1 −h1, R2 −h2,�1,�2) or single concave (Re,�e)
spherical sliding (SCSS) bearing provided that

1

Re
= 1

R1 −h1 + R2 −h2
(1)

and

�e = �1(R1 −h1)+�2(R2 −h2)

R1 −h1 + R2 −h2
(2)

Similar results, without referring to the property of complete similarity, have been presented in a
recent study [18] on double concave variable frequency sliding bearings.

The existence of this complete similarity has practical significance in terms of estimating peak
response displacements since it eliminates the need of implementing two spring-slider elements in
series and the analysis may be performed for all practical purposes with an equivalent SCSS bearing.
The permanent displacement that results from the equivalent single concave spherical bearings can
be either smaller or larger than that resulting from the double concave spherical bearings, depending
on the ground motion.

This study is restricted to the response analysis of an isolated deck and its findings apply to
the peak sliding displacement. The effect of the transition slope of the trilinear oscillator to the
acceleration response of multi-degree-of-freedom isolated structures will be the subject of a future
study.

PARAMETERS OF THE BILINEAR SDOF OSCILLATOR

With reference to Figure 3 (left) consider a rigid deck supported on bearings that exhibit bilinear
hysteretic behavior. Additional viscous dissipation can be appended if desired. The mechanical
model adopted herein has been widely used for years for the modeling of either lead rubber or SCSS
bearings ([1, 2, 9, 11, 19], references reported therein) and has been systematically implemented
for the response analysis of seismically isolated structures (SAP2000N, OpenSEES among other
commercially available or open source software).

The bilinear model shown in Figure 3 (right) consists of the superposition of a linear restoring
mechanism and some energy dissipation mechanism which is approximated with a parallelogram.
In the case of frictional dissipation (uy =0.25mm [8]) the yield displacement prior to flow is small;
yet the behavior remains bilinear.

The bilinear force–displacement loop shown in Figure 3 (right) is uniquely defined with the
isolation frequency induced by the bearings �b =√

kb/m =2�/Tb, the characteristic strength, Q,
and the yield displacement uy . Note that the isolation frequency, �b, is the undamped frequency of
the mass, m, of the deck restrained by the stiffness of the bearings, kb =m�2

b, which is the second
slope of the bilinear loop. This definition is consistent with the frequency of oscillation of isolated
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Figure 3. Left: Rigid deck isolated on bearings that exhibit bilinear behavior. Right:
Generic force–displacement loop.

structures supported on single-concave friction pendulum bearings with radius of curvature R.
In this case

�b =
√

kb

m
=
√

W

R

1

m
=
√

g

R
(3)

The first slope K0, of the bilinear loop

K0 = Q

uy
+Kb (4)

is mostly associated with the preyielding behavior of the energy dissipation mechanism and depends
primarily on the value of the yield displacement uy . Early parametric studies by Makris and Chang
[11] concluded that when seismic isolated structures are excited by strong earthquakes, the value
of the yield displacement has marginal effects on the superstructure response. This conclusion
was subsequently confirmed and generalized by Makris and Black [12] via the use of dimensional
analysis.

TIME SCALE AND LENGTH SCALE OF PULSE-LIKE GROUND MOTIONS

The dimensional analysis of the seismic response of inelastic structures requires a time scale and
a length scale of the ground excitation. Such time scales and length scales are distinguishable in a
wide class of strong ground motions known as ‘pulse-like’ ground motions most of them recorded
near the source of causative faults.

The relative simple form, yet destructive potential of pulse-like ground motions has motivated
the development of various closed-form expressions which approximate their leading kinematic
characteristics. The early work of Veletsos et al. [20] was followed by the papers of Hall et al.
[21], Heaton et al. [22], Makris [23], Makris and Chang [11], Alavi and Krawinkler [24], and
more recently by the paper of Mavroeidis and Papageorgiou [25]. Some of the proposed pulses
are physically realizable motions with zero final ground velocity and finite accelerations, whereas
some other idealizations violate one or both of the above requirements. Physically realizable pulses
can adequately describe the impulsive character of near-fault ground motions both qualitatively
and quantitatively. The input parameters of the model have an unambiguous physical meaning.
The minimum number of parameters is two, which are either the acceleration amplitude, ap, and
duration, Tp, or the velocity amplitude, vp and duration, Tp [11, 23]. The more sophisticated model
of Mavroeidis and Papageorgiou [25] involves four parameters, which are the pulse period, the
pulse amplitude as well as the number and phase of half cycles, and was found to describe a large
set of velocity pulses generated due to forward directivity or permanent translation effect. The
pulse period, Tp, of the most energetic pulse of strong ground motions is strongly correlated with
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the moment magnitude, Mw, of the event. For a given moment magnitude, the duration of pulses
produced by strike-slip faults is on average larger than the duration of pulses generated by reverse
faults. Assuming that the time scale Tp is independent of the source–station distance, for stations
located within ∼10km from the causative fault, the pulse period and moment magnitude are
related through the following empirical relationship which also satisfies a self-similarity condition
[25–27]:

ln Tp =−2.9+0.5Mw (5)

Furthermore, seismological data indicate that the amplitude of the velocity pulses recorded within
a distance of 7 km from the causative fault varies from 60 to 120 cm/s. This observation is in good
agreement with the typical slip velocity value of 90 cm/s frequently considered by seismologists
[28, 29].

The current established methodologies for estimating the pulse characteristics of a wide class
of records are of unique value since the product, apT 2

p = L p, is a characteristic length scale of the
ground excitation and is a measure of the persistence of the most energetic pulse to generate inelastic
deformations [30]. It is emphasized that the persistence of the pulse is a different characteristic
from the strength of the pulse which is measured with the peak pulse acceleration. The reader
should recall that among two pulses with different acceleration amplitude (say ap1>ap2) and
different pulse duration (say Tp1<Tp2), the inelastic deformation does not scale with the peak pulse
acceleration (most intense pulse) but with the stronger length scale (larger apT 2

p =most persistent
pulse).

The heavy line in Figure 4 (left) which approximates the long-period acceleration pulse of the
NS component of the 1992 Erzinkan, Turkey, record is a scaled expression of the second derivative

of the Gaussian distribution, e− t2
2 , known in the seismology literature as the symmetric Ricker

wavelet [31, 32] and widely referred as the ‘Mexican Hat’ wavelet [33]

�(t)=ap

(
1− 2�2t2

T 2
p

)
e
− 1

2
2�2t2

T 2
p (6)
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Figure 4. Left: North–South components of the acceleration time history recorded during the
1992 Erzican, Turkey earthquake together with a symmetric Ricker wavelet. Right: Fault-normal
component of the acceleration time history recorded during the 1971 San Fernando earthquake,

together with an antisymmetric Ricker wavelet.
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The value of Tp =2�/�p is the period that maximizes the Fourier spectrum of the symmetric
Ricker wavelet.

Similarly, the heavy line in Figure 4 (right) which approximates the long-period acceleration
pulse of the Pacoima Dam motion recorded during the February 9, 1971 San Fernando, California
earthquake is a scaled expression of the third derivative of the Gaussian distribution e−t2/2. Again,
in Equation (7) the value of Tp =2�/�p is the period that maximizes the Fourier spectrum of the
antisymmetric Ricker wavelet

�(t)= ap

�

(
4�2t2

3T 2
p

−3

)
te

− 1
2

4�2t2

3T 2
p (7)

in which � is a factor equal to 1.3801 that enforces the above function to have a maximum
equal to ap.

The choice of the specific functional expression to approximate the main pulse of pulse-type
ground motions has limited significance in this work. In the past, simple trigonometric pulses
have been used by the senior author [11, 12, 23, 30] to extract the time scale and length scale
of pulse-type ground motions. In this paper we use as alternative wavelets the symmetric and
antisymmetric Ricker wavelets. A mathematically rigorous and easily reproducible methodology
based on wavelet analysis to construct the best matching wavelet has been recently proposed by
Vassiliou and Makris [34].

REVIEW OF DIMENSIONAL ANALYSIS OF THE BILINEAR SDOF OSCILLATOR

Consider a hysteretic bilinear oscillator that is described with the three parameters �b, Q/m, and
uy (�=0), which is subjected to a pulse type strong ground motion with a predominant acceleration
pulse with duration Tp =2�/�p and amplitude ap. With these structural and excitation parameters
the maximum inelastic displacement of the bilinear SDOF oscillator is a function of five variables

umax = f

(
�b,

Q

m
,uy,ap,�p

)
(8)

The six (6) variables appearing in Equation (8), umax
.= [L], �b

.= [T]−1, Q/m
.= [L][T]−2, uy

.= [L],
ap

.= [L][T]−2, and �p
.= [T]−1, involve only two reference dimensions; that of length [L] and

time [T]. According to Buckingham’s �-theorem the number of dimensionless products (�-Terms)
= (number of variables in Equation (8) = 6)− (number of reference dimensions = 2); therefore for
the bilinear SDOF oscillators, we have 6−2=4�-terms

�m = umax�2
p

ap
(9)

�� = �b

�p
(10)

�Q = Q

map
(11)

�y = uy�2
p

ap
(12)

In deriving the �-terms listed above we selected as repeating variables the characteristics of the
pulse excitation, ap and �p =2�/Tp. With this selection the maximum displacement response,
umax, is normalized with the energetic length scale Le =ap/�2

p that is a measure of the persistence
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Figure 5. Dimensionless maximum displacement spectra of a bilinear oscillator subjected to an antisym-
metric Ricker wavelet. For a given dimensionless strength �Q , the response is practically independent to

2 orders of magnitude variation of the dimensionless yield displacement �y .

of the excitation. With the four �-terms given above the relation of the six variables appearing in
Equation (8) is reduced to a relation of four variables

umax�2
p

ap
=�

(
�b

�p
,

Q

map
,

uy�2
p

ap

)
(13)

Figure 5 plots the dimensionless value of the solution of Equation (13), �m =umax�2
p/ap, as

a function of �� =�b/�p for three different values of �Q = Q/map and different values of
�y =uy�2

p/ap, when the bilinear SDOF oscillator is excited by an antisymmetric Ricker wavelet.
Figure 5 reveals two important results that emerge from the unique advantages of dimensional
analysis. The first result is the result of self similarity—which for a given value of the dimensionless
strength, �Q , and the dimensionless yield displacement, �y , the dimensionless response of the
bilinear oscillator, �m , follows the same master curve for all values of excitation levels (any
value of the pulse acceleration amplitude and pulse duration), showing that the solutions for the
dimensionless peak response values are self similar. This result underlines the important physical
significance of the �-terms given by Equations (9)–(12). The second and most important result
is the result of complete similarity—that for a given value of the dimensionless strength, �Q , the
solution for the dimensionless maximum displacement, �m , is nearly independent even when the
dimensionless yield displacement, �y , is varied by 2 orders of magnitude (�y =0.0001−0.01).
Similar spectra for trigonometric pulses have been presented by Makris and Black [12]. This
finding implies that, under earthquake shaking, an isolated bridge exhibits the same maximum
displacement regardless of whether it is supported on lead rubber bearings or SCSS bearings that
exhibit the same strength and offer the same second slope (same isolation period). In mathematical
terms, the dimensionless response �m , converges to a finite limit (neither zero nor infinity) as the
dimensionless yield displacement �y tends to zero; and according to the theory of dimensional
analysis one can simply replace Equation (13) by its limiting expression in which �y is sufficiently
small and drops out of consideration [35]

lim
�y→0

umax�2
p

ap
=�

(
�b

�p
,

Q

map
,�y

)
=finite ⇒ umax�2

p

ap
��

(
�b

�p
,

Q

map

)
(14)

The finding that the response of the bilinear oscillator exhibits complete similarity in the normalized
yield displacement expressed by Equation (14) is what is of most interest to the design structural
engineer–that the exact value of the yield displacement, uy , is immaterial to the response of
the bilinear SDOF oscillator and therefore drops out of consideration. Furthermore, because of
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the existence of complete similarity as expressed by Equation (14), the number of arguments in the
function 	(), appearing in Equation (13) reduces by one.

PARAMETERS OF THE TRILINEAR SDOF OSCILLATOR

Our study proceeds with the dimensional analysis of the dynamic response of the trilinear SDOF
oscillator in an effort to better understand the relative significance of the various parameters that
control the mechanical behavior of the DCSS bearing.

The DCSS bearings consist of two facing concave stainless-steel surfaces as shown in Figure 1.
The top and bottom concave surfaces have radii of curvature R1 and R2, respectively, which may be
unequal. The coefficients of friction of the concave surfaces are �1 and �2, respectively, which are
also not necessarily equal. An articulated slider faced with a non-metallic sliding material separates
the two surfaces. The principal benefit of the DCSS bearing is its capacity to accommodate larger
displacement demands compared to the SCSS bearing examined in the previous section.

When different values of coefficients of friction are used (�1 �=�2), the force–displacement loop
of the DCSS bearing is not bilinear—as is for the SCSS bearing shown in Figure 3—but rather
trilinear given that at the initiation and at the reversal of motion, the bilinear loop loses the corner
triangles (see Figure 2, left) when the sliding surface with the lower coefficient of friction is
mobilized.

The purpose of this section is to show that the loss of the corner triangles shown in gray in
Figure 2 is immaterial in the response of the isolated superstructure for most practical values of
the coefficients of friction used. In mathematical terms, the paper shows that the trilinear oscillator
exhibits complete similarity in the difference between the coefficients of friction along the two
sliding surfaces as well as in the ratio of the intermediate to the final slope.

The trilinear force–displacement loop shown in Figure 2 is uniquely defined with the isolation
frequency offered by the bearings

�b =
√

g

R1 −h1 + R2 −h2
(15)

the characteristic strength,

Qe =mg
�1(R1 −h1)+�2(R2 −h2)

R1 −h1 + R2 −h2
(16)

the yield displacement of the equivalent bilinear system uye ≈0.25mm, which according to the
previous analysis we expect to have marginal effect, the transition displacement from the second
to the last slope,

u∗ = (�2 −�1)(R1 −h1) (17)

and the transition frequency associated with the second slope,

�tr =
√

g

R1 −h1
(18)

In this study, while the analysis focuses on the DCSS bearings the formulation is presented for
the general trilinear oscillator (uye �=0) and the result that the normalized maximum displacement
exhibits a complete similarity in the normalized yield displacement is re-established.

PARAMETRIC ANALYSIS OF THE RESPONSE OF AN ISOLATED
DECK ON DCSS BEARINGS

Our parametric analysis to investigate the relative significance of the various parameters that
control the mechanical behavior of the DCSS bearings commences with the response analysis of
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Figure 6. Comparison of displacement time histories (top) and force–displacement loops (center) of a
rigid deck isolated on double concave spherical sliding bearings (DCSS) bearings and on the equivalent
SCSS bearing when subjected to the OTE FP acceleration record from the 1995 Aigion (left) and to the

TSM270 acceleration record from the Coalinga 1983 earthquake (right).

a rigid isolated deck that is supported on DCSS bearings. Figure 6 plots the relative-to-the-ground
deck displacement (bearing displacement) when the structure is subjected to the fault-parallel
OTE record from the Mw =6.2, 1995 Aigion, Greece earthquake (left); and to the Transmitter
Hill 270 record from the Mw=5.8, 1983 Coalinga earthquake (right). The double concave spher-
ical bearing used is the one tested by Fenz and Constantinou [16]—the configuration with the
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largest difference in the coefficient of friction (�1 =0.012,�2 =0.081, R1 −h1 =0.438m, R2 −h2 =
0.442m,u∗ = (�2 −�1)(R1 −h1)=0.03m=3cm). For the moderately strong OTE FP record of the
1995 Aigion earthquake (ap =0.44g and Tp =0.60s), the peak sliding displacement is um =9.8cm
when the SCSS bearing is used and um =10.7cm when the DCSS bearings are used. Accordingly,
in this case where u∗ is as large as 30% of um , the difference in the peak sliding displacement
between the DCSS and SCSS bearings is 10.7cm−9.8cm=0.9cm. Now this 0.9 cm difference is
9% of the peak sliding displacement (and may not be negligible to someone); however, because
the peak sliding displacement is small, this 9% difference=0.9cm is ‘immaterial’ in the seismic
response analysis of the isolated structure in terms of peak design quantities. (even these smaller
bearings used in Figure 6, which offer an isolation period of Tb =1.88s, have a displacement
capacity =15.3cm.) For the Transmitter Hill record a similar behavior is observed.

The response analysis presented in Figure 6 has been computed with an in-house MATLAB code
(solid line) and with the SAP software (dashed lines) by connecting two spring-slider elements in
series. The numerical result of the two calculations shown both on the displacement time histories
and the force displacement loops are identical and this validates the solution obtained with SAP.

Returning to Figure 6 (left) the response analysis with the equivalent SCSS bearings results
to zero-permanent displacement; whereas the response analysis with the DCSS bearing reaches a
small permanent displacement due to the high friction �2 =0.081 on surface one. This result is not
a general trend given that the opposite may happen depending on the fluctuations of the ground
excitation that follow the main pulse.

DIMENSIONAL ANALYSIS OF THE TRILINEAR OSCILLATOR

Consider a trilinear oscillator that is described with the five parameters �b, Qe,uye,u∗, and �tr
which is subjected to a pulse-type strong ground motion having a predominant acceleration pulse
with duration Tp and amplitude ap. The maximum inelastic displacement of the trilinear SDOF
oscillator is a function of seven variables

umax = f

(
�b,

Qe

m
,uye,u∗,�tr,ap,�p

)
(19)

The eight (8) variables appearing in Equation (19) involve only two reference dimensions that of
length [L] and time [T]. According to Buckingham’s �-theorem, the number of dimensionless
products (�-terms) = (number of variables in Equation (19) = 8 – number of reference dimen-
sions = 2); therefore, for the trilinear SDOF oscillator we have 8−2=6�-terms. The first two
�-terms (�m and ��) are given by Equations (9) and (10) while,

�Q = Qe

map
(20)

�y = uye�2
p

ap
�=0 (21)

�∗ = u∗�2
p

ap
(22)

�tr = �tr

�p
(23)

As in the dimensional analysis of the bilinear oscillator in deriving the �-terms listed above we
selected as repeating variables the characteristics of the pulse excitation, ap and �p =2�/Tp.
With the six �-terms given by Equations (9), (10), (20)–(22), the relation of the eight variables
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appearing in Equation (19) is reduced to a relation of six variables

umax�2
p

ap
=�

(
�b

�p
,

Qe

map
,

uye�2
p

ap
,

u∗�2
p

ap
,
�tr

�p

)
(24)

Range of interest of the �-terms

• �� =�b/�p
Given that the majority of isolation periods used are larger than 1.5 s (Tp>1.5s) and

that energetic pulses from near source records can be as large as 3 s, the range of interest
for �b/�p is 0<�b/�p =Tp/Tb <3s/1.5s=2. Beyond the value of �� =�b/�p =2 the
phenomenon of complete similarity that we intend to show becomes even stronger.

• �Q = Qe/map
Even for ground motions which are approximated with low amplitude acceleration pulses

say ap =0.25g and for an equivalent coefficient of friction as high as �e =0.05 the dimen-
sionless product �Q = Qe/map =�eg/ap is as high as 0.2. Accordingly 0.05<�Q<0.2.
For instance with the value of �e =0.0467 associated with the bearing tested in Figure 6 and
for the 1995 Aigion record (ap =0.44g) shown at the left of Figure 6, �Q =0.0467/0.44=
0.106; while for the TSM270 record from the 1983 Coalinga Earthquake (ap =0.46g) shown
at the right of Figure 6, �Q =0.0467/0.46=0.102.

• �y =uye�2
p/ap

Given that the yield displacement of the Teflon coat before sliding along the stainless steel
surface is uy =0.2m and that uye is of the same order of magnitude, the range of interest
of �y =uye�2

p/ap is 0.0001<�y<0.01.

• �∗ =u∗�2
p/ap = (�2 −�1)(R1 −h1)�2

p/ap
The main motivations/targets for developing the DCSS bearings are: (a) the need for a

more compact size, large-displacement capacity sliding bearings, (b) engagement of sliding
during moderate shaking, and (c) better re-centering capabilities at the weak tale-end of the
excitation. Accordingly, we examine the typical values of u∗ = (�2 −�1)(R1 −h1). Table I
below summarizes the values of u∗ that correspond to all the configurations of DCSS bearings
reported in the pertinent literature.

In order to achieve (b), the value of the coefficient of friction, �1, of the first sliding surface
is relatively low. For instance all the values of �1 reported in the work of Constantinou and
co-workers [14, 16] are below 4.5%. On the other hand, the values of �2 shall not be too high,

Table I. Selected geometrical and physical properties of DCSS bearings presented in the literature.

Configuration R1 −h1(m) R2 −h2(m) �1 �2 Tb(s) u*(m)

Fenz and Constantinou [16] 1 1.000 3.000 0.030 0.060 4.012 0.030
2 0.442 0.438 0.012 0.081 1.882 0.030
3 0.442 0.438 0.021 0.038 1.882 0.008
4 0.442 0.726 0.021 0.038 2.168 0.008

Constantinou report [14] 5 2.134 2.134 0.045 0.055 4.144 0.021
6 0.991 3.048 0.030 0.060 4.032 0.030
7 0.442 0.438 0.017 0.055 1.882 0.017

Kim and Yun [36] 8 0.636 1.060 0.050 0.135 2.613 0.054
9 0.420 1.130 0.060 0.115 2.498 0.023

10 0.559 0.994 0.050 0.128 2.500 0.044
11 0.718 0.832 0.070 0.126 2.498 0.040
12 0.994 0.559 0.050 0.189 2.500 0.138

Parametric analysis of Case 1 1.100 1.100 0.030 0.060 2.975 0.033
this study on a Case 2 1.100 1.100 0.020 0.070 2.975 0.055
three span bridge Case 3 0.700 1.500 0.010 0.063 2.975 0.037
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because this will result into sticking of the top larger-radius surface (permanent displacement) even
if the bottom smaller-radius surface re-centers. For instance, the value of �2 reported in the work
of Constantinou and co-workers [14, 16] for long period bearings (Tb ≈4.0s) is 6%; and the largest
value reported in the same work for �2 −�1 =0.03. In the parametric-analysis paper of Kim and
Yun [36] who investigated shorter period isolation systems (Tb ≈2.5s) the value of �2 reached or
exceeded 12%; however, the values of �2 −�1 were of the order of 6%—that is two times the peak
value of �2 −�1 =0.03 used by Constantinou and co-workers [14, 16].

Now, in order to achieve (c), the stiffness that corresponds to the first sliding surface is steep;
therefore, the value of the radius of curvature, R1 −h1 has to be kept small. Note that in Table I the
values of R1 −h1 of all configurations, where the two sliding surfaces have different curvatures,
are below 1.0 m. It is acknowledged that some of the configurations listed in Table I are small-size
bearings (small R1 −h1) which have been primarily developed for experimental testing (those
which are shaded), nevertheless, the resulting isolation period Tb =1.88s is large enough to qualify
for selected real-world implementations.

Accordingly, it is because of this governing need to achieve re-centering under weak excitations
(stiffness not too low and friction not too high), that the value of u∗ = (�2 −�1)(R1 −h1) in most
practical cases is less than 0.06m×1.0m=0.06m (see values of u∗ for each configuration in
Table I—all of them are below 0.055 m).

Now the stronger the acceleration pulse (larger ap and longer duration; therefore, smaller �p),
the smaller the value of �∗. For instance, the six stronger out of the seven pulse-like ground
motions listed in Table III of the paper exhibit an inverse length scale =�2

p/ap<10m−1. Given
that Table I indicates that all practical values of u∗ = (�2 −�1)(R1 −h1) are less than 0.06 m so
that all practical values of �∗ =u∗�2

p/ap are below 0.06m×10m−1 =0.6. In order to cover other

less common situations we extended the upper value of �∗ =u∗�2
p/ap up to one (�∗�1.0). Thus

according to the above discussion, the range 0<�∗�1.0 covers most practical combinations of
DCSS bearings in association with pulse characteristics of ‘pulse-like’ strong ground motions.

• �tr =�tr/�p

With reference to Figure 2 (right) the transition slope ktr (second slope) is bounded by kb<ktr<
Qe
u∗ +

kb =k∗. Accordingly, in terms of frequencies

�b<�tr<

√
Qe

mu∗ +�2
b (25)

Recognizing that Qe
mu∗ = �Q

�∗ �2
p, Equation (25) after dividing with �p assumes the expression

��<�tr<

√
�Q

�∗ +�2
� (26)

The limiting value of �tr =
√

�Q

�∗ +�2
� is the normalized slope that corresponds to a zero coefficient

of friction along one sliding surface (say �1 =0). In our parametric study we consider the upper

value of �tr equal to
√

�2
�+ 3

4
�Q

�∗ . Accordingly,

�2
�<�2

tr<�2
�+ 3

4

�Q

�∗ ⇒��<�tr<

√
�2

�+ 3

4

�Q

�∗ (27)

Complete similarity on the dimensionless yield displacement

Figure 7 plots the dimensionless value of the solution of Equation (24), �m =umax�2
p/ap as a

function of �� =�b/�p when �∗ =0.5 and �tr =
√

�2
�+(1/2)�Q/�∗, for three different values

�Q = Qe/map and different values of �ye =uey�2
p/ap when the trilinear oscillator (rigid deck

supported on DCSS bearings) is excited by an antisymmetric Ricker wavelet. Figure 7 shows that
the solution for the dimensionless maximum displacement, �m , is nearly indifferent even when
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Figure 7. Dimensionless maximum displacement spectra of a trilinear oscillator

(�∗ =0.5,�tr =
√

�2
�+(1/2)�Q/�∗) subjected to an antisymmetric Ricker wavelet.

For a given dimensionless strength �Q the response is practically indifferent to 2 orders
of magnitude variation of the dimensionless yield displacement �y .

the dimensionless yield displacement of the backbone curve �y is varied by 2 orders of magnitude
(�y =0.0001−0.01). This result indicates that the response of the trilinear oscillator exhibits
complete similarity in the dimensionless product �y , and therefore the dimensionless product �y
drops out of consideration. Accordingly, Equation (24) reduces to

umax�2
p

ap
=�

(
�b

�p
,

Qe

map
,

u∗�2
p

ap
,
�tr

�p

)
(28)

It is worth mentioning that the work of Constantinou [14] and subsequently the work of Fenz
and Constantinou [16, 37] silently use the result of Equation (28)—that the response is insensitive
to the value of the yield displacement and throughout their study they adopted uye =0.

Interpretation of the response analysis of the DCSS bearings

Figure 8 plots dimensionless response spectra of the trilinear oscillator for three values of the
normalized strength �Q = Qe/map =�eg/ap =0.05, 0.1, and 0.2 when subjected to a symmetric
Ricker wavelet (see Equation (6) and Figure 4). The heavy black line plots the response of the
rigid deck when supported on equivalent SCSS bearings (backbone curve) while the other curves
plot the response of the rigid deck supported on various DCSS bearings (�∗ =0.1,0.5,1.0) and

�tr =
√

�2
�+ j�Q/�∗, j = 1

4 , 1
2 , 3

4 , a total of nine combinations). The combination of �∗ =1.0

and �tr =
√

�2
�+(3/4)�Q/�∗ corresponds to the triangles with the larger area (larger departure

from the backbone loop, see Figure 2). Figure 8 indicates that the backbone heavy black line (deck
on equivalent SCSS bearings) is invariably below all curves (smaller peak bearing displacements).
For the case of �Q =0.05 and �Q =0.1 (which is the majority of practical situations), the
peak bearing displacements from all configurations are practically the same (complete similarity)
for ��<0.5 and ��>1 while within the range 0.5<��<1 the response curves exhibit a mild
amplification as the size of the gray triangles in Figure 2 increases.

The right plot shown in Figure 8 which is for the high-end values of the dimensionless strength
�Q = Qe/map =�eg/ap =0.2, indicates that the complete similarity appears in the range of interest

(��<1.5) only when �∗<0.5 and �tr<

√
�2

�+(1/2)�Q/�∗.
Figure 9 plots dimensionless response spectra of the trilinear oscillator when subjected to an

antisymmetric Ricker wavelet. The response spectra in Figure 9 exhibit remarkable order and
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Figure 8. Dimensionless maximum inelastic displacement of a rigid deck supported on DCSS bearings
with a wide range of parameters when subjected to a symmetric Ricker pulse.

Figure 9. Dimensionless maximum inelastic displacement of a rigid deck supported on DCSS bearings
with a wide range of parameters when subjected to an antisymmetric Ricker pulse.

the phenomenon of complete similarity becomes most apparent in particular for the values of
�Q<0.1. Also note that the curves which depart the most from the heavy black backbone line
are those with the stars (*) which correspond to very high values of the transition slope (�tr =√

�2
�+(3/4)�Q/�∗).

Accordingly, for values of �Q�0.1 and values of �tr�
√

�2
�+(1/2)�Q/�∗ the response of

the trilinear oscillator exhibits a complete similarity in the difference between the coefficients of
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friction (�∗ = (�2 −�1)(R1 −h1)�2
p/ap) along the sliding interfaces as well as in the ratio of the

intermediate (transition) to the final slope �tr =�tr/�p. The result of the dimensional analysis

presented herein concludes that for values of �Q�0.1 and values of �tr<

√
�2

�+(1/2)�Q/�∗

the dimensionless products �∗ and �tr drop out of consideration; and therefore Equation (28)
further reduces to

umax�2
p

ap
=�

(
�b

�b
,

Qe

map
,0, any

)
⇒ umax�2

p

ap
=�

(
�b

�b
,

Qe

map

)
(29)

The finding that the response of the trilinear oscillator exhibits complete similarity in the normalized
yield displacement, �y , in the difference between the coefficient of friction, �∗, and the ratio of
the transition to the final slope, �tr, is what is of most interest to the design structural engineer.
For instance, in some cases DCSS are viable alternatives due to space limitation; however, the
coefficient of friction may be different due to various imperfections. The analysis presented in
this paper shows that these imperfections are immaterial to the response and one can use with
confidence the equivalent values of the SCSS bearings. Furthermore, because of the existence of
the three complete similarities as expressed by Equations (28) and (29) the number of arguments
in the function 	() appearing in Equation (24) are reduced by three (3).

CASE-STUDY: RESPONSE OF AN ISOLATED BRIDGE

Our study to better understand the relative significance of the various parameters that control the
mechanical behavior of the DCSS bearings proceeds with the response analysis of a seismically
isolated bridge currently under construction in Greece in order to confirm the validity of Equa-
tion (29). This case study, is a three-span, 105-m-long seismic isolated prestressed concrete bridge
supported on two piers and two end abutments. The center span is 40 m long; while the two
end spans are 32.5 m long. The two piers, M1 and M2, have respective height of 11.72 m and
6.77 m and they rest in pile foundations. Figure 10 shows the elevation of the bridge. At each
end-abutment or pier the bridge rests on two SCSS bearings with radius of curvature R =2.2m
and coefficient of friction �=0.045. The isolation period of the spherical bearings alone in any
horizontal direction is Tb =2�

√
R/g =2.98s. At the end-abutments the bridge is free to move only

along the longitudinal direction, while the motion along the transverse direction is restrained in
order to avoid misalignment of the rails at the deck abutment joint during earthquake shaking.

A detailed structural model of the bridge was developed with the commercially available software
SAP (Computers and Structures 2007) which accounts for the flexure of the center piers and the
finite stiffness of pile foundations in the horizontal, vertical, rocking, and cross horizontal-rocking
directions [38].

Figure 10. Elevation of a three-span, 105-m-long, seismically isolated bridge.
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Table II. Eigenperiods of the isolated bridge shown in Figure 10.

Eigenperiods T (s), E p/Es =100

Equivalent SCSS DCSS bearing Case 1 DCSS bearing Case 2 DCSS bearing Case 3
bearing R1−h1=1.1m �1=0.03 R1−h1=1.1m �1=0.02 R1−h1=0.7m �1=0.01

Modes Re=2.2m �e=0.045 R2−h2=1.1m �2=0.06 R2−h2=1.1m �2=0.07 R2−h2=1.5m �2=0.0613

1 2.993 2.993 2.993 2.993
2 1.007 1.007 1.007 1.007
3 0.339 0.339 0.339 0.339
4 0.290 0.290 0.290 0.290
5 0.267 0.267 0.267 0.267
6 0.193 0.193 0.193 0.193
7 0.191 0.191 0.191 0.191
8 0.152 0.152 0.152 0.152

Table III. Earthquake records used for the dynamic response analysis of the bridge.

Longitudinal bridge direction

Earthquake
Record
station

Magnitude
(Mw)

Distance
(km) PGA (g) PGV (m/s) ap(g) Tp(s) �2

p/ap(m−1)

1971 San
Fernando

Pacoima
Dam 164

6.6 11.9 1.23 1.13 0.30 1.35 7.36

1977 Bucharest 7.2 160 0.20 0.74 0.20 2.20 4.16
1979 Imperial
Valley

El Centro
#7/140

6.5 30 0.34 0.48 0.27 1.30 8.82

1983 Coalinga Transmitter
Hill/270

5.8 6 0.84 0.44 0.46 1.00 8.75

1986 North North Palm 6.0 8.2 0.59 0.73 0.30 1.30 7.94
Palm Springs Springs 210
1992 Erzican Erzincan/NS 6.9 13 0.52 0.84 0.32 2.00 3.14
1996 Aigio OTE

Building/FN
6.2 20 0.50 0.43 0.44 0.60 25.41

Table II shows the first eight eigenvalues of the seismic isolated bridge shown in Figure 10 for
the case where E p/Es =100 (E p = Young’s modulus of pile=25GPa for the concrete used and
Es = Young’s modulus of soil). The first eigenvalue of the bridge is the longitudinal eigenvalue,
T1 =TL =2.993s a value that is slightly larger than the SCSS bearing period, Tb =2�

√
R/g =2.98

due to the finite stiffness of the piers and piles connected in series with the spherical sliding
bearings (see Figure 10).

The dynamic analysis of the bridge is also conducted by considering three configurations of
DCSS bearings that offer the same isolation period and the same equivalent strength. The first
configuration (Case 1) uses DCSS bearings having the same radii (R1 −h1 = R2 −h2 =1.1m) and
coefficient of friction �1 =0.03 and �2 =0.06 so that according to Equation (2) �e = (�1 +�2)/2=
0.045. The second configuration (Case 2) uses DCSS bearings with R1 −h1 = R2 −h2 =1.1m, and
coefficients of friction further apart (�1 =0.02 and �2 =0.07).

The third configuration (Case 3) uses DCSS bearings with R1 −h1 =0.7m,�1 =0.01, and R2 −
h2 =1.5m, �2 =0.0613. Table II, next to the eigenvalues of the bridge obtained with the SCSS
bearings (R =2.2m,�=0.045), offers the eignevalues computed with the three configurations of
DCSS bearings described above. For all four configurations, Table II shows that the computed
eigenperiods are identical.

Our study proceeds with a three-dimensional nonlinear time history analysis of the bridge shown
in Figure 10 when subjected to the seven (7) ground motions (two-dimensional excitation) listed
in Table III. Note that two of the seven earthquakes used (1983 Coalinga and 1995 Aigion) are
moderately strong earthquakes with moderate displacement demands (umax ≈0.1m).
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Figure 11. Comparison of peak inelastic deck displacements (top) and residual displacements (bottom)
along the longitudinal direction when the bridge shown in Figure 10 is equipped with three different

configurations of spherical bearings that offer the same equivalent friction and same isolation periods.

The computed response is summarized in Figure 11 which plots maximum longitudinal deck
displacement (top) and residual longitudinal displacement (bottom). Figure 11 shows that for the
four configurations under investigation the maximum longitudinal displacement for each ground
motion are nearly the same. Accordingly, the design engineers can use with confidence the equiva-
lent SCSS bearing for any analysis relevant to the design needs. Equally interesting are the results
on the permanent displacements of the bearings where the results are mixed without exhibiting
any particular trend.

CONCLUSIONS

In this paper the seismic response of isolated structures supported on bearings with bilinear and
trilinear behavior is revisited with dimensional analysis in an effort to better understand the relative
significance of the various parameters that control the mechanical behavior of isolated systems.

The paper introduces the concept of complete similarity by showing that the dimensionless
maximum response of both bilinear and trilinear systems exhibit complete similarity in the dimen-
sionless yield displacement. Given that the DCSS bearings may be a viable alternative due to
installation limitations, the paper proceeds with a wide parametric analysis on the response of bridge
decks isolated on DCSS bearings and concludes that for sufficiently small values of �∗ =u∗�2

p/ap

(say �∗<1.0) and for values of the dimensionless strength �Q = Qe�2
p/ap<0.1 and values of

the dimensionless transition slope �tr =�tr/�p<

√
�2

�+(1/2)�Q/�∗ the response of the trilinear
system exhibits complete similarity in the difference between the coefficients of friction along
the sliding surface as well as in the ratio of the transition (intermediate) to the final slope. These
results are restricted to the peak inelastic displacement.

The finding that for most practical configurations and design ground motions the peak response
of the trilinear oscillator exhibits complete similarity in (a) the normalized yield displacement,
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(b) the difference between the coefficient of friction, and (c) the ratio of the intermediate (transition)
to the final slope is of great interest to the design engineer since the peak response of a structure
isolated with DCSS bearings can be computed with confidence by using the equivalent properties
of the SCSS bearings.
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