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SUMMARY

This paper investigates the planar rocking response of an array of free-standing columns capped with a
freely supported rigid beam in an effort to explain the appreciable seismic stability of ancient free-standing
columns that support heavy epistyles together with the even heavier frieze atop. Following a variational
formulation, the paper concludes to the remarkable result that the dynamic rocking response of an array
of free-standing columns capped with a rigid beam is identical to the rocking response of a single free-
standing column with the same slenderness yet with larger size, that is a more stable configuration. Most
importantly, the study shows that the heavier the freely supported cap beam is (epistyles with frieze atop),
the more stable is the rocking frame regardless of the rise of the center of gravity of the cap beam,
concluding that top-heavy rocking frames are more stable than when they are top light. This ‘counter
intuitive’ finding renders rocking isolation a most attractive alternative for the seismic protection of bridges
with tall piers, whereas its potential implementation shall remove several of the concerns associated with the
seismic connections of prefabricated bridges. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Under base shaking, slender objects and tall rigid structures may enter into rocking motion that
occasionally results in overturning. Early studies on the seismic response of a slender rigid block
were presented by Milne [1]; however, it was Housner [2] who uncovered a size-frequency scale
effect that explained why (i) the larger of two geometrically similar blocks can survive the excitation
that will topple the smaller block and (ii) out of two same acceleration amplitude pulses, the one
with the longer duration is more capable to induce overturning. Following Housner’s seminal paper,
a number of studies have been presented to address the complex dynamics of one of the simplest
man-made structures – the free-standing rigid column.

Yim et al. [3] conducted numerical studies by adopting a probabilistic approach; Aslam et al. [4]
confirmed with experimental studies that the rocking response of rigid blocks is sensitive to system
parameters, whereas Psycharis and Jennings [5] examined the uplift of rigid bodies supported on
viscoelastic foundation. Subsequent studies by Spanos and Koh [6] investigated the rocking response
due to harmonic steady-state loading and identified ‘safe’ and ‘unsafe’ regions together with the
fundamental and suharmonic modes of the system. Their study was extended by Hogan [7, 8] who
further elucidated the mathematical structure of the problem by introducing the concepts of orbital
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stability and Poincare sections. The transient rocking response of free-standing rigid blocks was
examined in depth by Zhang and Makris [9] who showed that there exist two modes of overturning:
(i) by exhibiting one or more impacts; and (ii) without exhibiting any impact. The existence of the
second mode of overturning results in a safe region that is located on the acceleration-frequency
plane above the minimum overturning acceleration spectrum. The fundamental differences between
the response of a rocking rigid column (inverted pendulum) and the response of the linear elastic
oscillator (regular pendulum) led to the development of the rocking spectrum [10]. More recent
studies pertinent to the rocking response of rigid columns have focused on more practical issues
such as representation of the impact [11], the effect of the flexibility yielding of the supporting base
[12, 13], or the effect of seismic isolation [14].

In this paper, we investigate the planar rocking response of an array of free-standing columns
capped with a freely supported rigid beam as shown schematically in Figure 1. Herein, we use the
term ‘rocking frame’ for the single DOF structure shown in Figure 1. Sliding does not occur at the
pivot points either at the base or at the cap beam.

Our interest to this problem was partly motivated from the need to explain the remarkable seismic
stability of ancient free-standing columns that support heavy free-standing epistyles together with
the even heavier frieze atop. As an example, Figure 2 shows the entrance view of the late archaic
Temple of Aphaia in the island of Aegina nearby Athens, Greece. Dates ranging from 510 BC to
470 BC have been proposed for this temple. All but three of the 32 outer columns of the temple are
monolithic, and they have been supporting for 2.5 millennia the front and back epistyles together
with the heavy frieze (triglyph and metope). Figure 3 shows the monolithic free-standing columns of
the Temple of Apollo in Corinth, Greece, either standing alone or supporting epistyles, which have
survived toppling, in an area with high seismicity, since 540 BC. In ancient Greek temples, the
epistyles are positioned from the vertical axis of one column to the vertical axis of the neighboring
column; therefore, the joint of the epistyles are along the vertical axis of the column (see Figure 2).
With this configuration during lateral loading of the peristyle of the temple, each epistyle in addition
to the horizontal translation, u, shown in Figure 1 will also experience a small rotation, whereas the
transfer of forces from the epistyles to the columns is not concentrated at the top pivoting point of
the columns. Accordingly, the planar rocking response of the peristyle of ancient temples is more
complicated than the planar motion of the idealization shown in Figure 1.

Nevertheless, the striking dynamic stability of these monuments is mainly due to the development of
rocking mechanisms. Motivated from this outstanding performance, this paper examines the dynamic
response and stability of the simplest free-standing rocking frame shown in Figure 1 in an effort to
improve our understanding regarding the dynamics of this class of nonlinear articulated structures.

The understanding of the rocking response and stability of the configuration shown in Figure 1 is
also pertinent to the growing precast bridge construction technology where bridge piers supporting
heavy decks are allowed to rock atop their foundation to achieve re-centering of the bridge bent
after a seismic event.
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Figure 1. Rocking array of free-standing columns capped with a freely supported rigid beam.
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2. REVIEW OF THE ROCKING RESPONSE OF A FREE-STANDING RIGID COLUMN

With reference to Figure 4 and assuming that the coefficient of friction is large enough so that there is
no sliding, the equation of motion of a free-standing block with size R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ b2
p

and slenderness
a= atan(b/h) subjected to a horizontal ground acceleration, üg(t), when rocking around O and O0,
respectively, is ([3, 7, 15, 9] among others)

Io€θ tð Þ þ mgR sin -a-θ tð Þ½ � ¼ -m€ug tð ÞR cos -a-θ tð Þ½ �; θ tð Þ < 0 (1)

Io€θ tð Þ þ mgR sin a-θ tð Þ½ � ¼ -m€ug tð ÞR cos a-θ tð Þ½ �; θ tð Þ > 0: (2)

For rocking motion to be initiated, üg(t)> g tan a at some time of its history. For rectangular blocks,
Io= (4/3)mR

2; and the aforementioned equations can be expressed in the compact form

€θ tð Þ ¼ �p2 sin a sgn θ tð Þð Þ � θ tð Þ½ � þ €ug
g

cos a sgn θ tð Þð Þ � θ tð Þ½ �
� �

: (3)

Figure 2. View of the Temple of Aphaia, in Aegina, Greece. Its monolithic, free-standing columns support
massive epistyles and the frieze atop, and the entire rocking frame remains standing for more than

2500 years in a region with high seismicity.

Figure 3. View of the Temple of Apollo, in Corinth, Greece. Its monolithic, free-standing columns support
massive epistyles and remain standing in an area of high seismicity since 540 BC.
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The oscillation frequency of a rigid block under free vibration is not constant because it strongly

depends on the vibration amplitude [2]. Nevertheless, the quantity p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3g=4R

p
is a measure of the

dynamic characteristics of the block. For the 7.5m� 1.8m free-standing column of the Temple of
Appolo in Corinth, p = 1.4 rad/s, and for a household brick, p� 8 rad/s.

Figure 5 shows the moment–rotation relationship during the rocking motion of a free-standing
block. The system has infinite stiffness until the magnitude of the applied moment reaches the value
mgRsina, and once the block is rocking, its restoring force decreases monotonically, reaching zero
when θ= a. This negative stiffness, which is inherent in rocking systems, is most attractive in
earthquake engineering given that such systems do not resonate.

During the oscillatory rocking motion of a free-standing rigid column, the moment–rotation curve
follows the curve shown in Figure 5 without enclosing any area. Energy is lost only during impact,
when the angle of rotation reverses. When the angle of rotation reverses, it is assumed that the
rotation continues smoothly from points O to O0 and that the impact force is concentrated at the new
pivot point, O0. With this idealization, the impact force applies no moment around O0; hence, the
angular momentum around O0 is conserved. Conservation of angular momentum about point O0 just
before the impact and right after the impact gives

Io _θ1-m _θ12bR sin að Þ ¼ Io _θ2 (4)

where _θ1 = angular velocity just prior to the impact and _θ2 = angular velocity right after the impact. The
ratio of kinetic energy after and before the impact is

Figure 4. Left: geometric characteristics of the model considered. Right: free-body diagram of a free-
standing block at the instant that it enters rocking motion.

Figure 5. Moment–rotation diagram of a rocking object.
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r ¼
_θ
2
2

_θ
2
1

(5)

which means that the angular velocity after the impact is only
ffiffi
r

p
times the velocity before the impact.

Substitution of equation (4) into equation (5) gives

r ¼ 1� 3
2
sin2a

� �2
(6)

The value of the coefficient of restitution given by equation (6) is the maximum value of r under
which a free-standing rigid block with slenderness a will undergo rocking motion. Consequently, to
observe rocking motion, the impact has to be inelastic. The less slender a block (larger a), the more

plastic is the impact, and for the value of a ¼ sin-1
ffiffiffiffiffiffiffiffi
2=3

p ¼ 54:73� , the impact is perfectly plastic.
During the rocking motion of slender blocks, if additional energy is lost because of the inelastic
behavior at the instant of impact, the value of the true coefficient of restitution r will be less than the
one computed from equation (6).

3. EQUATION OF MOTION OF THE ROCKING FRAME

The free-standing rocking frame shown in Figure 1 is a single DOF structure with sizeR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ b2

p
and

slenderness a=atan(b/h). The only other parameter that influences the dynamics of the rocking frame is
the ratio of the mass of the cap beam,mb, to the mass of all the N rocking columns,mc, g =mb/Nmc. For the
Temple of Apollo in Corinth where the frieze is missing, g is as low as 0.3, whereas in prefabricated
bridges, g> 4. As in the case of the single rocking column, the coefficient of friction is large enough so
that sliding does not occur at the pivot point at the base and at the cap beam. Accordingly, the
horizontal translation displacement u(t) and the vertical lift v(t) of the cap beam are functions of the
single DOF θ(t). For a positive horizontal ground acceleration (the ground is accelerating to the right),
the rocking frame will initially rock to the left (θ(t)< 0). Assuming that the rocking frame will not
topple, it will re-center, impacts will happen at the pivot points (at the base and at the cap beam), and
subsequently, it will rock to the right (θ(t)> 0). During rocking, the dependent variables u(t), v(t) and
their time derivatives are given for θ(t)< 0 and θ(t)> 0 by the following expressions.

u ¼ 2R sina� sin a� θð Þð Þ (7)

_u ¼ �2R cos a� θð Þ _θ (8)

€u ¼ 2R sin a� θð Þ _θ
� �2 � cos a� θð Þ€θ

	 

(9)

and

v ¼ 2R cos a� θð Þ � cosað Þ (10)

_v ¼ �2R sin a� θð Þ _θ (11)

€v ¼ 2R � cos a� θð Þ _θ
� �2 � sin a� θð Þ€θ

	 

(12)

In these equations, whenever there is a double sign (say �), the top sign is for θ(t)< 0, and the bottom
sign is for θ(t)> 0.
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During rocking motion, Langrange’s equation must be satisfied;

d
dt

dT

d _θ

� �
� dT

dθ
¼ Q: (13)

In equation (13), T is the kinetic energy of the system, and Q is the generalized force acting on the
system

Q ¼ dW
dθ

(14)

in which W is the work performed by the external forces acting on the rocking frame during an
admissible rotation dθ. During this admissible rotation dθ, the variation of work is

dW ¼ dW

dθ
dθ (15)

In either case where θ(t)< 0 or θ(t)> 0, the kinetic energy of the system is

T ¼ N
1
2
Io _θ
� �2 þ 1

2
mb _uð Þ2 þ _vð Þ2
	 


(16)

With the use of equations (8) and (11), equation (16) reduces to

T ¼ N

2
Io þ 2mbR

2

� �
_θ
� �2

(17)

Our analysis proceeds by first investigating the rocking motion of a free-standing frame subjected to
a horizontal ground acceleration üg(t) when θ(t)< 0. During this segment of the motion, the variation
of the work, W, is

dW ¼ mb þ N

2
mc

� �
€ugdu� gdv
� �

(18)

or

dW ¼ mb þ N

2
mc

� �
€ug

du

dθ
� g

dv

dθ

� �
dθ (19)

The combination of equations (15) and (19) gives

dW

dθ
¼ mb þ N

2
mc

� �
€ug

du

dθ
� g

dv

dθ

� �
(20)

which simplifies to

dW

dθ
¼ 2R mb þ N

2
mc

� �
�€ug cos aþ θð Þ þ g sin aþ θð Þ� �

; (21)

after using the expression given by equations (7) and (10).
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The substitution of equations (17) and (21) into Lagrange’s equation given by equation (13) results
to the equation of motion of the rocking frame for θ(t)< 0.

Io
2mcR

þ 2gR

gþ 1
2

� �
g

 !
€θ ¼ sin aþ θð Þ � €ug

g
cos aþ θð Þ; (22)

where g =mb/Nmc is the ratio of the mass of the cap beam (epistyle), mb, to the mass of all the N
columns =Nmc.

For the case where the rotation is positive θ(t)> 0, the variation of the work is

dW ¼ � mb þ N

mc
mc

� �
€ugduþ gdv
� �

(23)

and equation (14) takes the form

dW
dθ

¼ �2R mb þ N

2
mc

� �
€ug cos aþ θð Þ þ g sin aþ θð Þ� �

: (24)

The substitution of equations (17) and (24) into Lagrange’s equation given by equation (13) offers
the equation of motion of the rocking frame for θ(t)> 0.

Io
2mcR

þ 2gR

gþ 1
2

� �
g

 !
€θ ¼ � sin a� θð Þ � €ug

g
cos a� θð Þ: (25)

For rectangular columns, Io = (4/3)mR2, and equations (22) and (25) can be expressed in a single
compact form

€θ ¼ � 1þ 2g
1þ 3g

p2 sin a sgn θ tð Þð Þ � θ tð Þ½ � þ €ug tð Þ
g

cos a sgn θ tð Þð Þ � θ tð Þ½ �
� �

(26)

Equation (26), which describes the planar motion of the free-standing rocking frame, is precisely the
same as equation (3), which describes the planar rocking motion of a single free-standing rigid column
with the same slenderness a, except that in the rocking frame, the term p2 is multiplied with the factor
(1 + 2g)/(1 + 3g). Accordingly, the frequency parameter of the rocking frame, p̂, is

p̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g
1þ 3g

s
p (27)

where p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3g=4R

p
is the frequency parameter of the solitary rocking column and g =mb/Nmc is the

mass of the cap beam to the mass of all N columns.
For a light cap beam (g =mb/Nmc! 0), the multiplication factor 1 + 2g/(1 + 3g)! 1 and the array of

free-standing columns coupled with a light epistyle exhibit precisely the dynamic rocking response of
the solitary free-standing column. On the other hand, as the mass of the epistyle increases,

lim
g!1

1þ 2g
1þ 3g

¼ 2
3

(28)

Accordingly, the dynamic behavior of a rocking frame with a very heavy cap beam supported on

columns with slenderness a and frequency parameter, p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3g=4R

p
, is identical to the dynamic
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rocking response of a single rigid column with slenderness a and frequency parameter p̂ ¼ ffiffiffiffiffiffiffiffi
2=3

p
p –

that is a smaller frequency parameter; therefore a larger, more stable column.
This remarkable result offered by equation (26) – that the heavier the cap beam is, the more stable is

the free-standing rocking frame despite the rise of the center of gravity of the cap beam – has been also
confirmed by obtaining equation (26) for a pair of columns with the algebraically intense direct
formulation after deriving the equations of motion of the two-column frame through dynamic
equilibrium. Furthermore, numerical studies with the discrete element method by Papaloizou and
Komodromos [16] concluded to the same result – that the planar response of free-standing columns
supporting epistyles is more stable than the response of the solitary, free-standing column.

According to equation (26), the rocking response and stability analysis of the free-standing rocking
frame with columns having slenderness, a, and size, R, is described by all the past published work on
the rocking response of the free-standing single block ([2–4, 6, 9, 10, 14] among others), where the
block has the same slenderness, a, and a larger size R̂given by

R̂ ¼ 1þ 3g
1þ 2g

R ¼ 1þ g
1þ 2g

� �
R (29)

Figure 6 plots the value of R̂ as a function of the mass ratio g =mb/Nmc. When replacing the rocking
frame with the larger size, equal slenderness solitary column, the maximum coefficient of restitution is
given by equation (43) presented in a later section.

4. MINIMUM ACCELERATION NEEDED TO INITIATE UPLIFT OF A ROCKING FRAME

With reference to Figure 1 during an admissible rotation dθ, the application of the principle of virtual
work gives

mb€ugduþ Nmc€ugR cosað Þdθ ¼ mbgdvþ NmcgR sinað Þdθ (30)

where

du ¼ du

dθ
dθ and dv ¼ dv

dθ
dθ (31)
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Figure 6. Values of the semidiagonal R̂ of a free-standing rigid column with slenderness a that has identical
dynamic properties and response as the free-standing rocking frame with N columns having slenderness a,

semidiagonal R, and mass mc, supporting a cap beam with mass mb.
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Without loss of generality, we assume that the rocking frame undergoes positive rotations (θ(t)> 0);
and according to equations (7) and (10) with their bottom signs,

du ¼ 2R cos a� θð Þdθ (32)

dv ¼ 2R sin a� θð Þdθ (33)

Substitution of equations (32) and (33) into equation (30) and after canceling the admissible rotation
dθ, one obtains

mb€ug2 cos a� θð Þ þ Nmc€ug cosa ¼ mbg2 sin a� θð Þ þ Nmcg sina (34)

At the initiation of uplift, θ= 0, and equation (34) simplifies to

2mb þ Nmcð Þ€uupg cosa ¼ 2mb þ Nmcð Þg sina (35)

which shows that the minimum acceleration needed to initiate uplift of a rocking frame is

€uupg ¼ g tana (36)

According to equation (36), the minimum uplift acceleration of the rocking frame depends solely
on the slenderness of its columns and is entirely independent of the mass of the cap beam (epistyles
and frieze atop). This result was expected from the previous analysis on the rocking motion of the
free-standing frame (see equation 26), which showed that its dynamic rocking response is identical
to the rocking responseof a single column that has the same slenderness, a, as the columns of the
rocking frame, but larger size, R̂ ¼ 1þ 3gð Þ= 1þ 2gð Þð ÞR (see Figure 6).

5. MAXIMUM COEFFICIENT OF RESTITUTION

The maximum coefficient of restitution of the rocking frame during the impact that happens when the
rotation θ(t) alternates sign is calculated by applying the angular momentum-impulse theorem on one
column of the frame before and after the impact. As in the case of the solitary rocking column, the
angular momentum of one column of the rocking frame with respect to the imminent pivot point O0

(see Figure 7) is

H1 ¼ Io � 2mcbR sinað Þ _θ1; (37)

where _θ1 is the angular velocity of the rocking column just before the impact. Upon impact, the angular
momentum of the column with respect to the new pivot point O0 is

H2 ¼ Iο _θ2 (38)

where _θ2 is the angular velocity of the rocking column immediately after the impact.
The main difference between the conservation of angular momentum before and after the impact of

the free-standing rocking frame with a freely supported cap beam and the rocking of a free-standing
solitary column is that upon impact happens, additional forces are acting on the columns of the
rocking frame that were absent in the solitary column. These forces appear when the reactions of the
cap beam (epistyle) shift from point P0 to point P as the pivot points at the base shift from point O
to O0 (see Figure 7)
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Given that the cap beam is rigid and that during the rocking motion of the frame, the motion of the
cap beam is only a translation (no rotations), it is assumed that the impact forces at all columns are
equal. Accordingly, the change of the linear momentum of the cap beam in the horizontal and
vertical directions before and after the impact is

N

Z
duration
of impact

FxIdt ¼ 2mbR cosa _θ1 � _θ2
� �

(39)

and

N

Z
duration
of impact

FzIdt ¼ 2mbR sina _θ1 þ _θ2
� �

(40)

Application of the angular momentum – impulse theorem before and after the impact – gives

H1 � 2b
Z

duration
of impact

FzIdt þ 2h
Z

duration
of impact

FxIdt ¼ H2 (41)

After substituting equation (37)–(40) into eqaution (41) and using that Io = 4/3mcR
2, one obtains

4
3
mc � 2mc sin

2a� 4
N
mb sin

2aþ 4
N
mb cos

2a
� �

_θ1 ¼ 4
N
mb þ 4

3
mc

� �
_θ2 (42)

Further simplification of equation (42) gives that the ratio of kinetic energy of the rocking frame
after and before the impact is

zIF

xIF

xIF

zIF

1θ 2θ

Figure 7. Configuration of the rocking column of the free-standing frame just before and immediately after
the impact together with the impact forces that develop at point P as the pivoting transfers to point O0.
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r ¼
_θ2
_θ1

� �2

¼ 1� 3
2 sin

2aþ 3g cos2a
1þ 3g

 !2

(43)

Equation (43) indicates that the angular velocity of the rocking frame after the impact is only
ffiffi
r

p
times the velocity before the impact. Figure 8 plots the value of the minimum coefficient of restitutionffiffi
r

p ¼ 1� 3=2ð Þ sin2aþ 3g cos2a
� �

= 1þ 3gð Þ as a function of the slenderness a for different values of
the mass ratio g =mb/Nmc.

Figure 8 indicates that the maximum coefficient of restitution
ffiffi
r

p
of the rocking frame is always

smaller than the maximum coefficient of restitution of the solitary column = 1� (3/2)sin 2a,
indicating that when a free-standing frame engages into rocking motion, it dissipates more energy
than the equal slenderness equivalent solitary free-standing column with size R̂ because of the
additional impacts that happen between the columns and the cap beam (epistyles and frieze).

6. OVERTURNING SPECTRA – SELF-SIMILAR RESPONSE FOR PULSE-LIKE
EXCITATIONS

The relative simple form yet destructive potential of near source ground motions has motivated the
development of various closed form expressions that approximate their dominant kinematic
characteristics. The early work of Veletsos et al. [17] was followed by the papers of Hall et al. [18],
Makris [19], Makris and Chang [20], Alavi and Krawinkler [21], and more recently by the papers of
Mavroeidis and Papageorgiou [22] and Vassiliou and Makris [23]. Physically realizable pulses can
adequately describe the impulsive character of near-fault ground motions both qualitatively and
quantitatively. The minimum number of parameters of the mathematical pulse is two, which are the
acceleration amplitude, ap, and the duration, Tp. The more sophisticated model of Mavroeidis and
Papageorgiou [22] involves four parameters: the pulse period, the pulse amplitude, the pulse phase,
and the number of half cycles. Recently, Vassiliou and Makris [23] used the Mavroeidis and
Papageorgiou model [22] in association with wavelet analysis to develop a mathematically formal
and objective procedure to extract the time scale and length scale of strong ground motions.

The current established methodologies for estimating the pulse characteristics of a wide class of
records are of unique value because the product, apTp

2 =Lp, is a characteristic length scale of the
ground excitation and is a measure of the persistence of the most energetic pulse to generate
inelastic deformation [24, 25]. It is emphasized that the persistence of the pulse, apTp

2= Lp, is a
different characteristic than the strength of the pulse that is measured with the peak pulse
acceleration, ap. The reader may recall that among two pulses with different acceleration amplitudes
(say ap1> ap2) and different pulse durations (say Tp1< Tp2), the inelastic deformation does not scale

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Figure 8. Values of the maximum coefficient of restitution as a function of the slenderness, a of the columns
of the rocking frame for different values of the mass ratio g =mb/Nmc.
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with the peak pulse acceleration (most intense pulse) but with the strongest length scale (larger
apTp

2=most persistent pulse) [24–26].
The heavy dark line in Figure 9 (Top) that approximates the long-period acceleration pulse of the

NS component of the 1992 Erzincan, Turkey, record is a scaled expression of the second derivative

of the Gaussian distribution, e�t2=2 , known in the seismological literature as the symmetric Ricker
wavelet [27, 28]

c tð Þ ¼ ap 1-
2p2t2

T2
p

 !
e
-122p

2 t2

T2p (44)

The value of Tp = 2p/op is the period that maximizes the Fourier spectrum of the symmetric Ricker
wavelet. Similarly, the heavy dark line in Figure 9 (Bottom), which approximates the long-period
acceleration pulse of the Pacoima Dam motion recorded during the 9 February 1971 San Fernando,

California earthquake, is a scaled expression of the third derivative of the Gaussian distribution e-t
2=2.

c tð Þ ¼ ap
b

4p2t2

3T2
p

-3

 !
te
-124p

2 t2

3T2p (45)

in which b is a factor equal to 1.3801 that enforces the aforementioned function to have a maximum
equal to ap.

The choice of the specific functional expression to approximate the main pulse of pulse-type ground
motions has limited significance in this work. What is important to recognize is that several strong

0 5 10 15

−0.4

−0.2

0

0.2

0.4

0.6

Symmetric Ricker

1992 Erzican,Turkey Earthquake Erzincan/NS

s

0 5 10 15
−1

−0.5

0

0.5

1

1.5

Antisymmetric Ricker
.

1971 San Fernando Earthquake Pacoima Dam (upper left abut)/164

Time (s)

Figure 9. Top: north–south components of the acceleration time history recorded during the 1992 Erzican,
Turkey earthquake together with a symmetric Ricker wavelet. Bottom: fault-normal component of the
acceleration time history recorded during the 1971 San Fernando earthquake, together with an antisymmetric

Ricker wavelet.
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ground motions contain a distinguishable acceleration pulse that is responsible for most of the inelastic
deformation of structures ([18, 20, 21, 29, 24] among others). A mathematically rigorous and easily
reproducible methodology based on wavelet analysis to construct the best matching wavelet has
been recently proposed by Vassiliou and Makris [23].

Consider the free-standing rocking frame shown in Figure 1 that is subjected to an acceleration pulse
(like those shown in Figure 9) with acceleration amplitude ap and pulse duration, Tp = 2p/op. From
equation (26), it results that the response of a free-standing rocking frame subjected to an
acceleration pulse is a function of six variables

θ tð Þ ¼ f p; a; g; g; ap;op

� �
(46)

The seven variables appearing in equation (46) involve only two reference dimensions; that of
length [L] and time [T]. According to Buckingham’s Π theorem, the number of dimensionless
products with which the problem can be completely described is equal to [number of
variables = 7]� [number of reference dimensions = 2] = 5. Herein, we select as repeating variables
the characteristics of the pulse excitation, ap and op, and the five independent Π products as
follows: Πθ = θ, Πo=op/p, Πa = tana, Πg= g, and Πg = ap/g. With these five dimensionless Π
products, equation (46) reduces to

θ tð Þ ¼ ’
op

p
; tana; g;

ap
g

� �
(47)

The rocking response of the free-standing frame shown in Figure 1 when subjected to a horizontal
base acceleration history üg(t)1/2 is computed by solving equation (26) in association with the
minimum energy loss expression given by equation (43) that takes place at every impact.

Figure 10 shows the minimum overturning acceleration spectra of a free-standing rocking frame
when subjected to a symmetric Ricker pulse (left) and an antisymmetric Ricker pulse (right) for
different values of the mass ratio g =mb/Nmc. The top plots are for values of the column slenderness
a= 10� and the bottom plots are for a = 14�.

In constructing Figure 10, the frequency parameter p is the frequency parameter of the columns of
the frame (not p̂) and the enhanced stability of the rocking frame due to (i) the corresponding larger

size, p̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gð Þ= 1þ 3gð Þp

p, and (ii) the reduced coefficient of restitution (see equation (43)) is
given by the curves for each given value of g.

Figure 10 indicates that up to values of op/p = 4, the additional stability of the rocking frame versus
the stability of the equal slenderness solitary column is marginal.

For values of op/p> 4 (larger columns or shorter period pulses), the minimum acceleration
overturning spectra of the rocking frame are higher than the corresponding spectrum of the solitary
rocking column showing the enhanced seismic stability of the top-heavy rocking frame. This
enhanced seismic stability is indifferent to the height of the center of gravity of the cap beam.

7. SEISMIC STABILITY OF ANCIENT COLUMNS SUPPORTING EPISTYLES AND THE
FRIEZE ATOP

In ancient Greek temples, the epistyles are positioned from the vertical axis of one column to the
vertical axis of the neighboring column; therefore, the joint of the epistyles are along the vertical
axis of the column (see Figure 2). With this configuration during lateral loading of the peristyle of
the temple, each epistyle in addition to the horizontal translation, u, shown in Figure 1 will also
experience a small rotation, whereas the transfer of forces from the epistyles to the columns is not
concentrated at the top pivoting point of the columns. During a planar lateral motion of the
peristyle, the tendency of the epistyle to rotate is partially prevented from the friction that develops
along the interface with the neighboring high-profile epistyle and the heavy stone of the frieze atop
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that goes over the joint of the epistyles. According to this construction pattern with very tight joints that
‘lock’ the stones, the ancient builders constructed a nearly continuous and massive structure atop the
columns, which according to this study enhanced appreciably the seismic-rocking stability of the
peristyle of the temples. It is worth mentioning that the numerical study of Papaloizou and
Komodromos [16], which accounts for the individual motion of each epistyle without supporting a
frieze atop, concludes to the same result – that the planar response of free-standing rocking frames
is more stable than the response of their solitary free-standing columns.

Two of the strongest ground motions recorded in Greece are the 1973 Lefkada record and the 1995
Aigion record [23]. Both records exhibit distinguishable acceleration pulses with durations Tp� 0.6 s.
We concentrate on the Temple of Apollo in Corinth where its 7.5 m� 1.8m monolithic columns
remain standing since 540 BC in an area with high seismicity. The dimensions of its columns yield a

frequency parameter p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3g=4R

p ¼ 1:4 rad=s and a slenderness a = tan� 1(b/h) = 13.5�. By taking
the pulse duration Tp = 0.6 s of the nearby Aigion record, the dimensionless term Πo assumes
the value op/p = 2p/pTp= 7.5. For such large value of op/p� 7.5, the bottom plots of Figure 10
give for the solitary free-standing column (g = 0 line) an overturning ground acceleration
ap> 15 g tana= 15 g� 0.24 = 3.6 g, which is an unrealistically high acceleration. Consider now the
extreme situation for Greece, where the predominant pulse of the ground shaking exhibits a period
Tp = 0.9 s. A pulse period Tp = 0.9 s may be a rare event for the fault size and earthquake magnitude
that prevail in Greece; nevertheless, it helps one understanding the appreciable seismic stability of
rocking structures.

With Tp = 0.9 s and p = 1.4 rad/s, op/p = 5, and according to the bottom plots of Figure 10, which are
for slenderness a= 14�, the minimum overturning acceleration of a rocking frame with g= 0.25
exceeds the value of ap� 5 g� 0.24 = 1.2 g. This analysis shows that the free-standing peristyles of
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Figure 10. Minimum overturning acceleration spectra of the free-standing rocking frame shown in Figure 1
when subjected to a symmetric Ricker pulse (left) and an antisymmetric Ricker pulse (right) for different
values of the mass ratio g=mb/Nmc. Top: a= 10�; bottom: a= 14�. The values of the coefficient of restitution

are given by equation (43).
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ancient temples can survive acceleration pulses as long as 0.9 s and as intense as 1.2 g. Although this is
a physically realizable pulse [30], it is an unlikely strong shaking for the seismicity of Greece that
apparently never happened over the 2500 years of the lifespan of the temples shown in Figures 2
and 3.

8. ROCKING ISOLATION OF BRIDGES – PROOF OF CONCEPT

The concept of allowing the piers of bridges to rock is not new. For instance, the beneficial effects that
derive from uplifting and rocking have been implemented since the early 1970s in the South Rangitikei
bridge in New Zealand [31]. During the last decade, the benefits/challenges associated with the rocking
of bridge piers have been receiving increasing attention partly because of growing interest in the
prefabricated bridge technology ([32–34] and the references reported therein) and partly because of
the need for the bridge structure to re-center after a strong seismic event ([35, 36] among others).

In the prefabricated bridge technology, the bridge piers and the deck are not free standing. The
structural system is essentially a hybrid system (see [32, 36]) where the bridge pier is connected to
its foundation and at the deck with a post-tensioned tendon that passes through the axis of the
column together with longitudinal mild-steel reinforcement that runs near the circumference of the
column. During earthquake loading, the majority of deformation is concentrated at the pier-
foundation and pier-cap beam interfaces, and the overall deformation pattern of the post-tensioned
pier-cap beam system resembles the deformation pattern of the free-standing rocking frame that is
under investigation in this study. Nevertheless, the post-tensioning tendons and the mild-steel
longitudinal reinforcement that extends into the foundation and the cap beam contributes appreciably
to the lateral moment capacity of the system, and in most prefabricated bridge applications, the
moment–rotation curve of the hybrid systems follows a positive slope.

Within the context of a proof of concept, in this study, we present the planar rocking response of a
free-standing two-column bridge bent where its moment–rotation curve follows a negative slope given
that the frame is entirely free to rock (see Figure 5). Figure 11 shows schematically the free-standing
two-column bridge bent of interest in its deformed configuration. Sliding at the pivot point during
impact is prevented with a recess at the pile cap and the cap beam as shown in Figure 11. In this
numerical application, the cylindrical piers of the free-standing bridge bent are 9.6-m tall with a
diameter d = 2b= 1.6m. These are typical dimensions of bridge piers for highway overpasses and
other bridges in Europe and USA. Taller bridge piers will result to even more stable configurations.
With 2h= 9.6m and 2b = 1.6m, the slenderness of the bridge pier is tan a = 1/6 = 0.166, and its
frequency parameter p= 1.23.

Depending on the length of the adjacent spans and the per-length weight of the deck, the mass ratio
g=mb/2mc assumes values from 4 and above (g> 4). The larger the value of g (heavier deck), the more

bm

cm cm

Figure 11. Free-standing rocking bridge bent. Potential sliding during impact is prevented with the recess
shown. No vertical post-tensioning, no continuation of the longitudinal reinforcement of the columns

through the rocking interfaces at the pile caps and the cap beam.
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stable is the free-standing rocking frame (see Figure 10). The seismic response analysis of the rocking
frame has been studied until this section by using ground excitation acceleration; that is, pulses
described either by symmetric or antisymmetric Ricker wavelets. The acceleration amplitude, ap,
and the duration, Tp, of any distinct acceleration pulse allow the use of the dimensional analysis
presented in this work and the derivation of the associated Π products that improve the
understanding of the physics that govern the problem together with the organization and
presentation of the response. Nevertheless, to stress the main finding of this study – that top-heavy
free-standing rocking frames enjoy ample seismic stability – we examine the planar seismic
response of the free-standing two-column bridge bent shown in Figure 11 when subjected to six
strong-motion historic records listed in Table I. The values of the acceleration amplitude, ap, and
pulse period, Tp, shown in last two columns of Table I have been determined with the extended
wavelet transform [23].

Figure 12 plots the time histories of the normalized rotation, θ/a, together with the vertical uplift, v(t),
and the horizontal drift, u(t), of the free-standing rocking bridge bent shown in Figure 11 with
g =mb/2mc= 4. Note that for all six strong ground motions selected in this analysis, the frame
rotation, θ, is less than 1/3 of the slenderness, a, of the columns (θ/a< 0.33); therefore, the free-
standing rocking frame exhibits ample seismic stability.

The peak horizontal displacement umax ranges from 20 to 50 cm; whereas the vertical uplift is as
high as 5 cm. The evaluation of these response quantities shall be conducted in association with the
equivalent response quantities from vertically post-tensioned hybrid frames [32, 33, 36] and
seismically isolated decks ([37–39] among others) after considering the effects of the end-conditions
of the deck at the abutments. This comparison/evaluation is the subject of an ongoing study that also
examines other practical issues such as the effect of the crushing of the pivoting points of the
columns [40, 41] and the accommodation of the deck uplift at the end-abutments.

The main conclusion of this study is that heavy decks freely supported on free-standing piers exhibit
ample seismic stability and that the heavier is the deck (even if the center of gravity rises), the more
stable is the rocking frame. This conclusion may eventually lead to the implementation of the free-
standing rocking frame – a structural configuration where all the issues associated with seismic
connections such as buckling and fracture of the longitudinal reinforcing bars or spalling of the
concrete cover [32–36] are removed as they are not an issue in the ancient temples shown in
Figures 2 and 3.

9. CONCLUSIONS

This paper investigated the planar rocking response of an array of free-standing columns capped with a
freely supported rigid beam. Following a variational formulation, the paper concludes to the
remarkable result that the planar dynamic rocking response of an array of free-standing columns
capped with a rigid beam is identical to the rocking response of a single free-standing column with
the same slenderness as the slenderness of the columns of the rocking frame yet with larger size and
more energy loss during impacts. A larger size rocking column corresponds to a more stable
configuration; therefore, the presence of the freely supported cap beam renders the rocking frame
more stable despite the rise of the center of gravity.

Table I. Earthquake records used for the seismic response analysis of the free-standing rocking bridge bent.

Earthquake Record
Magnitude

(Mw)
Epicentral

distance (km)
PGA
(g)

PGV
(m/s)

ap
(g)

Tp
(s)

1966 Parkfield CO2/065 6.1 0.1 0.48 0.75 0.41 0.6
1971 San Fernando Pacoima Dam/164 6.6 11.9 1.23 1.13 0.38 1.27
1986 San Salvador Geotech Investigation

Center
5.4 4.3 0.48 0.48 0.34 0.8

1992 Erzican, Erzincan/EW 6.9 13 0.50 0.64 0.34 0.9
1994 Northridge Jensen Filter Plant/022 6.7 6.2 0.57 0.76 0.39 0.5
1995Kobe Takarazuka/000 6.9 1.2 0.69 0.69 0.50 1.1
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Most importantly, the study shows that the heavier the freely supported cap beam is, the more stable
is the rocking frame implying that top-heavy rocking frames are more stable than when they are top
light. The stability of the rocking frame is independent of the number of columns and depends only
on the ratio of the weight that is transferred to the column to the weight of the column together with
the size and the slenderness of the columns.

The acceleration needed to create uplift of the rocking frame is independent of the mass and the
height of the center of gravity of the cap beam and depends only on the slenderness, a, of the
columns (uupg ¼ g tana).

The aforementioned findings render rocking isolation a most attractive alternative for the seismic
protection of bridges given that the heavier is the deck, the more stable is the rocking bridge. The
future implementation of a truly rocking frame where there is neither post-tensioning nor
continuation of the longitudinal reinforcement through the rocking interfaces shall remove several of
the concerns associated with the seismic connections of prefabricated bridges such as buckling and
fracture of the longitudinal reinforcing bars or spalling of the concrete cover.
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