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Estimating Time Scales and Length Scales in Pulselike Earthquake

Acceleration Records with Wavelet Analysis

by Michalis F. Vassiliou and Nicos Makris

Abstract This paper is motivated from the need to extract the characteristic time
and length scales of strong pulselike ground motions with a mathematically formal,
objective, and easily reproducible procedure. The investigation uses wavelet analysis
to identify and extract energetic acceleration pulses (not velocity pulses) together with
their associated frequency and amplitude. The processing of acceleration records with
wavelet analysis is capable of extracting pulses that are not detected visually in the
acceleration records, yet they become coherent and distinguishable in the velocity
records. Most importantly, the proposed analysis is capable of extracting shorter dura-
tion distinguishable pulses (not necessarily of random character) that override the
longer near-source pulses that are of significant engineering interest. The study ela-
borates on the role of the weighting function in the definition of the wavelet transform
and concludes that longer pulses are captured when less suppressive weighting func-
tions are implemented in the wavelet transform. We examine the capability of several
popular symmetric and antisymmetric wavelets to locally match the energetic accel-
eration pulse. We conclude that the exercise to identify the best-matching wavelet
shall incorporate, in addition to the standard translation and dilation-contraction of
the wavelet transform, a phase modulation together with a manipulation of the oscil-
latory character (addition of cycles) of the wavelet. This need leads to the extension of
the wavelet transform to a more general wavelet transform during which the mother
wavelet is subjected to the four above-mentioned modulations. The mathematical de-
finition and effectiveness of this extended wavelet transform is presented in this paper.
The objective identification of the pulse period, amplitude, phase, and oscillatory
character of pulselike ground motions with the extended wavelet transform introduced
in this paper makes possible the immediate use of closed-form expressions published
by other investigators to estimate the peak response of elastic and inelastic systems.

Online Material: Parameters that maximize the extended wavelet transform of
183 selected records.

Introduction

Ground motions that contain distinguishable, long-dura-
tion acceleration pulses impose severe deformation demands
on structures, which occasionally exhaust the deformation
capacity of structural members or even the entire structural
system. Following the spectacular damage of the Olive View
Hospital during the 1971 San Fernando, California, earth-
quake, Bertero et al. (1978) directed the attention of engi-
neers to long-duration acceleration pulses (1–1.5 s long at
that time), which result in unusually large monotonic veloc-
ity increments. During the subsequent 15 yr, there have been
a handful of publications that stressed the significance of
long-duration pulses (Bertero et al., 1991; Somerville and
Graves, 1993); however, it was only after the 1994 North-

ridge, California, and the 1995 Kobe, Japan, earthquakes that
the majority of engineers recognized the severe implications
and the destructive potential of pulselike ground motions
recorded near the causative fault of earthquakes (Hall et al.,
1995). The destructive potential of pulselike ground motions
was further confirmed after the 1999 Izmit, Turkey, and the
1999 Chi-Chi, Taiwan, earthquakes (Ma et al., 2001; Loh
et al., 2000; Wang et al., 2001; Sekiguchi and Iwata, 2002).

In some near-source events, the pulse is also distinguish-
able in the acceleration history, and in this case, the ground
motions are particularly destructive to most civil structures.
In other cases, acceleration records contain high-frequency
spikes and resemble randommotions; however, their velocity
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and displacement histories uncover a coherent long-duration
pulse that results from the nonzero mean of the acceleration
fluctuations. These motions have a much smaller destructive
potential for most civil structures (Ts < 4 s) even when they
produce ground displacements as large as 3 m. A compre-
hensive comparison between the destructive potential of
these two classes of near-source ground motions was pre-
sented by Makris and Black (2004c). The area under the
acceleration pulse was coined by Bertero as the incremental
ground velocity in an effort to distinguish between the net
increment of the ground velocity along a monotonic segment
of its time history and the peak ground velocity that might
be the result of the summation of a succession of high-
frequency, one-sided acceleration spikes. It seems that the
subtle distinction made by Bertero et al. (1978) did not re-
ceive the attention it deserves because, in several occasions, a
long velocity pulse and its peak value are invariably used to
express the damaging potential of ground motions (Spence
et al., 1992; Naeim, 1995, among others). Accordingly, this
paper focuses on matching and extracting coherent accelera-
tion pulses (not velocity pulses) of strong ground motions.

Mathematical Representation of Coherent Pulses

The relatively simple form, yet destructive potential of
the prevailing coherent pulse of near-source ground motions
has motivated the development of various closed-form
expressions that approximate their leading kinematic charac-
teristics. The early work of Veletsos et al. (1965) was fol-
lowed by the papers of Hall et al. (1995), Makris (1997),
Makris and Chang (2000), Alavi and Krawinkler (2001),
Menum and Fu (2002), Mavroeidis and Papageorgiou
(2003), and Mavroeidis et al. (2004), among others. Some
of the proposed pulses are physically realizable motions with
zero final ground velocity and finite accelerations, whereas
other idealizations violate one or both of the above require-
ments. Physical realizable pulses can satisfactorily describe
the impulsive character of near-fault ground motions, both
qualitatively and quantitatively. The minimum number of
parameters is two; these are either the pulse duration, Tp,
and acceleration amplitude, ap, or the pulse duration, Tp,
and velocity amplitude, vp (Makris, 1997; Makris and
Chang, 2000). The more sophisticated model of Mavroeidis
and Papageorgiou (2003) that was motivated from the Gabor
(1946) elementary signals involves 4 parameters: the pulse
period, Tp, the pulse amplitude, A, as well as the phase angle,
φ, and the oscillatory character, γ, of the signal.

In the Mavroeidis and Papageorgiou (2003) paper, the
parameters Tp, A, φ, and γ are not estimated by any formal
procedure, but by a step-by-step procedure which involves
judgment of the user. For instance, the pulse period, Tp, is
determined so that the pseudo-velocity response spectra of
the synthetic and recorded near-fault ground motions exhibit
their peak values at approximately the same natural period.
Parameter A is determined so that the amplitude of the syn-
thetic velocity pulse and its peak pseudospectral velocity

agree well with the corresponding quantities of the actual
record, while parameters φ and γ are adjusted so as to fit
by trial and error the synthetic velocity and displacement
records and by readjusting parameter A.

A challenge, however, that often appears in several near-
source records is that, in addition to the coherent pulse asso-
ciated with the near-source effect, there is a shorter duration
distinguishable pulse (not necessarily of random character)
that overrides the longer duration near-source pulse. In several
occasions, these shorter duration pulses, which generate a
second peak in the pseudovelocity spectrum, have significant
engineering interest to awide family of structures, and there is
a need to identify and characterize them. For instance,
Figure 1 portrays the north–south component of the accelera-
tion, velocity, and displacement histories recorded at the
TCU052 station during the 21 September 1999 Chi-Chi,
Taiwan, earthquake. This record contains a 10-s long velocity
pulse (the one associated with near-source effects), which is
disturbed by a shorter, distinguishable pulse of duration about
2.0 s. This shorter, overriding pulse is of major engineering
interest because it is responsible for most of the base shear
and peak deformations of elastic and inelastic structures that
are of interest in civil engineering (Makris and Black, 2004c).
The bottom plots in Figure 1 show with a thin line the pseu-
dovelocity spectrum of the TCU052 north–south record,
which exhibits two peaks, one at about 2.0 s (due to the shorter
period overriding pulse) and the other at about 9.0 s (due to the
long-period pulse associated with the near-source directivity
effects). The heavy lines in Figure 1 are synthetic pulses that
are constructed by employing the step-by-step method as
outlined in the Mavroeidis and Papageorgiou (2003) paper.
Note that the exercise in fitting the short period pulse becomes
challenging due to the presence of the carrier long-period
pulse (velocity and displacement are out of place). Given
(1) the iterative nature and the involvement of user judgment
in the step-by-step method proposed by Mavroeidis and
Papageorgiou (2003), (2) the engineering interest of local,
shorter duration acceleration pulses, and (3) that the maxi-
mum inelastic displacement of structures scales with T2

p (the
square of the period of the energetic pulse, see next section),
the need for a mathematically formal, objective, and easily
reproducible procedure to extract pulse periods and pulse
amplitudes from pulselike groundmotions becomes apparent.
This need is the main motivation for this work.

While the aforementioned studies focused on the math-
ematical representation of distinguishable acceleration and
velocity pulses, the first systematic study for quantitatively
identifying coherent velocity pulses in near-fault ground
motions was presented by Baker (2007). Baker’s work
uses wavelet analysis to automatically extract the largest
velocity pulse (not acceleration pulse) in a given earthquake
record; therefore, it offers some characteristic time and
length scales of the ground motion. The limitation of proces-
sing velocity records with wavelet analysis is that one can
only extract the visible main velocity pulse, usually the one
that is associated with near-source effects. Baker (2007)
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recognized that in several occasions of his analysis (in which
all daughter wavelets had the same energy—the default
setting in the MATLAB Wavelet Toolbox [see Data and
Resources section]), the pulse periods obtained from the
wavelet analysis differ significantly from the pulse periods
obtained from the velocity spectrum analysis (see fig. 12
of his paper), and he correctly explained that the pulse period
extracted with the maximum spectral velocity is associated,
in general, with a high-frequency oscillatory portion of the
ground motion, whereas the pulse extracted with the wavelet
analysis is associated with the main velocity pulse.

One of the advantages of this work, where we process
acceleration records, is that the wavelet analysis can zoom
into shorter duration distinguishable pulses (not necessarily
of random character) that override the long-duration, near-
source pulse. Such shorter duration pulses can outshine

(in the scalogram, that is, the outcome of the wavelet trans-
form) the main pulse associated with the near-source effect
by selecting the appropriate weighting function in the wave-
let transform (that does not necessarily preserve energy, the
Euclidian norm of the wavelet, but rather it preserves some
other norm of the wavelet). As an example, Figure 2 shows
the best-matching wavelets on the acceleration time history
of the TCU052 north–south motion recorded during the 1999
Chi-Chi, Taiwan, earthquake and the resulting velocity
signals. The short (center) and long (right) period pulses
shown emerged by selecting a weighting function in the
wavelet transform that preserves in all daughter wavelets
the same energy (center) and the same amplitude (right).
Note that according to the selection of the weighting func-
tion, the proposed wavelet analysis on the acceleration
record captures either the shorter duration (Tp � 1:75 s)
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Figure 1. Top: Acceleration, velocity, and displacement time histories of the TCU052 north-south record from the 1999 Chi-Chi Taiwan
earthquake. Heavy lines are the short-duration and long-duration pulses obtained with the step-by-step method offered in the Mavroeidis and
Papageorgiou (2003) paper. Bottom: Pseudovelocity spectra. The color version of this figure is available only in the electronic edition.
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distinguishable pulse (center graphs) or the longer duration
(Tp � 9:0 s) pulse associated with the near-source effects.

The availability of a mathematically formal numerical
tool that automatically extracts the distinct time scales and
length scales of ground motions, as first proposed by Baker
(2007) and further developed in this work, is most attractive
in earthquake engineering because it makes possible the use

of dimensional analysis, which brings forward the physical
similarities that prevail in nonlinear structural response
(Makris and Black, 2004a,b; Makris and Psychogios, 2006;
Karavassilis et al., 2010). Physical similarity is a decisive
symmetry that shapes nonlinear behavior and may directly
relate structural response quantities to the physical param-
eters of the faulting and wave-propagation processes. This

0 20 40
−0.5

0

0.5

0 20 40
−0.5

0

0.5

T
p
=1.75s, a

p
=0.377g,

γ=1.5, φ=0

e
a
=0.548

0 20 40
−0.5

0

0.5

T
p
=9s, a

p
=0.057g,

γ=3, φ=0

e
a
=0.101

0 20 40

−1

0

1

0 20 40

−1

0

1

e
v
=0.0693

0 20 40

−1

0

1

e
v
=0.495

0 2 4 6 8 10
0

0.5

1

1.5

0 2 4 6 8 10
0

1

2

3

0 2 4 6 8 10
0

0.5

1

1.5

0 2 4 6 8 10
0

0.5

1

1.5

0 2 4 6 8 10
0

1

2

3

0 2 4 6 8 10
0

0.5

1

1.5

0 2 4 6 8 10
0

0.5

1

1.5

0 2 4 6 8 10
0

1

2

3

0 2 4 6 8 10
0

0.5

1

1.5

(145), 1999 Chi−Chi, Taiwan Earthquake
TCU052/N

Figure 2. Total acceleration, relative velocity, and relative displacement spectra of a linear �m; k; c� and frictional �m; k;μ� oscillator
subjected to the recorded motion (left), the short period pulse (center), and the long-period pulse that is associated with the near-source effects
(right). The color version of this figure is available only in the electronic edition.
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article essentially builds upon the work of Baker (2007),
Gabor (1946), Mavroeidis and Papageorgiou (2003), and
Makris and Black (2004c) in an effort to extract in a math-
ematically rigorous and objective way the parameters of the
Mavroeidis and Papageorgiou (2003) model which best
describe the most energetic acceleration pulse. Once the
parameters of the energetic pulse are established with the
proposed method, one can use the closed-form approximate
expressions offered by Mavroeidis et al. (2004) or Karavas-
silis et al. (2010) to estimate with confidence the peak
response of elastic and inelastic systems to pulselike ground
motions.

In this work, we first examine with continuous wavelet
transform 183 acceleration records using five elementary
mother wavelets, and we conclude that not only the period
(dilation-contraction of the wavelet) but also the phase and
number of cycles (oscillatory character) need to be manipu-
lated in order to achieve the best local matching of the
prevailing acceleration pulse. Accordingly, the acceleration
records of strong ground motions are represented mathema-
tically by the time derivative of the Gabor (1946) elementary
signal (or its variation proposed by Mavroeidis and Papa-
georgiou (2003)), and the concept of the wavelet transform
is extended so that the mother wavelet is not only translated
and dilated but also subjected to an appropriate phase shift
and enhanced with additional cycles.

Length Scale of Ground Excitations That is Relevant
to Structural Response

Within the context of earthquake engineering, an early
solution to the response of a rigid-plastic system (rigid mass

sliding on a moving base) subjected to a rectangular accel-
eration pulse was presented by Newmark (1965). Figure 3
(top left) shows a rigid mass, m, supported by a moving
surface with coefficient of friction μ. Under a rectangular
acceleration pulse with amplitude ap and duration Tp, the
maximum relative displacement of the mass on the moving
surface is (Newmark, 1965)

umax �
apT

2
p

2

�
ap
μg

� 1

�
; �ap > μg�: (1)

Equation (1) indicates that the maximum sliding (inelastic)
displacement is proportional to the square of the duration of
the pulse (pulse period), T2

p, while it depends also on the
intensity of the acceleration pulse, ap. The product apT2

p �
Lp is a characteristic length scale (in this case, two times the
displacement of the base when the acceleration pulse expires)
of the ground excitation and is a measure of the persistence
of the excitation pulse to generate inelastic deformation (slid-
ing). The term in the parenthesis in equation (1) expresses the
intensity of the pulse. While the rectangular acceleration
pulse used by Newmark (1965) is not physically realizable
by earthquake shaking (infinite ground displacement), it is
probably the most well-suited example to introduce the finite
length scale, Lp � apT

2
p, of the energetic pulse of the mo-

tion that eventually leads to an infinite ground displacement.
Upon the expiration of the pulse, the base moves with a con-
stant velocity, and the inertia demand on the structure is zero.

In order that the ground assumes a zero velocity at the
expiration of the pulse, the positive rectangular acceleration
pulse used by Newmark needs to be followed by an equal-
area negative acceleration pulse as shown in Figure 3 (right).
This acceleration pulse is defined as

Figure 3. Top: Sliding mass resting on a horizontal plane and the mechanical idealization of sliding resistance. Center: Rectangular
acceleration pulse and Haar wavelet. Bottom: Velocity time histories of the acceleration pulses shown above.
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�ug�t� � ψ�t� �
8<
:
ap; 0 ≤ t <

Tp

2

�ap; Tp

2
≤ t ≤ Tp

0 elsewere

; (2)

and is known in the literature as the Haar wavelet (Mallat,
1999; Addison, 2002; among others).

When the ground is subjected to the Haar wavelet given
by equation (2), the maximum sliding displacement of the
mass is computed via simple integration of the equation of
motion

umax �
apT

2
p

4

�
ap � μg
ap � μg

�

⇒
umax

apT
2
p

� 1

4

�ap
μg � 1
ap
μg � 1

�
; �ap > μg�: (3)

Equation (3) is of the same form as equation (1), in which the
term apT

2
p expresses the persistence of the pulse to generate

sliding, while the term in the parentheses is a measure of its
intensity. Equation (3) dictates that once the pulse is strong
enough to generate sliding �apμg > 1�, the maximum sliding
(inelastic) displacement is again proportional to the square
of the period of the acceleration pulse, T2

p.
The scaling of the maximum displacement of the sliding

mass (purely inelastic system) with T2
p shown in equation (3)

was obtained by solving the differential equation of motion.
The same results can be obtained with dimensional analysis
of the physical problem (Makris and Black, 2004a). In the
interest of completeness we show with dimensional analysis
that the peak response of the elastic and elastoplastic single-
degree-of-freedom (SDOF) systems also scales with T2

p.
Consider an SDOF elastic oscillator with mass m, stiff-

ness, k � mω2
0 � m 4π2

T2
0

, and damping constant, c � 2ξmω0,
that is subjected to a given acceleration pulse with duration
Tp and acceleration amplitude ap. The maximum relative-to-
the-ground displacement of the SDOF oscillator, umax, is a
function of four variables:

umax � f�T0; ξ; ap; Tp�: (4)

The five variables appearing in equation (4), umax≐�L�,
T0≐�T�, ξ≐�1�, ap≐�L��T��2, and Tp≐�T�, involve only
two reference dimensions: that of length �L� and time �T�.
According to Buckingham’s Π theorem (Langhaar, 1951;
Housner and Hudson, 1959), the number of independent
dimensionless products (Π terms) is equal to the number of
variables appearing in the equation that describe the physical
problem (five variables in equation 4) minus the number of
reference dimensions (two reference dimensions in equa-
tion 4). Therefore, for the linear SDOF oscillator we have
5 � 2 � 3 dimensionless Π terms: Πm � umax

apT
2
p
, Πω � T0

Tp
,

Πξ � ξ; and equation (4) condenses to an equation that
involves two variables only:

Πm � umax

apT
2
p

� φ
�
T0

Tp

; ξ
�
⇒ umax � apT

2
pφ

�
T0

Tp

; ξ
�
:

(5)

In the case of an elastoplastic system with mass m, yield
strength Q, and yield displacement uy that is subjected to
a given acceleration pulse with duration Tp and acceleration
amplitude ap, the maximum relative-to-the-ground displace-
ment of the SDOF oscillator, umax is a function of four
variables:

umax � f

�
Q

m
; uy; ap; Tp

�
: (6)

Again the number of reference dimensions is two ��L�; �T��;
therefore, for the elastoplastic system, the number of dimen-
sionless Π terms is 5 � 2 � 3, and equation (6) condenses to
an equation that involves two variables only:

Πm � umax

apT
2
p

� φ
�

Q

map
;

uy
apT

2
p

�

⇒ umax � apT
2
pφ

�
Q

map
;

uy
apT

2
p

�
: (7)

As in equation (3), equations (5) and (7) show that the max-
imum relative-to-the-ground displacement of the elastic and
elastoplastic SDOF systems is also proportional to the square
of the period of the acceleration pulse, T2

p.
The similarities that exhibit the normalized inelastic

response, Πm � umaxω2
p=ap, of three elastoplastic frames

with strength, Q, and yield displacement, uy, when excited
by a set of 10 pulselike ground motions was examined in the
paper by Makris and Psychogios 2006. Via regression
analysis on the available data, that study concluded with
the following expression for estimating the maximum inelas-
tic displacement of frames with elastoplastic behavior:

umax �
ap
ω2
p

�
�0:46� 2:4

uyω2
p

ap

��
Q

map

��0:57
: (8)

A more extended investigation that involved 216 multistory
elastoplastic, steel, moment-resisting frames and 17 pulse-
like ground motions has recently been conducted by Kara-
vassilis et al. (2010). In this latest study, equation (8) has
been refined to

umax �
ap
ω2
p

�
�3:1� 4:7

uyω2
p

ap

��
Q

map

��0:24
; (9)

given the wider set of data.
Certainly, the true inelastic displacement, umax, will

depart from the estimation expression given by equations (8)
or (9) (see, for example, fig. 11 of the Makris and Psycho-
gios, 2006, paper or fig. 7 of the Karavassilis et al., 2010,
paper) for the very reason that the characteristic length scale
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identified does not reflect the entire shaking potential of the
recorded motion. On the other hand, however, the normali-
zation of umax with apT

2
p (even when the acceleration pulse

is diluted with overriding fluctuations) brings remarkable
order in the inelastic response of structures, and the estima-
tion expression given by equation (9) outperforms the
prediction of other practical expressions (which hinge upon
the elastic oscillator) to estimate inelastic deformation,
such as those offered by Ruiz-Garcia and Miranda (2003)
or Chopra and Chintanapakdee (2004).

Given that: (1) the ultimate scope of this effort is to
investigate how the maximum elastic and inelastic displace-
ment of engineering structures scales with the characteristic
length scale of the energetic acceleration pulse, Lp � apT

2
p;

and (2) the characteristic length scale is proportional to the
square of the time scale of the excitation, T2

p, this article
investigates with wavelet analysis the coherent structure of
183 strong ground motions and develops a mathematically
formal and easily reproducible procedure to extract the pre-
vailing acceleration pulse period, Tp, and pulse amplitude,
ap, of their potential pulselike character.

Wavelet Analysis

Over the last two decades, wavelet transform analysis
has emerged as a unique new time-frequency decomposition
tool for signal processing and data analysis. There is a wide
literature available regarding its mathematical foundation
and its applications (Daubechies, 1992; Mallat, 1999; Addi-
son, 2002, and references reported therein). Wavelets are
simple wavelike functions localized on the time axis. For
instance, the Haar wavelet shown in Figure 3 (center right)
and expressed by equation (2), or the second derivative of the
Gaussian distribution, e�t

2=2, known in the seismology litera-
ture as the symmetric Ricker Wavelet (Ricker 1943, 1944)
and widely referred as the Mexican Hat wavelet, (Addison,
2002),

ψ�t� � �1 � t2�e�t2=2; (10)

are widely used wavelets.
In order for a wavelike function to be classified as a

wavelet, the wavelike function must have (1) finite energy,

E �
Z ∞
�∞

jψ�t�j2dt < ∞; (11)

and (2) a zero mean. In this work we are merely interested in
achieving the best local matching of any given acceleration
record with a wavelet that will offer the best estimates of
the period (Tp � time scale) and amplitude (ap, because
apT

2
p � length scale) of the prevailing energetic pulse.

Accordingly, we perform a series of inner products (convo-
lutions) of the ground acceleration signal, �ug�t�, with the
wavelet ψ�t� by manipulating the wavelet through a process
of translation (i.e., movement along the time axis) and a pro-

cess of dilation-contraction (i.e., spreading out or squeezing
of the wavelet):

C�s; ξ� � w�s�
Z ∞
�∞

�ug�t�ψ
�
t � ξ
s

�
dt: (12)

The values of s � S and ξ � Ξ for which the coefficient,
C�s; ξ� � C�S;Ξ�, reaches the maximum value offer the
scale and location of the wavelet w�s�ψ�t�ξs � that locally best
matches the acceleration record, �ug�t�. Equation (12) is the
definition of the wavelet transform. The quantity w�s� out-
side the integral in equation (12) is a weighting function.
Typically, w�s� is set equal to 1=

���
s

p
in order to ensure that

all wavelets ψs;ξ�t� � w�s�ψ�t�ξs � at every scale, s, have the
same energy, and according to equation (11),

Z ∞
�∞

jψs;ξ�t�j2dt �
Z ∞
�∞

���� 1���sp ψ
�
t � ξ
s

�����2dt � kψs;ξ�t�k2

� constant; ∀ s: (13)

The same energy requirement among all the daughter wave-
lets ψs;ξ�t� is the default setting in the 2007 MATLAB
Wavelet Toolbox and what was used by Baker (2007);
however, the same energy requirement is, by all means, not
a restriction. Clearly, there are applications where it is more
appropriate that all daughter wavelets, ψs;ξ�t�, at every scale,
s, enclose the same area (not same energy) and, in this case,
w�s� � 1=s; therefore,

Z ∞
�∞

jψs;ξ�t�jdt �
Z ∞
�∞

����1s ψ
�
t � ξ
s

�����dt � kψs;ξ�t�k1

� constant; ∀ s: (14)

On the other hand, there may be applications where it is more
appropriate that all daughter wavelets have merely the same
maximum value and, in this case, w�s� � 1 and

kψs;ξ�t�k∞ � constant; ∀ s: (15)

Figure 4 shows how a symmetric Ricker wavelet dilates
when each of the three weighting functions are used.

A weighting function, w�s� � 1=s1 � 1=s, suppresses
the large-scale wavelets; therefore, it accentuates the pre-
sence of shorter period pulses, whereas a weighting function,
w�s� � 1=s0 � 1, accentuates the presence of longer period
pulses. Figure 5 shows the acceleration, velocity, and dis-
placement time histories recorded at the Pacoima Dam sta-
tion during the 9 February 1971 San Fernando, California,
earthquake with Mw 6.7. The heavy dashed line presents the
wavelet λ�S;Ξ�w�S�ψ�t�ΞS �, in which Ξ and S are the values
of s � S and ξ � Ξ that give the maximum coefficient
C�S;Ξ� from equation (12), in which w�s� � 1=

���
s

p
. The

multiplication quantity
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λ�S;Ξ� � C�S;Ξ�
w2�S� · S · E

; (16)

which is derived in Appendix A, is needed in order for the
best-matching wavelet, ψS;Ξ�t� � w�s�ψ�t�ΞS �, to locally as-
sume the amplitude of the acceleration record. In this case,
the wavelet transform given by equation (12) captures the
long-period pulse identified by Bertero et al. (1978) with
Tp � 1:35 s. On the other hand, the heavy continuous line
presents the wavelet ψ�t�Ξs �, in which S and Ξ give the max-
imum coefficient, C�S;Ξ�, from equation (12), in which,
now, w�s� � 1=s. The scalograms at the bottom of Figure 5
show the scale and the time instant when the wavelet trans-
form C�s; ξ� reaches its maximum for the two weighting
functions examined. Accordingly, the selection of the
weighting function has a dominant role in extracting the
pulse that is of interest in earthquake engineering.

In Figure 5, the wavelet ψ�t� is a type-C1 pulse (Makris
and Chang, 2000). Type-Cn pulses can approximate n cycles
in the displacement history of a ground motion and are
defined as

uCn
g �t� � � 1

�2π�2 cos�2πt� φ�

� 1

2π
t sin�φ� � 1

�2π�2 cos�φ�;

0 ≤ n ≤
�
n� 1

2
� φ
π

�
Tp: (17)

In deriving equation (17), the value of the phase angle, φ, is
determined by requiring that the ground displacement at the
end of the pulse be zero. A type-Cn pulse has duration

�n� 1
2
� φ

π�Tp, and the zero displacement requirement at
the end of the pulse gives

cos��2n� 1�π � φ� � ��2n� 1�π � 2φ� sin�φ� � 0: (18)

The solution of the transcendental equation given by equa-
tion (18) gives the value of the phase angle, φ, for a given
value of n. For instance, for a type-C1 pulse (n � 1), φ �
0:0697π, whereas for a type-C2 pulse (n � 2), φ �
0:0410π. Later in this paper we examine wavelets that allow
for a continuous modulation of the phase.

Baker (2007) computed the continuous wavelet trans-
form of the velocity time history and identified the coefficient
C�S;Ξ�with the largest absolute value. The dominant daugh-
ter wavelet associated with this value identifies the period and
location of the main velocity pulse. The Daubechies wavelet
of order 4 was used. In Baker’s (2007) work, the dominant
wavelet is subtracted from the velocity time history, and
the continuous wavelet transform is computed for the residual
velocity signal. Again, the next largest absolute value of the
wavelet transform of the remaining velocity signal is identi-
fied at this step and the same procedure is repeated. Often only
one or two repetitions are needed to satisfactorily describe the
pulse, but a total of 10 repetitions were performed in Baker’s
(2007) work to ensure that the pulse is represented in a
detailed manner. Finally, in Baker’s work, the weighting
function,w�s�, in the definition of thewavelet transform given
by equation (12) is taken without any discussion equal to
1=

���
s

p
(w�s� � 1=

���
s

p
), which enforces that all wavelets,

ψs;ξ�t� � w�s�ψ�t�ξs �, at every scale, s, have the same energy
(see equation 13) . Furthermore, Baker (2007) utilized the
default built-in wavelet functions of the 2007 MATLABWa-
velet Toolbox inwhichwavelets at all scales are normalized to
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Figure 4. Comparison of symmetric Ricker wavelets when different weighting functions, w�s�, are used.
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haveunit energy (E � R∞
�∞ jψs;ξ�t�j2dt � 1, see equation 11).

The implications ofw�s� � 1=
���
s

p
andE � 1 are explained in

detail in Appendix A.

Selection of the Best-Matching Wavelet

The question that arises iswhichwavelet bestmatches the
majority of records so that it can be used with confidence to
invariably extract the pulse period and pulse amplitude of any

pulselike acceleration record. In addition to the Ricker
wavelet (second derivative of the Gaussian distribution
introduced by equation 10) and the type-C1 pulses and
type-C2 pulses introduced by equation (17), this paper exam-
ines the performance of two additional wavelets, that of a one-
cosine acceleration pulse (forward and back displacement)
and that of the derivative of the symmetric Ricker Wavelet
(i.e., the third derivative of the Gaussian). Figure 6
summarizes the five candidate wavelets examined. Note that

Figure 5. The distinct local pulses captured with wavelet analysis and the role of the power law of the weighting function, w�s�. The color
version of this figure is available only in the electronic edition.
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themathematical expressions appearing in Figure 6 are for the
mother wavelets (scale s � 1), and this is why the symbol of
frequency, f, does not appear in the expressions. Each of these
wavelets was used tomatch, to the greatest extent possible, the
183 records listed in chronological order inⒺ Table S1 in the
electronic supplement to this paper. As an example, Figure 7
shows the performance of each of the five candidate wavelets
listed in Figure 6 (top five graphs) when matching the
El Centro Array #5 record from the 1979 Imperial Valley

earthquake. The measure used to evaluate the capability of
a wavelet to locally match the predominant acceleration pulse
(matching index) is the inner product of the extracted math-
ematical pulse, λ�S;Ξ�ψS;Ξ�t�, with the acceleration record,
normalized with the energy of the record:

ea �
R∞
�∞ �ug�t� · λ�S;Ξ�ψS;Ξ�t�dtR∞

�∞� �ug�t��2dt
: (19)
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Figure 6. Elementary symmetric and antisymmetric wavelets used in this study. The color version of this figure is available only in the
electronic edition.
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In Figure 7, the winner of the contest is the one cosine accel-
eration pulse with ea � 0:3030; whereas, in Figure 8, the
best-matching wavelet of the 1992 Erzikan, Turkey, record
is the symmetric Ricker wavelet (Mexican Hat wavelet).
The scores of the five wavelets appearing in Figure 6 during
the contest of best matching all 183 acceleration records are
obtained as follows. When matching each record, the wavelet
with the highestmatching index, ea, takes 4 points, the second

best takes 3 points, the third takes 2 points, the one before last
takes one point, and the last one takes zero points. In thisway a
wavelet that takes many second places may win the contest.
The winner of the contest is the antisymmetric C1 cycloidal
pulse with score 449, while very close yet second is the one-
cosine acceleration pulse with score 421, which is a sym-
metric wavelet. Clearly, there is no clear winner because
the outcome of the contest depends on the set of ground
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Figure 7. Matching of the acceleration record with various elementary wavelets (left) and the resulting velocity signals (right). In the
wavelet transform, all daughter wavelets have the same energy. Bottom: Comparison of the elastic acceleration response spectra with 5%
viscous damping.
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motions, which probably includesmore recordswith antisym-
metric coherent pulses than symmetric pulses. The above
exercise indicates that in order to satisfy the request of satis-
factorily matching the majority of records with a single
mother wavelet, this wavelet should allow for a manipulation
of its phase, while, at the same time, the number of cycles
plays a decisive role in order to achieve a best fit. Accordingly,

it becomes apparent that our exercise to identify the best-
matching wavelet should incorporate, in addition to the stan-
dard translation and dilation-contraction of the wavelet
transform, a phase modulation together with an alternation
of the oscillatory character (addition of cycles) of thewavelet.

At this point, in addition to the matching index, ea
(subscript a is for acceleration), we define ev as
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Figure 8. Matching of the acceleration record with various elementary wavelets (left) and the resulting velocity signals (right). In the
wavelet transform, all daughter wavelets have same energy. Bottom: Comparison of the elastic acceleration response spectra with 5% viscous
damping.
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ev �
R∞
�∞ _ug�t� · v�t�dtR∞
�∞� _ug�t��2dt

; (20)

where v�t� is the velocity pulse associated with the extracted
acceleration pulse, λ�S;Ξ�ψS;Ξ�t�,

v�t� �
Z

λ�S;Ξ�ψS;Ξ�t�dt: (21)

The dimensionless quantity, 0 ≤ ev ≤ 1, given by equa-
tion (20), expresses how well the resulting velocity pulse
approximates the velocity time history of the record. While
our evaluation in selecting the best-matching wavelet uses
only the matching index ea as defined by equation (19), the
quantity ev is involved later in this work in an effort to
distinguish pulselike from nonpulselike ground motions.

Extension of the Wavelet Transform by Also
Modulating the Phase and the Oscillatory

Character of the Elementary Signal

In the classical wavelet transform defined with equa-
tion (12), the mother wavelet is subjected to a translation
together with a dilation-contraction, ψ�t�ξs �. The dilation-
contraction is controlled with the scale parameter s, while
the movement of the wavelet along the time axis is controlled
with the translation time, ξ. For instance, any daughter
wavelet of the symmetric Ricker mother wavelet given by
equation (10) assumes the form

ψ
�
t � ξ
s

�
�

�
1 �

�
t � ξ
s

�
2
�
e�

1
2
�t�ξs �2 : (22)

The need to include four parameters in a mathematical
expression of a simple wavelike function that is a good
candidate to express the coherent component of a recorded
ground motions was presented and addressed by
Mavroeidis and Papageorgiou (2003).Without knowing the
results of the contest presented in the previous section of this
paper, Mavroeidis and Papageorgiou (2003) suggested that a
sound analytical model for pulselike records should include
four parameters, that is, the pulse duration (or period), the
pulse amplitude, the number of cycles, and the phase of
the pulse. They identified as the most appropriate analytical
expression the Gabor (1946) elementary signal, which they
slightly modified to facilitate derivations of closed-form
expressions of the spectral characteristics of the signal and
response spectra.

One of the earliest and most seminal publications in
time-frequency analysis was presented by Gabor (1946).
In his 1946 paper, Gabor introduced his elementary signals,
which are merely harmonic oscillations modulated by a
Gaussian pulse. In his own words, “Each elementary signal
can be considered as conveying one ‘quantum of informa-
tion’; therefore, any signal can be expanded in terms of these
by a process which includes time analysis and Fourier

analysis as extreme cases,” a most lucid conception of the
wavelet transform more than six decades ago.

The Gabor (1946) elementary signal is defined as

g�t� � e��
2πfp
γ �2t2 cos�2πfpt� φ�; (23)

which is merely the product of a harmonic oscillation with a
Gaussian envelope. In equation (23), fp is the frequency of
the harmonic oscillation, φ is the phase angle, and γ is a
parameter that controls the oscillation character of the signal.
The Gabor wavelike signal given by equation (23) does not
have a zero mean; therefore, it cannot be a wavelet within the
context of the wavelet transformation. For instance, when the
phase φ equals zero, the integral of equation (23) gives

Z ∞
�∞

e��
2πfp
γ �2t2 cos�2πfpt� φ�dt � γe�

γ2
4

2
���
π

p
fp

; (24)

which is a finite quantity, not zero.
Nevertheless, the derivative of the Gabor (1946) elemen-

tary signal,

dg�t�
dt

� � 2πfp
γ2

e��
2πfp
γ �2t2 �γ2 sin�2πfpt� φ�

� 4πfpt cos�2πfpt� φ��; (25)

is, by construction, a zero-mean signal and is defined in this
paper as the Gabor wavelet. According to the notation used
in this paper for the wavelet functions, the frequency, fp, in
equation (25) is replaced with the inverse of the scale param-
eter, 1=s, while ξ denotes the translation time. Accordingly,
the Gabor wavelet is expressed as

ψ
�
t � ξ
s

; γ;φ
�

� � 2π
γ2

1

s
e��

2π
γ �2�t�ξs �2

�
γ2 sin

�
2π

�
t � ξ
s

�
� φ

�

� 4π
�
t � ξ
s

�
cos

�
2π

�
t � ξ
s

�
� φ

��
: (26)

In the expression for the Gabor wavelet given by equa-
tion (26), the dilation-contraction is controlled with the
parameter s while the movement of the wavelet along the
time axis is controlled with translation parameter ξ, the same
way as is done in the Ricker wavelet given by equation (22).
The novel attraction in the Gabor wavelet given by equa-
tion (26) is that, in addition to the dilation-contraction and
translation �t�ξs �, the wavelet can be further manipulated
by modulating the phase, φ, and the parameter, γ, which
controls the oscillatory character (number of half cycles).
We can now define the four-parameter wavelet transform as

C�s; ξ; γ;φ� � w�s; γ;φ�
Z ∞
�∞

�ug�t�ψ
�
t � ξ
s

; γ;φ
�
dt:

(27)
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The inner product, given by equation (27), is performed
repeatedly by scanning not only at all times, ξ, and
scales, s, but also by scanning various phases, φ �
f0; π=4; π=2; 3π=4g, and various values of the oscillatory
nature of the signal γ � f1:0; 1:5; 2:0; 2:5; 3:0g. When
needed, more values of φ and γ may be scanned. The quan-
tity w�s; γ;φ� outside the integral is a weighting function,
which is adjusted according to the application.

The values of s � S, ξ � Ξ, γ � Γ, φ � Φ, for which
the coefficient C�s; ξ; γ;φ� � C�S;Ξ;Γ;Φ� reaches its max-
imum value, offer the scale, location, phase, and number of
half cycles of the wavelet ψ�t�ξs ; γ;φ� that locally best match
the acceleration record, �ug�t�. Figure 9 plots the magnitude
of the extended wavelet transform, C�s; ξ; γ;φ�, of the El
Centro Array #5 acceleration record for various scales as
a function of time and four different values of the phase φ �
f0; π=4; π=2; 3π=4g when γ � 3. The maximum value of the
wavelet transform C�s; ξ; γ;φ� is located at s � Tp � 3:8 s
and φ � 3π=4.

Figures 7 and 8 (sixth plot from the top) plot the shape of
the Gabor wavelet, λ�S;Ξ;Γ;Φ� · w�S;Γ;Φ� · ψ�t�ΞS ;Γ;Φ�,
where the values (S, Ξ, Γ, and Φ) are those that maximize the
extended wavelet transform, given by equation (27), in
which �ug�t� is the El Centro Array #5 acceleration record
from the 1979 Imperial Valley earthquake and the 1992
Erzikan, Turkey, record, respectively. Note that the matching
indexes for the Gabor wavelets, ea � 0:29635 in Figure 7
and ea � 0:55384 in Figure 8, are high, yet they rank
at the third place. The multiplication coefficient, λ�S;Ξ;
Γ;Φ�, which dictates how much the best-matching general-
ized wavelet w�S;Γ;Φ� · ψS;Ξ;Γ;Φ�t� needs to be amplified to
best approximate the energetic acceleration pulse, is obtained
with an analysis similar to the one presented in Appendix A:

λ�S;Ξ;Γ;Φ� � C�S;Ξ;Γ;Φ�
w2�S;Γ;Φ� · S · E�Γ;Φ� : (28)

The elementary signal proposed by Mavroeidis and Papa-
georgiou (2003) to approximate velocity pulses is a slight
modification of the Gabor signal given by equation (23),
where the Gaussian envelope has been replaced by an ele-
vated cosine function:

v�t� � 1

2

�
1� cos

�
2πfp
γ

t

��
cos�2πfpt� φ�;

� γ
2fp

≤ t ≤ γ
2fp

: (29)

Clearly the wavelike signal given by equation (29) does not
always have a zero mean; therefore, it cannot be a wavelet
within the context of wavelet transform. Nevertheless, the
time derivative of the elementary velocity signal given by
equation (30):

dv�t�
dt

� � πfp
γ

�
sin

�
2πfp
γ

t

�
cos�2πfpt� φ�

� γ sin�2πfpt� φ�
�
1� cos

�
2πfp
γ

t

���
;

� γ
2fp

≤ t ≤ γ
2fp

; (30)

which is, by construction, a zero-mean signal and is defined
in this paper as the Mavroeidis and Papageorgiou (M&P)
wavelet. After replacing the oscillatory frequency, fp, with
the inverse of the scale parameter, the M&P wavelet is
defined as

ψ
�
t � ξ
s

; γ;φ
�
�

�
sin

�
2π
sγ

�t � ξ�
�
cos

�
2π
s
�t � ξ� � φ

�

� γ sin
�
2π
s
�t � ξ� � φ�

��

×
�
1� cos

�
2π
γs

�t � ξ�
��

;

ξ � γ
2fp

≤ t ≤ ξ � γ
2fp

: (31)

It is worth noting that the mathematical structure of both the
Gabor and the M&P elementary signals forces us to conduct
the extended wavelet transform on the acceleration records
(not the velocity records), given that only the time derivatives
of the elementary signals are wavelets within the context of
the wavelet transform. Clearly, when selecting the appropri-
ate weighting function, w�s; γ;φ�, the wavelet transform on
the acceleration records proposed in this paper leads to the
velocity pulses presented by Mavroeidis and Papageorgiou
(2003) and Baker (2007), yet, most importantly, the coher-
ence of the ground motion extracted with this work is directly
related to the inertia effects on structures, given that it orig-
inates from the acceleration records.

The last time-history plot on the left of Figures 7 and 8 is
denotedwith a heavy line the shape of theM&Pwavelet (equa-
tion 31) where the values of s � S, ξ � Ξ, γ � Γ, andφ � Φ
are those that maximize the extended wavelet transform given
by equation (27), in which �ug�t� is, respectively, the 1979 El
Centro Array #5 and the 1992 Erzikan, Turkey, acceleration
records. Note that the matching index for the M&P wavelet is
ea � 0:2963 in Figure 7 and ea � 0:5538 in Figure 8, and
they rank very high, yet second in each Figure. In Figure 7,
the M&P wavelet ranks slightly behind the one-cosine accel-
eration pulse; whereas, in Figure 8, the M&P wavelet ranks
slightly behind the symmetric Ricker wavelet.

In order to address the question of which wavelet best
matches the majority of records, the scores of the seven
wavelets under examination (five wavelets appearing in
Figure 6 plus the Gabor and M&P wavelets defined by
equations 26 and 31) are obtained following the protocol
defined in the previous section. When matching each record,
the wavelet with the highest matching index, ea, takes 6
points, the second best takes 5 points, all the way to the last

Estimating Time Scales and Length Scales in Pulselike Earthquake Acceleration Records 609



matching index, which takes zero points. Figure 10 portrays
the scores of all seven wavelets of interest in the form of a
histogram. The M&P wavelet ranks first ahead of the Gabor
wavelet, while the other five wavelets listed in Figure 6,
which do not allow for phase modulation and manipulation
of their oscillatory character, fall far behind. In order to
emphasize the significant advantage of the extended wavelet
transform introduced in this paper, Figure 11 shows the
scores of the five wavelets listed in Figure 6 when competing
only against the Gabor wavelet (top) or only against the M&P
wavelet (bottom).

Given that the M&P wavelet (equation 31) gains the
highest score in both contests shown in Figure 10 and
Figure 11 (bottom), the M&P wavelet is selected as the best-
matching wavelet and is the one used to process the database
of the 183 acceleration records, most of which are intention-
ally pulselike (Baker, 2007). While the proposed methodol-
ogy can extract the most energetic acceleration pulse for a
given expression of the weighting function, w�s�, our study
examines mostly pulselike ground motions in order to show
the efficiency of the proposed method to extract well-known
pulses that have been identified in the literature.

Figure 9. Scalograms of the extended wavelet transform defined by equation (27) exercised on the El Centro Array #5 acceleration record
from the 1979 Imperial Valley earthquake with the Gabor wavelet (γ � 3). The maximum value of the wavelet transform is located at
s � Tp � 3:8 s, γ � 3, and φ � 3π=4. The color version of this figure is available only in the electronic edition.

610 M. F. Vassiliou and N. Makris



Time Scales and Length Scales of Strong
Ground Motions

The parameters of the M&P wavelets that maximize the
extended wavelet transform of the strong ground motions
listed in Ⓔ Table S1 in the electronic supplement to this
paper are extracted by setting the weighting function,
w�s; γ;φ�, in equation (27) such that all daughter wavelets
have (1) the same area, (2) the same energy, and (3) the same

amplitude. For instance, for the M&P wavelet defined by
equation (31), the same energy requirement gives

w�s; γ;φ� � 1�������������������������������������������������������������
1
8
s

�
2γ � 6γ3 � cos�2φ� sin�2πγ�

π�1�4γ2�

�s : (32)

In several occasions, even the same energy requirement on
the wavelet transform results in energetic acceleration pulses
that do not correspond to the long velocity pulses derived
visually. For instance, Figure 12 shows the performance
of each of the seven wavelets examined in this paper when
matching the Parachute Test Site, 225 records from the 1981
Westmorland earthquake. With the same energy requirement,
the first two wavelets capture a long-duration pulse that
becomes apparent in the velocity time histories shown on
the right of Figure 12. On the other hand, the same energy
requirement on the next five wavelets (from the symmetric
Ricker to the M&P wavelet) extracts a higher frequency
pulse, not the longer period pulse that dominates the velocity
record. Note that the higher score goes to the M&P wavelet,
ea � 0:1687. The acceleration spectra of a linear SDOF
structure shown at the bottom of Figure 12 indicates that
the shorter period acceleration pulse (Tp � 0:6 s) extracted
with the last five wavelets (from symmetric Ricker to the
M&P wavelet) is most relevant to structures with a fundamen-
tal period equal to 0.6 s (3–6-story buildings), while the
longer period acceleration pulse extracted with the first two
wavelets (one-cosine and type-C1 pulses) is most relevant to
the structures with fundamental period above 3 s (e.g., seis-
mic isolated structures and longer period bridges).

In order for the last five wavelets (from the symmetric
Ricker to the M&P wavelet) to capture the longer acceleration
pulse that dominates the velocity signal, the same energy
requirement needs to be replaced by the same amplitude
requirement (a weighting function that suppresses the longer
scales less), as shown in Figure 13.

In conclusion, in any given record, different pulses
may be extracted with each weighting function, w�s�. For
instance, the parameters of the pulses that result in the max-
imum pseudoacceleration of two elastic SDOF oscillators
with natural periods, T0 � 0:5 s and T0 � 2:5 s, are marked
with bold face inⒺ Table S1 in the electronic supplement to
this paper.

In calculating the maximum pseudoacceleration re-
sponse, the closed-form expressions offered in the paper by
Mavroeidis et al. (2004) are used. Similarly, using the charts
of Figure 7 of Mavroeidis et al. (2004), one can determine
which pulse is the most destructive to a given inelastic SDOF.

Determination of the Significance of the Extracted
Pulse—Classification of Motions as Pulselike

The initial motivation of Bertero et al. (1978) to direct
the attention of engineers to coherent acceleration pulses and
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Figure 10. Scores of the seven wavelets of interest in this paper
from the contest of best matching the 183 records listed in Ⓔ Ta-
ble S1 in the electronic supplement to this paper. The high scores of
the M&P and the Gabor wavelets are due to their ability to modulate
their phase and oscillatory character as implemented with the ex-
tended wavelet transform proposed in this paper. The color version
of this figure is available only in the electronic edition.
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Figure 11. Comparison of the two parameter wavelets listed in
Figure 6 with the Gabor (top) and the M&P (bottom) four-parameter
wavelets from the contest of best matching the 183 records listed in
Ⓔ Table S1 in the electronic supplement to this paper. The color
version of this figure is available only in the electronic edition.
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our continuing interest in identifying and characterizing
them are mainly motivated from the need to estimate inelastic
deformation demands on structures. As an example, equa-
tion (8) offers estimates of peak inelastic deformations of
a bilinear structural idealization as a function of the period
and amplitude of the dominant acceleration pulse.

Clearly, the more a ground motion is pulselike, the more
the results from mastercurves like the one expressed by equa-

tion (8) are dependable. Accordingly, some indicator is
needed to indicate to what extent a recorded ground motion
is pulselike. Efforts to classify ground motions have been
presented in the past. Baker (2007), after a preliminary visual
classification of the velocity records, proceeds by proposing a
pulse indicator that is a function of a PGV ratio and an
energy ratio. Clearly, both the PGV ratio and the energy ratio
involve information solely from the velocity time history, and
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Figure 12. Matching of the acceleration record with various elementary wavelets (left) and the resulting velocity signals (right). In the
wavelet transform, all daughter wavelets have the same energy. Bottom: Comparison of the elastic acceleration response spectra with 5%
viscous damping.
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therefore Baker’s pulse indicator does not have the ability to
identify shorter duration pulses that occasionally govern to a
great extent the response of structures as shown in Figure 2.
While Baker (2007) recognized that on several occasions in
his analysis, the pulse period obtained from his wavelet anal-
ysis differed significantly from the pulse period obtained
from the velocity spectrum analysis, no information was
offered as to what extent the pulses that he identified with

a high pulse indicator value (PI > 0:85) impose force and
displacement demands on structures comparable to those
imposed by the recordedmotion. This is an issue of significant
engineering interest that deserves further investigation.

We return to Figure 2, where the shorter duration over-
riding pulse with period Tp � 1:75 s is shown to be of major
engineering interest because it is responsible for most of the
base shear and peak deformation of elastic and inelastic
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Figure 13. Matching of the acceleration record with various wavelets (left) and the resulting velocity signals (right). In the wavelet
transform, all daughter wavelets have the same amplitude. Bottom: Comparison of the elastic acceleration response spectra with 5% viscous
damping.
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structures. For this shorter duration pulse, which is extracted
with the proposed wavelet analysis with an equal energy
weighting function, its matching index, ea, as defined by
equation (19), is ea � 0:548, a value that indicates that
the short acceleration pulse is strongly correlated with the
acceleration record. This strong correlation is confirmed in
a most convincing way by the response spectra shown in
the lower part of Figure 2. Specifically, for the sliding oscil-
lator (μ � 5% and 10%), the acceleration and displacement
spectra are almost identical for structural periods, Ts, up to
5.0 s, whereas, for the elastic oscillator (ξ � 5%), the same is

true for structural periods Ts up to 3.0 s. On the other hand,
the quantity ev, which expresses the correlation between the
associated short velocity pulse and the velocity record, as
defined by equation (20), has a feeble value, ev � 0:0693.
Nevertheless, this feeble correlation in the velocity histories
will not lessen the important engineering significance of the
short duration acceleration pulse with Tp � 1:75 s.

At the same time, one should not neglect the presence of
the 9-s-long velocity pulse that is associated with the near-
source effects and is extracted with the proposed wavelet
analysis with an equal-amplitude weighting function.
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Figure 14. Values of the proposed pulse indicator from the 183 records listed in Ⓔ Table S1 in the electronic supplement to this paper
when equal-area (top), equal-energy (center), and equal-amplitude (bottom) wavelets are used. The color version of this figure is available
only in the electronic edition.
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The effects of the long-period pulse can be noted in the spec-
tra of the elastic oscillator (ξ � 5%) for values of the struc-
tural periods Ts ≥ 6:0 s. Interestingly, the effect of the 9-s
long acceleration pulse, which results in the distinguishable
long-velocity pulse with PGVof the order of 1:0 m=s, is not
notable in the sliding oscillators (μ � 5% and μ � 10%) be-
cause the peak acceleration associated with the long-velocity
pulse is too feeble to initiate sliding. The matching coeffi-
cient, ea, of the long acceleration pulse (which has been
extracted with the proposed method by processing only the
acceleration record) is relatively small (ea � 0:101),
whereas the correlation of the velocity histories is strong with
a value of ev � 0:495. From the above discussion, it be-
comes clear that depending on the properties of the structural
system, either the shorter duration or the longer duration
pulses may be of engineering interest. Accordingly, as a
simple pulse indicator (PI), we define

PI � 1

2
�ea � ev�: (33)

As an example for the short 1.75-s period acceleration pulse
extracted with the equal energy weighting function, the fol-
lowing is true: PI � 1

2
�0:548� 0:0693� � 0:309; while for

the long 9-s period acceleration pulse extracted with the
equal-amplitude weighting function, the following is true:
PI � 1

2
�0:101� 0:495� � 0:298. Accordingly, Figure 2 in-

dicates that a value of PI ≥ 0:3 identifies coherent pulses that
impose displacement and force demands on structures (in the
corresponding period range) comparable to the demands
imposed by the recorded motion. Consequently, a value of
PI ≥ 0:3 is enough to classify the motion as pulselike.

Figure 14 plots the values of the pulse indicator
PI � 1

2
�ea � ev� for all the 183 records (Ⓔ Table S1 in the

electronic supplement to this paper) when equal-area (top),
equal-energy (center), and equal-amplitude (bottom) wave-
lets are used in the proposed extended wavelet transform.
These values appear for each motion and each analysis in
Ⓔ Table S1 (available in the electronic supplement to this
paper). Based on the results for the PI associated with
Figure 2 (Ⓔ record 145 in Table S1 in the electronic supple-
ment to this paper), one may classify a motion with a pulse
indicator PI > 0:30 as pulselike. In this case, 124 out of 183
motions that we used are classified as pulselike.

Nevertheless, it is emphasized that the issue of classify-
ing a ground motion as pulselike hinges upon the ability of
the extracted pulse to impose force and displacement
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demands comparable to those imposed by the recorded
motion. This is a delicate issue, in particular when dealing
with inelastic structures, that deserves further investigation.

Comparison with the Mean Period Tm

The challenge to extract a representative time scale of an
earthquake is not new. About a decade ago Rathje et al.
(1998) examined three popular frequency content parameters
and concluded that the mean period,

Tm �

P
j
C2
j

1
fjP

j
C2
j

for 0:25 Hz ≤ fj ≤ 20 Hz; (34)

appears to be the best simplified time-scale characterization
parameter. In equation (34), Cj equals Fourier amplitudes of
the entire acceleration record, and fj equals discrete Fourier
transform frequencies between 0.25 Hz and 20 Hz. Figure 15
plots along the horizontal axis the computed mean period,
Tm, of the earthquake records listed in Ⓔ Table S1 in the
electronic supplement to this paper, and on the vertical axis,
the corresponding periods of the records extracted with the
M&P wavelets when the weighting function in the extended
wavelet transform enforces that all daughter wavelets have
(1) the same area, (2) the same energy, and (3) the same
amplitude. Figure 15 indicates that when the same-area scal-
ing is selected (stars) in the extended wavelet transform (sup-
pression of the long periods), the extracted pulses are mostly
short period with pulse periods below the values of Tm, as
expressed by equation (34). When the same energy scaling
is selected (dark circles), the extracted pulses have pulse
periods close to the values of Tm approximately up to values
of Tp � 1 s, and beyond this value, the pulses extracted with
the wavelet transform have pulse periods much larger than
Tm. Finally, when the same amplitude scaling is selected
(empty circles) in the extended wavelet transform (accentua-
tion of large periods), the extracted pulses consistently have
periods larger than those predicted by Tm.

Conclusions

In this paper we developed and validated a mathemati-
cally formal and objective procedure to extract the character-
istic time scales and length scales of the most energetic
acceleration pulses of strong ground motions. The procedure
uses wavelet analysis to identify and approximate energetic
acceleration pulses (not velocity pulses). The study shows
that the weighting function in the definition of the wavelet
transform has a dominant role in extracting a specific pulse.
For instance, longer pulses, which are often detected visually
in the velocity records (and have attracted the attention of
Mavroeidis and Papageorgiou (2003) and Baker (2007)
among others), can be systematically captured with the
wavelet transform of the acceleration records by implement-
ing a weighting function, w�s�, that does not suppress the

long periods, such as the equal-amplitude weighting func-
tion. On the other hand, shorter duration distinguishable
pulses that may have significant engineering interest and that
occasionally override the long-duration pulses are captured
with the wavelet transform by implementing a faster decay-
ing weighting function, w�s�.

The capability of several popular symmetric and anti-
symmetric wavelets to locally match the energetic accelera-
tion pulse is examined, and it is concluded that the exercise to
identify the best-matching wavelet shall incorporate, in
addition to the standard translation and dilation-contraction
of the traditional wavelet transform, a phase modulation
together with a manipulation of the oscillatory character
(addition of cycles) of the wavelet. This need leads to the
extension of the wavelet transform to a more general wavelet
transform during which the mother wavelet is subjected to
the four functions just mentioned.

The paper examines the performance of two similar
elementary signals, the seminal elementary signal proposed
by Gabor (1946) and its variation proposed by Mavroeidis
and Papageorgiou (2003), which in addition to a period
(scale) parameter and an amplitude parameter, include a
phase parameter, φ, and an oscillatory character parameter
γ. The time derivatives of these elementary signals satisfy
the conditions for a wavelike function to be a wavelet and
are defined as the Gabor and the M&P wavelets.

The paper examines the capability of the Gabor and
M&P wavelets to locally match the energetic acceleration
pulse of 183 strong ground motions, and it shows that the
performance of the proposed extended wavelet transform,
which convolves the acceleration record with the four-
parameter wavelets described in the text, outshines the perfor-
mance of the traditional wavelet transform, which convolves
the acceleration record with any two-parameter wavelet.

Finally, the paper compares the resulting time scales of
the 183 records examined with the mean period that was pro-
posed by Rathje et al. (1998) as a dependable time-scale
characterization parameter of an acceleration record. When
the same-area scaling is selected (stars, Fig. 15) in the ex-
tended wavelet transform (suppression of the long-periods),
the extracted pulses are mostly short-period with pulse per-
iods below the values of Tm as expressed by equation (34).
When the same energy scaling is selected (dark circles,
Fig. 15), the extracted pulses have pulse periods close to
the values of Tm approximately up to values of Tp � 1 s,
and beyond this value, the pulses extracted with the wavelet
transform have pulse periods much larger than Tm. Finally,
when the same amplitude scaling is selected (empty circles,
Fig. 15) in the extended wavelet transform (accentuation of
large periods), the extracted pulses consistently have periods
larger than those predicted by Tm.

Data and Resources

The earthquake records listed inⒺ Table S1 in the elec-
tronic supplement to this paper were downloaded from
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1. http://peer.berkeley.edu/smcat (last accessed Septem-
ber 2010);

2. http://mceer.buffalo.edu/research/Reconnaissance/
LAquila4‑06‑09/Ground_Motion_Records.asp (last ac-
cessed September 2010);

3. http://smbase.itsak.gr/ (last accessed September 2010).

All the computations, numerical analysis, and plotting
have been computed with the software MATLAB (2007).
http://www.mathworks.com/ (last accessed September
2010).
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Appendix A

Let us assume that the shape of a mother wavelet ψ�t�
supported on a time interval �a; b� satisfactorily matches the
predominant pulse of the ground motion, �ug�t�. According to
equation (12), the values s � S and ξ � Ξ, for which the
transform C�s; ξ� � C�S;Ξ� obtains its maximum absolute
value, offer the scale of the wavelet w�s�ψ�t�ξs � that locally
best matches the signal �ug�t� (in Baker’s work, the signal is
the velocity time history _ug�t�). Accordingly, in the neigh-
borhood of the predominant pulse that we are interested
in matching,
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�ug�t�≃ λ�S;Ξ� · w�S� · ψ
�
t � Ξ
S

�
� λ�S;Ξ� · ψS;Ξ�t�;

(A1)

where λ�S;Ξ� is a real number. Due to the change of vari-
ables, t → �t � Ξ�=s, the support time interval of the wavelet
appearing in equation (A1) is �aS� Ξ; bS� Ξ�. We now
investigate the product of the maximum absolute value of
the transform, C�S;Ξ�, with the best-matching wavelet,
ψS;Ξ�t� � w�S�ψ�t�ΞS �,

C�S;Ξ� · ψS;Ξ�t� �
�
w�S�

Z
bs�Ξ

aS�Ξ
�ug�t�ψ

�
t � Ξ
S

�
dt

�

× w�S�ψ
�
t � Ξ
S

�
; (A2)

C�S;Ξ� · ψS;Ξ�t� � w2�S�ψ
�
t � Ξ
S

�
Z

bs�Ξ

aS�Ξ
�ug�t�ψ

�
t � Ξ
S

�
dt: (A3)

Given that we are interested in the neighborhood of the
predominant energetic pulse, substitution of equation (A1)
into equation (A3) gives

C�S;Ξ� · ψS;Ξ�t�

≃ λ�S;Ξ� · w3�S� · ψ
�
t � Ξ
S

�Z
bs�Ξ

aS�Ξ
ψ2

�
t � Ξ
S

�
dt:

(A4)

The integral appearing in equation (A4) is evaluated with the
change of variables u � �t � Ξ�=S; therefore, dt � Sdu.
Accordingly,

Z
bs�Ξ

aS�Ξ
ψ2

�
t � Ξ
S

�
dt � S

Z
b

a
ψ2�u�du � SE; (A5)

where E is the energy of the mother wavelet. Substitution of
the results of equations (A5) and (A1) into equation (A4)
gives

C�S;Ξ� · ψS;Ξ�t�≃ w2�S� �ug�t�SE: (A6)

Accordingly, in the neighborhood of the predominant pulse,

�ug�t�≃ C�S;Ξ�
w2�S� · S · E

ψS;Ξ�t�: (A7)

After equating the right-hand side of equations (A1) and
(A7), one obtains

λ�s;Ξ� � C�S;Ξ�
w2�s�SE : (A8)

The multiplication coefficient, λ�S;Ξ�, given by equa-
tion (A8) dictates how much the best-matching wavelet,
w�s�ψS;Ξ�t�, needs to be amplified to best approximate the
energetic acceleration pulse. In the special case considered
by Baker (2007), w�s� � 1=

���
s

p
and E � 1; therefore,

w2�S� · S · E � 1, and the multiplication coefficient in
equation (A8) reduces to λ�S;Ξ� � C�S;Ξ�, which is merely
the peak value of the wavelet transform, given by
equation (12).
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