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Analysis of the rocking response of rigid blocks standing free
on a seismically isolated base
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SUMMARY

This paper examines the rocking response and stability of rigid blocks standing free on an isolated base
supported: (a) on linear viscoelastic bearings, (b) on single concave and (c) on double concave spherical
sliding bearings. The investigation concludes that seismic isolation is beneficial to improve the stability
only of small blocks. This happens because while seismic isolation increase the ‘static’ value of the
minimum overturning acceleration, this value remains nearly constant as we move to larger blocks or
higher frequency pulses; therefore, seismic isolation removes appreciably from the dynamics of rocking
blocks the beneficial property of increasing stability as their size increases or as the excitation pulse
period decreases. This remarkable result suggests that free- standing ancient classical columns exhibit
superior stability as they are built (standing free on a rigid foundation) rather than if they were seismically
isolated even with isolation system with long isolation periods. The study further confirms this finding
by examining the seismic response of the columns from the peristyle of two ancient Greek temples when
subjected to historic records. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

Under base shaking slender objects and tall rigid structures may enter into rocking motion that
occasionally results in overturning. Early studies on the rocking response of a rigid block supported
on a base undergoing horizontal accelerated motion were presented by Housner [1]. His pioneering
work uncovered a size-frequency scale effect which explained why: (a) the larger of two geomet-
rically similar blocks can survive the excitation that will topple the smaller block; and (b) out of
two same acceleration-amplitude pulses the one with the longer duration is more capable to induce
overturning.

As the size of the block increases, the duration of the coherent pulse of the base motion plays a
dominant role in inducing overturning. For instance, Figure 1, plots the rocking response of a rigid
block that is 2.0 m tall and 0.5 m wide when subjected to an intense (ap, =0.5 g) but short duration
(T =0.55) one-sine acceleration pulse (left—no overturning) and a less intense (ap =0.29 g), yet
longer duration pulse (7, =2s) one sine acceleration pulse (right—overturning). Interestingly, this
2.0m x 0.5m rigid block survives the intense, short-duration pulse; yet overturns when subjected
to the lower acceleration amplitude, long-duration pulse. The above example shows that reducing
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Figure 1. Horizontal ground acceleration, block rotation and angular velocity time histories of the block
shown above (p=2.67rad/s, tan(x)=0.25) subjected to a one-sine pulse. Left: a,=0.50g, T,=0.5s —
no overturning, Right a,=0.29g<0.5g and T, =2.05>0.5s—overturning.

the base acceleration while lengthening the period of the excitation (what seismic isolation does)
may be detrimental for some combinations of block size and frequency content of the base
excitation.

The rocking response of slender rigid objects standing free on a seismically isolated base is a
subject that has received attention during the last two decades mainly from the need to protect
slender art objects within museums ([2—6], among others). These studies primarily focused on
the seismic protection of relative small size blocks such as art objects up to human-size statues
and they invariably concluded that seismic isolation suppresses the rocking response and protects
such objects from overturning. Given, however, the results of Figure 1, this paper investigates in
depth up to what size of free-standing objects the application of seismic isolation is beneficial
and concludes that larger free-standing structures like ancient columns of temples have superior
stability as they stand free atop their massive foundations compared to if they were seismic isolated.
Furthermore, this study settles the matter of conservation of linear momentum of the entire system
(the rocking—translating block and the translating isolated base) during the impact of the rocking
block—a matter that has been overlooked by other investigators.

REVIEW OF THE ROCKING RESPONSE OF A RIGID BLOCK

With reference to Figure 2 and assuming that the coefficient of friction is large enough so that there
is no sliding, the equation of motion of a rocking block with size R=+/h2+5b? and slenderness
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Figure 2. Geometric characteristics of the model considered. Left: Rigid block subjected to ground
shaking. Right: Rigid block on isolated base.

o=atan(b/ h) for rotation around O and O’ respectively is ([7-9], among others)
I(,é(t)—l-ng sin[—o—0(t)] = —miig(t)R cos[—a—0()], 0(1)<O0, (1)
1,0(t)+mgRsin[o.— 0(1)] = —miig(t)Rcos[a—0(1)],  0(t)>0. 2)

For rectangular blocks, I, =(4/3)mR?, and the above equations can be expressed in the compact
form

0(t)=—p? {sin[ocsgn(@(t)) — 0]+ %g cos[asgn(0(1))— 0(1)) } ) (3)

The oscillation frequency of a rigid block under free vibration is not constant, because it strongly
depends on the vibration amplitude [1]. Nevertheless, the quantity p=./3g/4R is a measure of
the dynamic characteristics of the block. For the 2.0m x 0.5m block shown in Figure 1 (say a
modern refrigerator), p=2.67rad/s, and for a household brick, p~8rad/s. When the angle of
rotation reverses, it is assumed that the rotation continues smoothly from points O to O" and that
the impact force is concentrated at the new pivot point, O’. The ratio of kinetic energy after and

. . 02 2 . . L.
before the impact is r =0,/0,. Conservation of angular momentum about any pivot point just
before the impact and right after the impact requires that, the maximum value of  under which a
block with slenderness o will undergo rocking motion is [1]

r=[1-3sin®a]*. 4)

Consequently, in order to observe rocking motion, the impact has to be inelastic.

TIME SCALE AND LENGTH SCALE OF PULSE-LIKE GROUND MOTIONS

The relative simple form, yet destructive potential of near source ground motions has motivated
the development of various closed-form expressions which approximate their leading kinematic
characteristics. The early work of Veletsos et al. [10] was followed by the papers of Hall et al.
[11], Makris [12], Makris and Chang [13], Alavi and Krawinkler [14] and more recently by the
paper of Mavroeidis and Papageorgiou [15]. Some of the proposed pulses are physically realizable
motions with zero final ground velocity and finite accelerations, whereas some other idealizations
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Figure 3. Acceleration time histories recorded during the: (Top) 1995 OTE FP record from the Aigion,
Greece earthquake together with a symmetric Ricker wavelet; (Bottom) 1979 Coyote Lake earth-
quake—Gilroy Array#6/230 record together with an antisymmetric Ricker wavelet.

violate one or both of the above requirements. Physically realizable pulses can adequately describe
the impulsive character of near-fault ground motions both qualitatively and quantitatively. The
input parameters of the model have an unambiguous physical meaning. The minimum number
of parameters is two, which are either the acceleration amplitude, a,, and duration, T}, or the
velocity amplitude, v, and duration, 7}, [12, 13]. The more sophisticated model of Mavroeidis and
Papageorgiou [15] involves four parameters, which are the pulse period, the pulse amplitude as
well as the number and phase of half cycles, and was found to describe a large set of velocity
pulses generated due to forward directivity or permanent translation effect.

The heavy line in Figure 3 (top) which approximates the long-period acceleration pulse of
the OTE FP record of the 1995 Aigion, Greece earthquake is a scaled expression of the second

2

derivative of the Gaussian distribution, e*lT, known in the seismology literature as the symmetric
Ricker wavelet [16, 17] and widely referred as the ‘Mexican Hat’ wavelet, [18]

2,2
) 21212\ —3%5
ig(t)=ap|1— 7 )¢ p

p

®)

The value of T,=2nr/w, is the period that maximizes the Fourier spectrum of the symmetric
Ricker wavelet.
Similarly, the heavy line in Figure 3 (bottom) which approximates the long-period acceleration
pulse of the Gilroy Array #6/230 motion recorded during the 1979 Coyote Lake, earthquake is a
2

scaled expression of the third derivative of the Gaussian distribution e 7. Again, in Equation (5)
the value of T, =27/w, is the period that maximizes the Fourier spectrum of the antisymmetric

Ricker wavelet.

ay [ 4n’t? ot 4R

iig (=" =g —3 e W (©6)
B\ 37T; V3T,

in which f is a factor equal to 1.38 that enforces the above function to have a maximum = a,.

Ricker wavelets have been popular in studying the effects of near-fault ground motions [19, 20]
among others.
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The choice of the specific functional expression to approximate the main pulse of pulse-type
ground motions has limited significance in this work. In the past simple trigonometric pulses
have been used by the senior author [13, 14,20, 21] to extract the time scale and length scale of
pulse-type ground motions.

A mathematically rigorous and easily reproducible methodology based on wavelet analysis to
construct the best matching wavelet on a given record (signal) has been recently proposed by
Vassiliou and Makris [22].

ROCKING RESPONSE OF A RIGID BLOCK STANDING FREE
ON A SEISMICALLY ISOLATED BASE

Linear viscoelastic isolation system

We consider a rigid block with mass, m, slenderness o, and frequency parameter p, standing free
on a seismically isolated base with mass my, horizontal linear stiffness k, and viscous damping
cp, as shown in Figure 2 (right). The equation of motion can be derived from Equation (3) by
substituting ii, with ii, +ii, where u is the displacement of the isolated base relative to the ground.
Then, Equation (3) becomes

g (t)+ii(t)

é(t) = —p2 {sin[ocsgn(@(t)) —0()]+ cos[asgn(0(t))—0(1)] } . 7

Moreover, horizontal force equilibrium of the isolated base below isolators gives
—kbu—cbﬂ=mb(ﬁg +ii)+m(iig+ii+)'é), (8)

where x is the horizontal, relative to the base translation of the center of mass of the rigid block
given by

x(t)=sgn(6(¢))R sin(a) — Rsin(sgn(6(t))o.— 6(1)). 9)
Equations (7) and (8) are expressed in terms of i and 0 which are explicit expressions of the
four states of the system, u(¢), u(t), 0(¢), 0(t) in order to solve the system of equations explicitly.
Accordingly,
—au(t)—2Ew,u(t)—yR(O(1))? sin A(t)+yRp? cos A(t) sin A(t)

yRp?cos® A(t)
8

—2u(t)—2Ewni(t)—yR(O(t))?sin A(r)+yRp2cos A(t) sin A(t)
g—yRp?cos? A(t) ’

() = lig(1), (10)

1

0(t)=— pz(sinA(t)—i- cos A(t)(

an

where the term A(t)=oasgn0(t)—0(t) and y=m/(mp+m) and wp=/kp/(mp+m).

Again, in this case we assume that when the angle of rotation reverses, the rotation of the block
continues smoothly from point O to O" and that the impact force is concentrated as a point force
which applies on the new pivot point O’. The subtle difference between a rocking block impacting
a base with finite mass, my, and a rocking block impacting a rigid foundation with infinite mass,
is that the translational velocity of the isolated base also experiences a finite jump during impact,
whereas the translational velocity of the rigid foundation with infinite mass remains the same
during impact.

With reference to Figure 4, conservation of angular momentum around point O’ gives

/ rx(V1+l'11)dm=/ r X (vp+up)dm (12)
block block
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An instant before impact An instant after impact

1
u, =u,

Figure 4. Rigid block rocking on an isolated base before (left) and after (right) the impact.

where v| and v, are the velocities (with respect to the isolated base) of a point mass due to rotation
before and after the impact and u; and u; are the translational velocities of the base (with respect
to the ground) before and after the impact. Equation (12) gives

(1091—2mRbsina91)ey+/ rxu1m=1092ey+/ rx iy dm (13)
block block
or

1,01 —2mRbsinad +mhii; = 1,0, +mhiis. (14)

For a rectangular block 7, = %mR2 and the above expression reduces to
4R*0, —6Rbsinod) +3hity =4R*0r+ 3hity (15)

Equation (15) indicates that because of the finite mass of the isolation base one has to determine the
translational velocity of the base i, after the impact. The extra equation that is needed to relate
and u, is the conservation of the linear momentum of the entire system (the rocking—translating
block together with the translating base) along the horizontal direction. Accordingly

(m+mp)it; +mh6 = (m~+my)iia +mh6, (16)
or
(74 Dty +9h0y = (p+ Vg + 0, (17)
From Equations (15) and (17) one obtains

. v4+4)cot? o —2(y+1) .
922(/+ )cotzoc (y+ )01 (18)
(y+4)cot? a+4(y+1)

and
6yh

G doolatdorn " (1%

ur=u1+

Note that in the limiting case of a very heavy base (my,— 0o or y— 0) Equation (18) reduces
to Equation (4); while i =u5; therefore the situation of a block rocking on a rigid foundation
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Figure 5. Maximum values of the coefficient of restitution, r, for different values of y=m/(m +my) under
which an isolated block with slenderness o can undergo rocking motion.

is recovered. From Equation (18) the maximum value of the coefficient of restitution that allows
rocking motion of a block rocking on an isolated base is

i\’ (y+4)coa—2(p+1)\°
r=(9_> =( ) . 20)
1

(y+4)cot? a+4(y+1)

The expression of the coefficient of restitution given by (20) is in agreement with an equivalent
expression presented by Roussis et al. [5], which, to our knowledge is the only past publication
that treats this problem correctly.

Figure 5 plots the expression given by Equation (20) for three values of y=m/m+mp=0.01,
0.1 and 1. Figure 5 indicates that when the mass of the base is finite, the rocking block needs
to loose additional energy during impact in order to undergo rocking motion (compared with the
same block rocking on a rigid foundation) due to the reason that the translational velocity of the
isolated base experiences a finite jump at the instant of the impact.

Overturning spectra—self-similar response

We consider again that the ground excitation of the system shown in Figure 2 is characterized by
a coherent acceleration pulse with amplitude a;, and pulse duration 7, =2n/w;. From Equations
(10) and (11) it results that the response of a rocking block standing free on an isolated base
subjected to an acceleration pulse is a function of eight (8) variables

u(t)=f(p,oc,g,wb,ﬁ,y,ocp,wp), (21)
O(t) = f(pv o, &, Wp, éa Vs O(pa (l)p). (22)

Each of the coupled Equations (10) and (11) 0=[-], u.=[L], ap.i[L][T]_z, T,=IT], Tv=I[T],
E=[1], p.i[T]_l, o-=[], g-i[L][T]_z, =[] involves only two reference dimensions; that of
length [L] and time [T']. According to Buckingham’s I1-theorem the number of dimensionless
products (IT-Terms)= (number of variables in Equation (10) and (11)=10)—(number of reference
dimensions=2); therefore for the two DOF systems described above, there are 10 —2 = 8I1-terms

2
Umax @
M, = L, (23)
ap
Iy =0, 24)
Wp
My =—, (25)
@p
Hcv =¢, (26)
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I, =7, 27)

=2, (28)
p

11, = tan(w), 29)

m,=2 (30)
8

The rocking response of a rigid block standing free on an isolated base subjected to a horizontal
base acceleration is computed by solving Equations (10) and (11) in association with the minimum
energy loss expression given by Equation (20) which takes place at every impact. In this case, the
state vector of the system shown in Figure 2 (right) for linear viscoelastic bearings is

u(t)
u(t)

y(@)= o(t) (3D
0(t)

and the time derivative vector f(z) =y(¢) is

_ i(t) .
—w%u(t) —2&wbu(t)— yR(@(l))z sinA(t)+yRcos A(t)p?sinA(t)
| — 2RpZcos? AG) —lig(t)

()= ¢ . (32
0(t)

) _nE : o h 2 o 2 o
—p2 (sinA(t)+cosA(t)( wpu(t)—2&wbu(t)—yR(O())" sin A(t)+7yRcos A(t)p SmA(t)))

g—7Rp2cos A(t)

The numerical integration of (17) is performed with standard Ordinary Differential Equations
(ODE) solvers available in MATLAB [23].

Figure 6 plots the overturning acceleration spectra for a rigid block with slenderness o=10°
(top) and oe=20° (bottom) when it is standing free on a rigid foundation (left), and when it is
isolated (center and right) and subjected to a symmetric Ricker wavelet. The viscous damping ratio
of the bearings is {=5% and the mass ratio is y=0.01 (heavy base). Figure 6 indicates that the
presence of the isolation base increases the ‘static’ overturning acceleration; however, for isolated
rigid blocks this ‘static’ value remains nearly constant as the ratio w,/p increases (moving to
larger blocks or high-frequency pulses). Consequently, the presence of an isolation base removes
appreciably from the dynamics of rocking blocks the fundamental property of increasing stability
as their size increases or as the excitation pulse-period decreases. Nevertheless, the finding that
seismic isolation increases the value of the uplift acceleration of slender free-standing objects has
practical significance when protecting delicate artifacts in which any kind of damage due to impact
shall be avoided.

The findings of Figure 6 together with results due to an antisymmetric Ricker excitation are
summarized in Figure 7 in terms of minimum acceleration overturning spectra. In all configurations
beyond a certain value of @,/ p the minimum overturning acceleration spectrum of the free-standing
block on a rigid base (heavy dark line) crosses the overturning acceleration spectrum of the same
block when isolated. Accordingly there is no point in isolating large free-standing blocks. Note also
that for both symmetric (left plots) and antisymmetric (right plots) Ricker wavelets, the minimum
overturning acceleration of the free-standing block on a rigid foundation exceeds the overturning
acceleration of the isolated configuration at smaller values of wy/p as the slenderness of the block
decreases (larger values of «).

Copyright © 2011 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2012; 41:177-196
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Figure 6. Overturning spectra for rigid block without isolation (left), and with linear isolation
with Ty, /Tp =2 (center) and Ty/Tp=3 for slenderness «=10° (top) and «=20° (bottom) for
a symmetric Ricker excitation. Light gray = no overturning, dark gray = overturning.

The practical use of the results shown in Figure 7 is illustrated by considering the dominant
pulses that capture the coherent component of the two out of the three earthquake records shown
in Figure 3—that of the fault parallel component of the OTE record from the 1995 Aigio, Greece

Copyright © 2011 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2012; 41:177-196

DOI: 10.1002/eqe



186

Symmetric Ricker, o = 10°

16 1
Non Isolated
- = =TT, =2
147 T,/T, =3
Ty/T, =4

I, /1L, = a,/gtan(a)

0 2 4 6 8 10
Small blocks or o = wp/p
large period pulses

Symmetric Ricker, a = 20°

16 1 11 i
Non Isolated 'BE)
- = =TT, =2 :
1471 T,/T, =3 :
Ty/T, = 4 :

I, /1L, = a,/gtan(a)

Small blocks or I, = wp/p

large period pulses

M. F. VASSILIOU AND N. MAKRIS

Antisymmetric Ricker, o = 10°

16 1
Non Isolated y
- = =TT, =2
147 T,/T, =3 J/
Ty/T, =4 Wy

a,/gtan(a)

0 2 4 6 8 10
I, =wy/p Large blocks or
short period pulses

Antisymmetric Ricker, o = 20°

16 1 I
Non Isolated I

- ==T/T,=2 .

14 1 T,/T, =3 :
Ty/T, =4 1

v

ap/gtan(a)

0 L L L L

0 2 4 6 8 10
o = wp/p Large blocks or
short period pulses

Figure 7. Comparison of the minimum acceleration needed to overturn a rigid block of

slenderness a=10° (h/b=5.67—-top) and «=20° (h/b=2.75-bottom) resting on rigid ground

and on an isolated bases with various isolation frequencies when excited by a symmetric Ricker
pulse (left) or an antisymmetric Ricker pulse (right).

earthquake (top), that of the Gilroy—Array #6 record from the 1979 Coyote Lake , USA earth-
quake (center). For the FP OTE record shown in Figure 3 (top), 7,=0.6s while for the Coyote
Lake record (bottom), 7, =0.9s. The corresponding values of the semidiagonal, R, beyond which
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non-isolated free-standing blocks exhibit more stability than when seismic isolated are offered in
Table I for two values of slenderness «=10° and «=20° and three values of T,/7}, 2, 3 and 4.
Table I applies the information offered in Figure 7 to typical values of seismic isolation periods
and pulse periods from the two strong, pulse-like ground motions which are compatible with the
seismic hazard in Greece. Note that for the OTE record from the 1995 Aigio, Greece earthquake
(T, =0.65) free-standing objects even smaller than ancient classical columns (R~3.5-5.0m) are
more stable when they stand free on a rigid foundation rather than when they rest on a seismically
isolated base. For the Gilroy#6 record of the Coyote Lake earthquake (7, =0.95) seismic isolation
becomes beneficial when the isolation period is in the long-period range (7,>2.55).

The influence of the mass ratio y=m/(m-+myp) (m =mass of the rocking block, mp=mass
of the isolated base) is shown in Figure 8 for a block with slenderness o=12°, two values of

Table I. Length of the semidiagonal, R, of rigid blocks beyond which they exhibit superior stability when
they stand free on a rigid base (no isolation).

Tb/TPZZ Tb/Tp=3 Tb/Tp=4
Reritical (M) Reritical (M) Reritical (M)
Tp (8) Ty (9) 10° 20° Ty, (s) 10° 20° Ty, (s) 10° 20°
Aigio, OTE FP, 1995 0.6 1.2 032 022 1.8 196 1.58 24 279 1.78

Coyote Lake, Gilroy #6 230, 1979 0.9 1.8 185 131 27 508 424 36 783 448

Symmetric Ricker % =2, a=12° Antisymmetric Ricker, % =2, a=12°
1
15 No Isolation 15 No Isolation
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Figure 8. Comparison of the minimum acceleration needed to overturn a rigid block of slenderness

a=12° (h/b=4.70) resting on a linear viscoelastic isolated base subjected to a symmetric Ricker

wavelet (left) and an antisymmetric Ricker wavelet (right). The results for five values of mass

ratio y=m/(m-+my) are used showing that for values of y<0.1 the overturning acceleration does
not depend on the mass ratio y=m/(m+my).
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T,/ T, =2 and three and five values of y. Figure 8 indicates that for values of wp/p<6 (the range
when it makes sense to isolate rocking blocks) all response curves for y<0.1 tend to the finite
limit where the response of the heavy base is not influenced by the response of the light rocking
block (decoupled system). Consequently for the case where y<0.1 the mass ration y drops out
of consideration (y=0) and it can be eliminated from equations (32) and (33)—a conclusion that
shows that the rocking response of a rigid block standing free on an isolated base exhibits a
‘complete similarity’ in terms of the mass ratio y=m/(m+myp).

Bilinear isolation system

When the behavior of the isolation system is bilinear—a very good idealization for the behavior
of spherical sliding bearings and lead rubber bearings, the equation of the rocking block is again
given by Equation (7) whereas, horizontal equilibrium of the isolated base below isolators gives

—kpu(t)— Q- z(t) =my(itg (1) + i (1)) +miig (t)+u(r)+x(1)) (33)

where ky, is the second slope of the bilinear idealization, Q is the strength of the system (force at
zero displacement), x(¢) is the horizontal relative to the base translation of the center of mass of
the rigid block and z(¢) is a dimensionless parameter of the Bouc—Wen model given by

1
W= u—(ﬂ(t)—V|L’t(f)|Z(l‘)|Z(f)|n71 = Bua(®)lz()]"), (34)
y

where uy is the yield displacement of the bilinear behavior.

In this paper our study concentrates in the case where u, is very small (z,~0.25mm). In
this case the bilinear model is the mathematical description of the spherical sliding bearing with
coefficient of friction y, in which case the strength Q = u(m +my,)g. Past studies led by the senior
authors [13, 24, 25] have demonstrated that the response of isolated structures is merely indifferent
to the exact value of the yield displacement; therefore, the results obtained in this paper are also
valid for isolation systems that use lead—rubber bearings (larger values of u,) as long as they
experience the same second slope, kp, and the same strength, Q. Given Equations (33) and (34),
together with Equation (7) the state vector of the system shown in Figure 2 (right) with spherical
sliding bearings is:

Cu(t)
u(t)
y() = | z(t) (35)
0r)
L0
i u(t) ]
—w%u(t)—,ugz(t)—yR(@)(t))zSinA(l)—i-"/RcosA(t)pZsinA(l) .
1— yRp2 cos? A(t) _ug(t)
g
1
y(t) = u—(ll(t)—Vlﬂ(I)IZ(t)IZ(I)I"_l—ﬁﬂ(I)IZ(t)I") (36)
0@t)
2 _ _ % 2 o N 2 o
—p2 (sinA(t)+cosA(t)( wpu(t)— pgz(t)—yR(0(1))” sin A(t)+yRcos A(t)p SmA(l)))
L g—7Rp2cos A(t) ]

In the case where the base is isolated on lead rubber bearings exhibiting a strength Q, the term
ug in the 2nd and 5th component of the y(¢) vector is replaced with

m—+myp*
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Figure 9. Comparison of overturning spectra (left) and minimum acceleration overturning spectra

(right) of a rigid body with slenderness a=16° (h/b=3.49) when the supporting base is isolated on

viscoelastic bearings with damping ratio ¢ =5% and single concave spherical sliding bearings with coef-

ficient of friction 5%. The excitation is a symmetric Ricker wavelet and the mass ratio y=0.01. Light
gray = no overturning, dark gray = overturning.

Figure 9 plots overturning spectra of a rigid block with slenderness «=16° (h/b=3.49) standing
free on a base that is isolated on single concave spherical sliding bearings with coefficient of friction
u=>5% when subjected to a symmetric Ricker wavelet next to the overturning acceleration spectra
when the base is isolated on linear viscoelastic bearings with coefficient £¢=5%. The response
between the two isolation configurations is very similar. For completeness, Figure 9 (bottom) shows
the minimum overturning acceleration associated with the two isolation configurations together
with the corresponding spectrum of a rigid block rocking on a rigid foundation (heavy dark line).
The near-vertical growth of the heavy dark line indicates that regardless how flexible the isolation
system is, for values of w,/p>6, the rigid block rocking on a rigid foundation has superior
stability.

Trilinear isolation system (Double concave spherical sliding (DCSS) bearings)

The rapid growth of seismic isolation generated the need for more compact size, large-displacement
capacity, long-period, bearings. Such needs are served with the DCSS bearing—its configuration
is shown schematically in Figure 10 (left) [26—30] among others). When the double concave
spherical bearing has sliding surfaces with the same coefficient of friction, u, (no need for same
radii of curvature) it becomes like a traditional single concave spherical bearing with isolation

RitRo—m=h2 gnd coefficient of friction .

period T, =2n

When the coefficients of friction along the sliding interfaces are different, the behavior of the
double concave friction spherical bearing is trilinear and it can be modeled using two traditional
single concave spherical bearings acting in series together with a point mass representing the
articulated slider. With this mathematically rigorous model one can capture the shaved portions
of the hysteretic loops at the initiation and at the reversal of motion (see Figure 10—right) when,
initially, the sliding surface with the lower coefficient of friction is mobilized.

Recently, Makris and Vassiliou [24] have shown that for most practical configurations the area
of the shaded triangles shown in Figure 10 (right) is immaterial to the peak response of an isolated
deck; therefore, the deck exhibits merely the same maximum displacement regardless whether it
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Figure 10. Left: Cross-section of a double concave spherical sliding (DCSS) bearing with different radii
of curvature; Right: Generic force—displacement loop of the DCSS bearing (heavy line).

is supported on a double concave (R; —h1, Ry —h2, py, 1) or single concave (R,, tt,) spherical
sliding bearing provided that

1 1
— = (37)
R Ri—hi+Ry—hy
and
Ri—h Ry—h
_ W (Ri—h)+ (R 2)‘ (38)

He= Ri—hi+Ry—hy

The aim of this analysis is to examine whether the selection of a lower coefficient of friction
in one sliding surface may increase the merit of seismic isolation to protect rocking structures.
The friction coefficients of two alternative DCSS systems are selected so that their equivalent
coefficient of friction given by Equation (39) is pu,=5%. The first configuration of the DCSS
system assumes bearings with the same top and bottom radius of curvatures, Ry —h|= Ry —h,. For
this configuration we have assumed p; =3% and u, =7% in order to have appreciable separation
between the two values of the friction coefficients. The second configuration of the DCSS system
assumes bearings with Ry —hy=2(Ry—h1), u; =3% and now p, =6% in order for p, to yield
e =5%.

Figure 11 plots minimum overturning acceleration spectra of free-standing blocks with slender-
ness o= 16° (h/b=3.49) standing free on a base isolated on DCSS bearings when 7;,/ T, =2 and 3.
The computed results when the isolation system consists of the DCSS bearings are compared with
the results obtained when the isolation system consists of single concave spherical sliding (SCSS)
bearings with coefficient of friction p; =y, =5% and is concluded that for all practical purposes
that the minimum overturning acceleration for the three configurations is identical.

This finding shows that the area of the shaded triangles shown in Figure 10 (right) is indeed
immaterial to the stability of the isolated rocking block. In mathematical terms, the minimum
overturning acceleration of a rocking block standing free on a base isolated with bearings with
trilinear behavior exhibits a complete similarity in (a) the difference between the coefficients of
friction and (b) the ratio of the intermediate (transition) to the final slope. Most importantly,
Figure 11 confirms what has been shown throughout this study that beyond a certain value of w,/p
(beyond a center block size/pulse duration) the application of seismic isolation has a detrimental
effect on the stability of rocking blocks since blocks standing free on a rigid foundation exhibit
superior stability.

THE EFFECT OF SEISMIC ISOLATION ON ANCIENT CLASSICAL COLUMNS

The seismic response analysis of rocking blocks standing free on an isolated base has been studied
in this paper by using as ground excitation, acceleration pulses described either by the symmetric

Copyright © 2011 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2012; 41:177-196
DOI: 10.1002/eqe



ANALYSIS OF SEISMICALLY ISOLATED BASE 191

a=16°T,/T, =2

T T
/g 15H No Isolation N
— —_—SCSS: n=5%

g — DCSS : Rl—hlzRQ—hz,ﬂl:?)%, [l,2:7%
= e DC'SS 2 2(Ry — b)) = Ro — ha, 1 = 3%, pu2 = 6%

(=) 10+ -
\

>

3

Il

3 5 E
=
~

>
= =

0 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

a=16°T,/T, =3

T T T T T LT T
15 No Isolation B
SCSS : u=5%
— DCSS H Rl - }L1 = R2 - }1/2, H1 = 3(%}., H2 = 700
——— DCSS: 2(Ry —h1) = Ra — ha, p1 = 3%, p2 =6%

I, = wp/p

Figure 11. Comparison of minimum acceleration overturning spectra of a rigid body with slenderness
a=16° (h/b=3.49) when the supporting base is isolated on double concave and single concave spherical
sliding bearings. The excitation is a symmetric Ricker wavelet and the mass ratio y=0.01.

or the antisymmetric Ricker wavelets. The acceleration amplitude, a,, and duration 7, of any
distinct acceleration pulse allow the use of the dimensional analysis presented in this work and
the derivation of the associated II-products which improve appreciably the understanding of the
physics that governs the problem together with the organization and presentation of the response
quantities in a most meaningful way. Nevertheless, in order to stress the main finding of this
study—that for large blocks (say w/p>6) the use of seismic isolation reduces the seismic stability
of free-standing rocking structures—we examine the seismic response of two free-standing slender
blocks which have the dimensions of the columns of the peristyle of the Temple of Appolo at
Bassae and the Temple of Zeus at Nemea, both located in Peloponese, Greece.

The Temple of Apollo at Bassae is a fifth Century BC doric style structure. The columns of the
temple are 5.95 m high, the diameter of the base drum is 1.11 m (resulting in slenderness o= 10.56°
(h/b=5.36) and in size R=3.03m). The number of drums in each column is not constant for
all the columns and is controlled by the size of the sound rock that was available in the ancient
limestone quarry. The temple is still standing but has suffered from erosion of the building material
caused by the adverse climatic conditions at the site (1000 m altitude above the sea level) and from
the tilting of some columns due to differential settlement of the foundations [31].

The Temple of Zeus at Nemea was built in the late fourth century BC. The columns of this
temple are much taller and more slender than the ones of the temple at Bassae, reaching a height
of 10.33 m. All columns consist of 13 drums and the base drum diameter is 1.52 m. The resulting
slenderness is «=8.37° (h/b=6.8) and R=5.22m. This slenderness ratio is the smallest among
the ancient Greek temples of continental Greece. Only one column of the peristyle and two columns
of the pronaos of the Temple of Zeus remain standing from the ancient times.

While the columns from the two abovementioned Temples are multidrum, this investigation
proceeds with the approximation that they are monolithic free standing blocks. Past studies led
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Table II. Earthquake records used for the dynamic response analysis of the column.

Record Magnitude  Distance PGA PGV ap Tp
Earthquake station (Mw) (km) (2) (m/s) (2) (s)
1966 Parkfield C0O2/065 6.1 0.1 0.48 0.75 041 06
1977 Vrancea Bucharest 72 160 0.20 074 020 2.1
1979 Imperial Valley El Centro #6/230 6.5 9.3 0.41 0.65 0.14 3.1
1980 Irpinia, Italy Sturno/270 6.5 32 0.36 052 011 3.0
1986 San Salvador Geotech Investig. Center 54 4.3 0.48 0.48 034 0.8
1987 Superstition Hills  Parachute Test Site/225 6.7 0.7 0.45 1.12 030 2.0
1992 Erzican, Erzincan/EW 6.9 13 0.50 0.64 034 09
1994 Northridge Jensen Filter Plant/022 6.7 6.2 0.57 0.76 039 0.5
1995 Kobe Takarazuka,/000 6.9 1.2 0.69 0.69 0.50 1.1
1999 Chi-Chi Taiwan CHY101/E 7.6 11.2 0.35 0.71 0.10 35
1999 Chi-Chi Taiwan CHY128/N 7.6 9.7 0.17 069 009 45

by the senior authors [32] have shown that multidrum columns exhibit slightly more controlled
response than the equal size monolithic configuration.

Our investigation proceeds by examining the response of the two abovementioned columns when
subjected to the 11 historic records shown in Table II. The columns are considered to stand free
on a rigid foundation, or standing free on a seismic isolated base with isolation periods Ty, =2s,
2.5s and 3 s and linear viscous damping &, =0.1.

The dynamic analysis is conducted by assuming the idealized geometry of the columns. In
reality some of these columns have suffered local chipping at the edges of the drums, while some
drums may have experienced minor horizontal dislocations—a situation that not only may affect the
planar rocking motion of the column, but also may accentuate the initiation of three-dimensional
response, which is beyond the scope of this study.

Table IIT summarizes the results from the nonlinear time history analysis assuming planar motion.
The column from the Temple of Apollo at Bassae (R=3.03m, o=10.56°) when standing free on
a rigid foundation survives all the induced records, while when isolated on bearings that offer an
isolation period, 7Ti, =2.0s, it topples in all but one records. As the period of the isolation system
increases the column survives additional records. Similarly, the column for the Temple of Zeus a
Nemea (R=5.22m, «=28.37°) when standing free on a rigid foundation survives 9 out of the 11
records, while when isolated on bearings that offer an isolation period 7, =2.0s it topples in all
records.

Again, as the isolation period increases the column survives additional records; however, even
when the isolation period is 7T, =3.0s the column from the Temple of Zeus at Nemea survives
only 3 out of the 11 records. The reason that seismic isolation is so detrimental to the stability of
tall slender blocks is because the presence of the isolation system lengthens the duration of the
pulses while at the same time increases the number of the significant induced cycles.

As an example, Figure 12 plots the response of a rigid block with the dimensions of a column
of a column from the peristyle of the Temple of Zeus at Nemea subjected to the 022 component
of the Jensen Filter Plant record from the 1994 Northridge earthquake when is standing free on a
rigid foundation (left—no overturning) and when standing free on an isolated base with 7, =3.0s
(right—overturning).

CONCLUSIONS

In this paper the seismic response analysis and stability of slender rigid blocks standing
free on a seismically isolated base is investigated in depth. The paper examines the rocking
response when the isolated base is supported: (a) on linear viscoelastic bearings, (b) on single
concave and (c) on DCSS bearings. Our study revisits the equations of motion and settles
the matter of the conservation of linear momentum of the entire moving system that is the
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Figure 12. Comparison of the response of a rigid block with the dimensions of a column from the peristyle

of the Temple of Zeus at Nemea subjected to the 022 component of the Jensen Filter Plant record from

the 1994 Northridge earthquake when is standing free on a rigid foundation (left—no overturning) and
when standing free on an isolated base with T, =3.0s (right—overturning).

rocking—translating block together with the translating isolated base. This analysis leads to
a closed-form expression (Equation (20)) for the maximum value of the coefficient of restitu-
tion during impact that allows rocking motion of a block rocking on an isolated base and is
concluded that this value is always smaller (more energy is dissipated) than the maximum value,
r=(1- % sin® &) which is associated with a rigid block rocking on a rigid (non-isolated) founda-
tion. Our extended parametric analysis concludes that seismic isolation is beneficial for relative
small blocks. This happens because while seismic isolation increases the ‘static’ overturning
acceleration,; for isolated rigid blocks this ‘static’ value remains nearly constant as the ratio w,/p
increases (moving to toward larger blocks or higher frequency pulses). Consequently, while the
presence of an isolation base increases the ‘static’ overturning acceleration; it removes appreciably
from the dynamics of rocking blocks the fundamental property of increasing stability as their size
increases or the excitation pulse period decreases. This behavior prevails regardless whether the
rocking block is supported on an isolated base with linear viscoelastic or spherical sliding bearings
with single or double curvature. Nevertheless, the finding that seismic isolation increases the value
of the ground acceleration that is needed to uplift a free-standing slender object is of major practical
significance when protecting museum artifacts where any kind of damage due to impact shall be
avoided.

The longer the isolation period of the supporting base is, the more stability is offered to the
rocking blocks; however, large blocks subjected to moderate period pulses (say wp/p>6) exhibit
superior stability when they stand free on a rigid base (non-isolated) rather when they are isolated
even on isolation systems with very long periods. This remarkable result suggests that, given the
seismicity of Greece, free-standing ancient classical columns when subjected to ground motions
with moderate period predominant pulses so that wp/ p <6 exhibit superior stability as they are built
(standing free on a rigid foundation) rather than if they were seismic isolated. In conclusion, given
that the rocking response of free-standing columns is a highly nonlinear problem, in association
with the event that the edges of the columns may be damaged to an extend that the column
departs appreciably from its idealized geometry further analysis may be required for deciding on
the seismic protection/intervention of a specific monument.
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