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SUMMARY

Structural design code provisions worldwide prescribe relatively small seismic force reduction factors for
seismically base-isolated structures, making their response to design-level earthquake excitation essentially
elastic. This paper uses the method of dimensional analysis to prove that; in most cases, this is not a conser-
vative design approach but a necessity that emerges from the dynamics of base-isolated structures. It is
shown that allowing typical base-isolated structures to yield results in large displacement ductility demands
for the structure. This phenomenon is caused by the change in the nature of the ground motion excitation as
it is transmitted to the structure through the seismic base isolation system as well as by the change in the
distribution of displacements between the structure and the isolation bearings caused by yielding of the
isolated structure. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is a consensus in the earthquake engineering community that designing buildings to remain
elastic under large seismic loads corresponding to the design-basis hazard level is financially
irrational. Modern seismic design codes permit structures that are expected to deform well into their
inelastic response range during design-basis earthquakes. Preventing collapse of such structures is
made possible simultaneously by the oscillatory nature and randomness of earthquake excitation and
by capacity design and detailing of structural elements and systems. Accordingly, seismic design
codes prescribe acceptable plastic deformation limits in terms of structure displacement ductility m
for different structural systems at the design-basis earthquake hazard level. Then, in accordance with
the equivalent seismic force design approach, the codes provide designers with force reduction
factors R (ASCE 7 [1]) or behavior factors q (Eurocode [2]), both defined as the ratio of the base
shear required for the building to remain elastic to the design base shear. Numerous studies on the
relationship between R (or q) and m have been published [3–11]. All agree that for flexible
structures, R is equal to m (‘equal displacement’ rule) and that for stiff structures, R is less than m
(maximum displacement of the inelastic structure is larger than that of the elastic structure with the
same fundamental mode vibration period). For very stiff structures, displacement ductility m
becomes very large even for small values of R, that is, seismic force demand only slightly in excess
of the yield force capacity of the structure induces a very large displacement ductility demand.
Values of the strength reduction factor range between 2 and 8. Experience from recent earthquakes
shows that the inelastic design approach works well to save lives by preventing the collapse of most
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structures. However, the societal losses due to structural damage and, more importantly, damage that
causes disruption or loss of the intended function of the structures in the earthquake-affected region
are enormous.

Seismic base isolation is a well-known technique to modify the seismic response of a structure to
protect it against collapse, minimize its permanent deformation, and control the relative drifts and
accelerations that contribute to non-structural damage [12], thereby significantly improving the
chances that the intended function of the structure will be preserved after an earthquake. Typically, a
structure is placed on a system of bearings, rubber, or sliding, with low horizontal stiffness. Thus,
the fundamental vibration period of the structure–isolator system becomes several (2 to 4) times
longer than the vibration period of the structure fixed to the ground. Typically, isolation leads to a
corresponding twofold to fourfold decrease in the seismic base shear force for the isolation system
and, by equilibrium, for the structure at the expense of large deformation demand for the seismic
isolation bearings.

Current European, Japanese, and US seismic design codes limit the magnitude of strength reduction
allowed for base-isolated structures. The Eurocode [2] allows a maximum behavior factor value of 1.5
for seismically isolated buildings, similar to the nonlinear analysis with peer review option of the
Japanese building code [13]. US ASCE 7 [1] allows the strength reduction factor for a seismically
isolated structure to be 0.375 times the one for a corresponding fixed-base structure and no larger
than 2. Such designs result in good behavior of seismically isolated building structures observed in
recent earthquakes (e.g., [14]). Design codes do not explicitly state the reason for keeping the
response of base-isolated structures in the essentially elastic range. Research results published by
Constantinou and Quarshie [15], Ordonez et al. [16], Kikuchi et al. [17], and Thiravechyan et al.
[18] indicate that inelastic deformation of base-isolated structures, if it occurs, may be much larger
than expected.

The consequence of these design code provisions is the design base shear for base-isolated
structures that is often equal to or larger than that for the same fixed-base structure [19]. This means
that the cost to build a base-isolated structure is often higher than that for a corresponding fixed-
base structure, leading many investors to choose low initial investment costs and accept the higher
risk of business interruption and repair losses over the lifetime of the structure.

In this paper, we use the method of dimensional analysis to investigate the dynamics of inelastic
base-isolated structures responding to analytical pulse excitation. We find that relatively stiff base-
isolated structures whose strength is less than that required to remain elastic develop significantly
larger displacement ductility demands than similarly stiff and strong fixed-base structures under the
same excitation. This behavior, demonstrated for pulse-like excitation in this paper, extends on the
results of Kikuchi et al. [17] and Thiravechyan et al. [18] obtained for sinusoidal excitation. This
finding indicates that the US, Japanese, and European design code strength requirements for base-
isolated structures are justified.

2. REVIEW OF Ry–m–ΤS RELATIONSHIPS FOR FIXED-BASE STRUCTURES

We aim to compare the seismic response of an inelastic single-degree-of-freedom (SDOF) system with
a vibration period Ts to that of an equivalent linear-elastic system (an SDOF system with the same
vibration properties that is strong enough not to yield under the same excitation). The response of
the inelastic SDOF system is hysteretic and follows a bilinear elastic–plastic response envelope. The
maximum displacements of the elastic and of the inelastic systems are denoted as uel and um,
respectively. The yield displacement of the inelastic system is denoted as uy. The maximum force of
the elastic system is denoted as Fel and the yield force of the inelastic system as Fy. The force
reduction factor, Ry, is defined in this study as

Ry ¼ Fel

Fy
(1)
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and the displacement ductility, m, of the system is defined as

m ¼ um
uy

(2)

Note that the principal difference between Ry used in this study and R used in design codes is that R
accounts for structural overstrength. For a given excitation, the relation between Ry and m can be
parameterized by Ts [20]. Numerous researchers developed relations between Ry, m, and Ts on the
basis of statistical processing of the seismic response data for elastic and inelastic SDOF structure
responses to recorded earthquake ground motions. Miranda and Bertero [10] comprehensively
present and compare the Ry–m–Τs relationships available in literature. Two findings are common
across the reviewed literature. First, there exists a period Tc such that SDOF structures with a
vibration period Ts> Tc attain roughly the same maximum displacement regardless of their response
mode, linear elastic or inelastic (um� uel). In other words, ‘equal displacement’ rule holds; hence,
Ry� m. Second, displacements of inelastic SDOF structure with Ts<Tc are larger than those of the
corresponding linear-elastic SDOF structures, that is, um> uel, leading to Ry< m. Finally, Ry

decreases and tends to 1 as Ts tends to zero for very stiff structures. It is important to underline that
even though the displacements of the inelastic and the linear-elastic very stiff structures are small,
the displacement ductility demand for such structures may be very large because their yield
displacements are also small. Therefore, the conventional form of Ry–m–Ts relation may not
represent the actual displacements of very stiff structures accurately because ductility is computed as
a ratio of two small values. Nevertheless, the conventional Ry–m–Ts relationship format is used in
this study to facilitate a comparison to a significant body of knowledge found in the literature.

Miranda [21], and Ruiz-Garcia and Miranda [22] showed that the Ry–m–Τs relation changes
depending on the soil at the site of the structure and noted that the displacement ductility demands
for stiff structures grow as the soil becomes softer. An analogy between soft soils and seismic
isolation systems in terms that both have low horizontal stiffness and permit significant lateral
displacements inspired the work presented in this paper.

3. LINEAR-ELASTIC MODEL OF A BASE-ISOLATED STRUCTURE

Kelly [12] developed a linearized 2-degree-of-freedom model to describe the behavior of base-isolated
structures (Figure 1). Even though the inelastic response of most seismic isolation bearings can be
effectively modeled using a bilinear hysteretic law, a linearized bearing model based on the post-yield

Figure 1. Parameters of the 2-DOF model of a base-isolated structure.
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stiffness of the bearings gives insight into the dynamics of base-isolated structures. In Figure 1, mb

represents the mass of the base mat above the seismic isolation system, ms is the mass of the isolated
structure, us is the deformation of the superstructure with respect to the base mat, and ub is the
deformation of the bearings with respect to the ground. The following quantities are defined:

(1) Fixed-base period and cyclic frequency

Ts ¼ 2p

ffiffiffiffiffi
ms

ks

r
;os ¼

ffiffiffiffiffi
ks
ms

r
(3)

(2) Isolation period and cyclic frequency

Tb ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms þ mb

abkb

r
;ob ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abkb

ms þ mb

r
(4)

(3) Period ratio

e ¼ Ts2

Tb2
(5)

(4) Structural and isolation damping ratio

xs ¼
cs

2msos
; xb ¼

cb
2 ms þ mbð Þob

(6)

(5) Mass ratio

gm ¼ ms

ms þ mb
(7)

Modal analysis of this linearized seismic isolation system gives modal frequencies:

o1
2 ¼ ob

2 1� geð Þ o2
2 ¼ os

2

1� g
1þ geð Þ (8)

and vibration mode shapes:

Φ1Τ ¼ 1; eð Þ Φ2Τ ¼ 1;� 1
g

1� 1� gð Þeð Þ
� �

(9)

The horizontal displacements of the seismic isolation bearings and the structure are (after neglecting
the higher-order e terms)

ub max ¼ 1� geð ÞSD o1; x1ð Þ (10)

us max ¼ e SD o1; x1ð Þ2 þ SD o2; x2ð Þ2
� �1=2

(11)

where x1 and x2 are the modal damping ratios. When the structure is much stiffer than the seismic
isolation system, it follows that the period ratio e is small (e=O(10�2)), and the spectral
displacements for the two vibration modes of the system are very different (SD(o2,x2)<<SD
(o1,x1)). Hence, most of the horizontal displacements is concentrated in the isolation bearings while
the structure deforms only slightly. However, when the structure and the seismic isolation system
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have similar stiffness, the period ratio e is not small, and the spectral displacement values are
comparable, leading to a conclusion that the displacements of the seismic isolation system and the
structure are comparable in magnitude.

4. INELASTIC MODEL OF A BASE-ISOLATED STRUCTURE

The model used in this study is the 2-DOF model proposed by Kelly [12] (Figure 1) modified to
account for inelastic response of both the isolation bearings and of the isolated structure. The
bearing response is modeled using a bilinear response envelope with hysteretic damping, a good
model for both rubber and spherical sliding bearings. The bilinear hysteretic behavior is
implemented using a Bouc–Wen [23, 24] model. Sometimes, designers provide additional viscous
damping for the isolation system. Hence, the restoring force of the isolation system is modeled as

Fb tð Þ ¼ �abkbub tð Þ � Q�zb tð Þ � cb _ub tð Þ (12)

where abkb is the second slope of the bilinear response envelope (Figure 1), cb is the damping
coefficient of the viscous dampers, Q is the strength of the system (force at zero displacement), and
z(t) is a dimensionless parameter of the Bouc–Wen model given by the evolution equation:

_zb tð Þ ¼ 1
uyb

_ub tð Þ � gBW _ub tð Þj jzb tð Þ zb tð Þj jn�1 � b _ub tð Þ zb tð Þj jn
� �

; (13)

where uyb is the yield displacement of the bilinear model and b, gBW, and n are dimensionless
quantities that control the hysteretic behavior of the model. Parameters b and gBW are set equal to
0.5, and n is set equal to 8 to obtain a sharp transition from the first to the second slope of the
response envelope.

The isolated structure is modeled using a bilinear Bouc–Wen model in parallel with a viscous
damper. The restoring force of the isolated structure is given by

F tð Þ ¼ �asksus tð Þ � 1� asð Þksuyszs tð Þ � cs _us tð Þ (14)

where us(t) is the displacement of the structure relative to the base mat, ks the pre-yield (elastic)
stiffness, uys the yield displacement, as the hardening ratio of post-yield to pre-yield stiffness
(Figure 1), cs is the damping coefficient, and zs(t) the dimensionless hysteretic parameter given by
the evolution equation:

_zs tð Þ ¼ 1
uys

_us tð Þ � gBW _us tð Þj jzs tð Þ zs tð Þj jn�1 � b _us tð Þ zs tð Þj jn
� �

(15)

The yield strength of the structure is

Fy ¼ ksuys (16)

Dynamic equilibrium of the structure and the base isolation system gives

ms þ mbð Þ€ub þ ms€us þ abkbub þ Qzb tð Þ þ cb _ub tð Þ ¼ � ms þ mbð Þ€ug (17)

Dynamic equilibrium of the isolated structure gives

ms€us þ ms€ub þ asksus þ 1� asð Þksuyszs þ cs _us ¼ �ms€us (18)
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Consequently, equations (17) and (18) become equations of motion of the combined structure–
isolation system. The results presented in this study were obtained by solving the conventionally
derived equations (19) and (20) by using Matlab The Mathworks, Inc.: Natick, MA, 1999.

€ub þ gm€us þ ob
2ub þ Q

ms þ mb
zb þ 2xbob _ub ¼ �€ug (19)

€us þ €ub þ asos
2us þ 1� asð Þos

2uyszs þ 2xsos _us ¼ �€ug (20)

5. RESPONSE OF A BASE-ISOLATED STRUCTURE TO ANALYTICAL PULSE EXCITATION

An analytical symmetric Ricker pulse (Ricker 1943[25], 1944[26]) with a pulse period Tp = 0.5 and
pulse peak acceleration ap = 0.8 g (Figure 2, left) given by

€ug tð Þ ¼ ap 1-
2p2t2

T2
p

 !
e
-122p

2 t2

T2p (21)

is used to excite a prototype SDOF structure with mass ms = 100 t, structural vibration period Ts = 0.5 s,
and damping ratio z= 0.02. Four different instances of the prototype structures are developed, all
having the same mass, vibration period, and damping. First, the strengths of the fixed-base prototype
structure are selected such that it responds elastically (Ry = 1) and inelastically (Ry = 2, a = 0.02) to
the chosen Ricker pulse. Second, the prototype structure is base isolated using spherical sliding
bearings. The mass of the structure and the base mat are assumed to be the same, resulting in a mass
ratio gm= 0.5. The bearing system stiffness kb is selected such that the isolation period Tb = 3 s. The
bearing friction coefficient mf = 0.05 is selected such that the strength of the bearings system
Q= mf(ms +mb)g = 98.1 kN, approximately 20 times less than the strength of the elastic fixed-base
structure (=1869 kN). Such relatively weak bearing system is selected to starkly highlight the
difference in the response of elastic and inelastic isolated structures. The strengths of the fixed-
base and base-isolated prototype structures are selected such that they remain elastic (Ry = 1) or
yield (Ry = 2, as = 0.02) when excited by the chosen Ricker pulse. The structural characteristics of
the four instances of the prototype structure are shown in Table I.

The force–deformation responses of the four structures to the chosen symmetric Ricker pulse are
shown in Figure 3. The plot in Figure 3 (top-left) shows that the inelastic fixed-base prototype
structure, with Ry = 2, develops a displacement ductility m ¼ 0:11m

0:06m ¼ 1:83 confirming the validity of

Figure 2. Acceleration time histories of the symmetric (left) and antisymmetric (right) Ricker pulse ground
motion excitations, the response of the base mat, and a Gabor pulse approximation of the base mat response.
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the ‘equal displacement’ rule (Ry� m) for the relatively short vibration period Ts = 0.5 s. The strength of
the elastic base-isolated structure is an order of magnitude smaller than that of the corresponding elastic
fixed-base structure (Table I), confirming the effectiveness of the base isolation system in decreasing
the base shear demand for the isolated structure. However, if the base-isolated structure is designed
with Ry = 2 to respond inelastically (Figure 3(top-right)), it develops a displacement ductility demand
m ¼ 0:023m

0:004m ¼ 5:75, significantly more than expected using the ‘equal displacement’ rule.
A comparison of response plots in Figure 3 shows that the relative displacement of the elastic

base-isolated structure (us) is an order of magnitude smaller than the displacement of the base
mat (ub) or the total displacement of the structure relative to the ground (us+ub). However, the
relative displacement of the inelastic base-isolated structure is not negligible (in this case, it is
approximately a third of the bearing displacement). Note that the displacement of the base mat is
approximately the same for the elastic and the inelastic base-isolated structures, confirming an
observation made by Kikuchi et al. [17] that the maximum displacement of the base mat is
minimally affected by the yielding of the structure. Makris and Kampas [27] have recently
shown that the isolation period Tb is a good descriptor of the frequency content of the response

Table I. Yield displacement and strength of four instances of the prototype structure.

Prototype SDOF structure
Fixed-base

Base-isolated
ms = 100 t; Ts = 0.5 s Tb = 3 s; Q = 98.1 kN, gm = 0.5

Elastic (Ry = 1) uy = 118mm; Fy = 1869 kN uy = 8mm; Fy = 123.6 kN
Inelastic (Ry = 2) uy = 59mm; Fy = 934.5 kN uy = 4mm; Fy = 61.8 kN

(a)

(c) (d)

(b)

Figure 3. Force–deformation loops of (a) fixed-base elastic and inelastic structure, (b) seismically isolated
elastic and inelastic structure, and (c) isolation bearings (for elastic and inelastic structure). (d) Bearing

force–total (bearing + structural) displacement loops. The excitation is a symmetric Ricker pulse.
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of the isolated structure (better than the secant period Teff used in design codes [1, 2]). These two
findings justify the use of the post-yield bearing stiffness in the dimensional analysis of the
response of the isolated structures.

The departure of the response of the inelastic base-isolated structure from the equal
displacement rule may be explained by observing that base isolation not only decreases the
magnitude of the excitation transmitted to the isolated structure but also lengthens the dominant
period of the motion of the base mat, thus changing the nature of the excitation of the isolated
structure. Such lengthening of dominant period of the excitation is detrimental to classes of
structures whose response is strongly dependent on the period of the excitation, such as the
elastoplastic fixed-base structures (Makris and Black [28, 29]) and rocking structures (Vassiliou
and Makris [30]). The base (ground) acceleration of the fixed-base structure is compared with
the base mat acceleration of the isolated structure for the symmetric excitation (Figure 2—left).
The motion of the isolated base mat is pulse-like: it was analyzed using wavelet analysis
(Vassiliou and Makris [31]) to extract its dominant period. This dominant period is 0.88 s,
significantly longer than the ground excitation pulse period Tp = 0.5 s. The right plot of
Figure 2 shows the acceleration of the base for an antisymmetric Ricker pulse ground
excitation given by

€ug tð Þ ¼ ap
bR

4p2t2

3T2
p

-3

 !
2ptffiffiffi
3

p
Tp

e
-124p

2 t2

3T2p (22)

where bR is set to 1.38 such that the above function has a maximum equal to ap. The pulse
parameters are ap = 0.5 g and Tp = 0.5 s. Wavelet analysis of the base mat acceleration time
history gives a dominant pulse period of 0.56 s, indicating a slight excitation period elongation
for the isolated structure. Note that the shape of the base mat excitation changes significantly
compared with the ground excitation: it looks more like a constant acceleration pulse
(approximated as a Gabor wavelet in Figure 2), a potentially more demanding pulse than the
Ricker pulse because of its larger power [30]. The base mat excitation also has higher
frequency components that might excite higher modes of the isolated structure. Despite these
observations, the causes for large displacement ductility demand in inelastic isolated structures
remain difficult to determine.

6. DIMENSIONAL ANALYSIS OF THE RESPONSE OF BASE-ISOLATED STRUCTURES TO
ANALYTICAL PULSE EXCITATION

The destructive potential of near-source ground motions motivated the development of various closed-
form analytical pulse functions that approximate the principal kinematic characteristics of such
motions. The early work by Veletsos et al. [32] was followed by contributions from Hall et al. [33],
Makris [34], Makris and Chang [35], Alavi and Krawinkler [36], and more recently by Mavroeidis
and Papageorgiou [37]. Some of the most widely used analytical pulses (Apostolou et al. 2007 [38],
Gazetas et al. 2009 [39] among others) are the symmetric Ricker pulse given by equation (21) and
the antisymmetric Ricker pulse given by equation (22) [25, 26].

The well-defined characteristics of the analytical pulses make possible to use dimensional analysis
to study the response of inelastic seismically isolated structures. Equations (19)–(22) show that the
maximum structural deformation of a base-isolated inelastic structure excited by an analytical pulse
is a function of 11 arguments:

usmax
¼ f1 Tb

Q

ms þ mb
; uyb ; xb; Ts; a; uys ; xs; gm; ap; Tp

� �
(23)
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The maximum structural deformation of the corresponding elastic base-isolated structure (one that
has the same mass and fundamental vibration period but different strength) is a function of the
following nine arguments:

usmax;elastic ¼ f2 Tb
Q

ms þ mb
; uyb ; xb; Ts; xs; gm; ap; Tp

� �
(24)

There is a one-to-one correspondence between the yield displacement of the inelastic base-isolated
structure uys and the force reduction factor Ry used to design it. Hence, equations (23) and (24) show
that the displacement ductility m of the inelastic base-isolated structure is a function of the following 11
variables:

m ¼ usmax

uys
¼ f Tb

Q

ms þ mb
; uyb ; xb; Ts; a;Ry; xs; gm; ap; Tp

� �
(25)

The 12 terms of equation (25) involve only two reference dimensions: length [L] and time [T].
According to Buckingham’s Π-theorem [40, 41], equation (25) can be rewritten involving only 12-
2 = 10 dimensionless terms, with the vibration periods normalized by the pulse period Tp:

m ¼ ’1
Tb
Tp

;
Q

ms þ mbð Þap ;
uyb

apTp2
; xb;

Ts
Tp

; a;Ry; xs; gm

� �
(26)

Alternatively, the structure vibration period Ts can be normalized using the isolation period Tb, and
equation (25) can be written as

m ¼ ’̂1
Tb
Tp

;
Q

ms þ mbð Þap ;
uyb

apTp2
; xb;

Ts
Tb

; a;Ry; xs; gm

� �
(27)

In this study, we assumed that the bearing yield displacement uyb is very small (uyb� 0.25mm),
such that the bilinear inelastic Bouc–Wen model corresponds to a spherical sliding bearing. Past
studies (Makris and Chang [35], and Makris and Vassiliou [42]) have demonstrated that the response of
isolated structures is indifferent to the exact value of the bearing yield displacement, making the results
obtained in this study valid for isolation systems that use lead–rubber bearings, with larger values of uyb,
as long as they have the same hardening slope abkb and the same strength Q. More important, according
to [35] and [42], uyb

apT2
p
drops out of the equations (26) and (27), which then become

m ¼ ’2
Tb
Tp

;
Q

ms þ mbð Þap ; xb
Ts
Tp

; a;Ry; xs; gm

� �
(28)

m ¼ ’̂2
Tb
Tp

;
Q

ms þ mbð Þap ; xb;
Ts
Tb

a;Ry; xs; gm

� �
(29)

The ratio of the maximum displacement of the inelastic system to the maximum displacement of the
elastic system is defined as

g ¼ usmax

uselastic
¼ m

Ry
¼ ’

Tb
Tp

;
Q

ms þ msð Þap ; xb;
Ts
Tp

; a;Ry; xs; gm

� �
(30)

g ¼ usmax

uselastic
¼ m

Ry
¼ ’̂

Tb
Tp

;
Q

ms þ mbð Þap ; xb;
Ts
Tb

a;Ry; xs; gm

� �
(31)

A comparison of the maximum displacement ratio spectra plotted using Ts/Tp (equation (30)—
Figure 4) and Ts/Tb (equation (31)—Figure 5) as dimensionless variables shows that normalizing
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using the pulse period Tp results in a more consistent representation of the (relatively small) effect of
the isolation period Tb. Henceforth, the time dimension will be normalized using the pulse period,
and the results of dimensional analysis will be presented using the maximum displacement ratio
spectra (plot of g= m/Ry versus structure–pulse period ratio Ts/Tp). The range of the abscissa was
selected to cover the mathematically possible range of structure/pulse period ratios. Stiff structures
can have natural periods as short as Ts = 0.20 s (Huang and Whittaker [43]), whereas energetic
pulses from near source records can have periods as long as 3 s [42]. Hence, a practical lower
bound for Ts/Tp can be set at 0.07.

6.1. Principal findings

Maximum displacement ratio spectra for an isolated structure with as= 0.02, structural viscous
damping xs = 0.02, mass ratio gm= 0.8, bearing coefficient of friction mf= 0.05, non-dimensional
strength Q

msþmbð Þap ¼
mfg
ap

¼ 0:05 , and no isolation system damping xb = 0 are plotted in Figure 4 in

natural coordinates for two values of Ry (1.5 and 3) and three values of the Tb/Tp ratio ranging from
2 to 4. The top plot is for a symmetric Ricker excitation, whereas the bottom plot is for an
antisymmetric Ricker excitation. In the following discussion, the term ‘counterparts’ refers to the
fixed-base and base-isolated structures that have the same strength reduction factor Ry.

From the data in Figure 4, it is evident that the displacement amplification ratio g grows rapidly as
the structure/pulse period ratio Ts/Tp becomes smaller. For small values of Ts/Tp (corresponding to

Figure 4. g-Ts/Tp spectra for different values of normalized isolation periods Tb/Tp and force reduction fac-
tors Ry. Hardening a= 0.02, mass ratio gm= 0.8 (heavy building), and normalized bearing yield force mfg/

ap = 0.05. Top plot, symmetric Ricker pulse; bottom plot, antisymmetric Ricker pulse.
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stiffer structures, the likely candidates for seismic isolation), the rate of growth of g is much higher for
base-isolated structures than it is for their fixed-base counterparts. For example, a structure with a force
reduction factor Ry = 3 and a fundamental vibration period Ts = 0.5 s (giving Ts/Tp= 1) base isolated
using spherical sliding bearings with Tb = 2 s (giving Tb/Tp= 4) and coefficient of friction mf = 0.025,
excited by a pulse with Tp = 0.5 s and ap = 0.5 g would experience a displacement ductility demand
of about 8, whereas its fixed-base counterpart would develop a displacement ductility demand of
approximately 3.75. If the same seismically isolated structure is designed with an Ry = 1.5 (the value
specified by the Eurocode and IBC for typical reinforce concrete frame structures), the displacement
ductility demand induced by the Ricker pulse excitation would be about 3. Similar displacement
amplification has been observed by Kikuchi et al. [17] for harmonic excitation, and Politopoulos
and Pham [44] for earthquake excitation.

The ‘counterpart’ base-isolated and fixed-base structures have the same strength reduction factor,
not the same strength. The base-isolated structure, therefore, has smaller yield strength than its
fixed-base counterpart. Fixed-base structures designed to be very stiff are often very strong
(Priestley et al. [45]), requiring very intense ground excitations to yield. On the contrary, base-
isolated structures are designed only to remain essentially elastic for the base shear force transmitted
by the base isolation system. If such structures are stiff relative to the duration of the excitation
pulse, and if their strength reduction factor is overestimated (either because of an overestimate of
yield strength or because of an underestimate of seismic force demand), the ductility demand they
develop may be much larger than that expected according to the ‘equal displacement’ rule. Such

Figure 5. g-Ts/Tb spectra for different values of normalized isolation periods Tb/Tp and force reduction
factors Ry. Hardening a= 0.02, mass ratio gm= 0.8 (heavy building), and normalized bearing yield force

mfg/ap = 0.05. Top plot, symmetric Ricker pulse; bottom plot, antisymmetric Ricker pulse.

DYNAMICS OF YIELDING BASE-ISOLATED STRUCTURES

Copyright © 2013 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2013)
DOI: 10.1002/eqe



ductility demand may easily exceed the displacement ductility capacity of such stiff isolated structures
and serve as a precursor to collapse. This observation leads to a conclusion that stiff base-isolated
structures may not be ductile but quasi-brittle.

The data in Figure 4 provide guidance of the critical relative stiffness of base-isolated structures. We
will assume that structures designed to respond inelastically can sustain the ductility demands in
accordance with the ‘equal displacement’ rule, that is, Ry = m, or g = 1. Using the data in Figure 4,
the ‘equal-displacement’ region of the spectrum for inelastic fixed-base structures starts, roughly,
when Ts/Tp> 1 for the symmetric Ricker pulse and when Ts/Tp> 0.5 for the antisymmetric Ricker
pulse. In comparison, the ‘equal-displacement’ region of the spectrum for all inelastic base-isolated
structures starts when Ts/Tp> 2.5 for both symmetric and antisymmetric Ricker pulses. This
observation indicates that there is an effective shortening of the displacement-controlled region and
a corresponding lengthening of the acceleration-controlled and velocity-controlled regions, of the
response spectra for seismically isolated structures.

The data in Figure 4 also indicate that, for the considered values of the isolation period to excitation
pulse ratio Tb/Tp equal to 2, 3, and 4, Tb/Tp is of minor importance for the displacement amplification
factor g, especially for small values of Ry. This observation does not hold for values of Tb/Tp smaller
than 2, that is, for base-isolated structures whose isolation period is close to the predominant period
of the excitation.

Combined, these three observations provide important design guidance for seismically isolated
structures. Namely, typical short-period and medium-period seismically isolated structures should

Figure 6. Structure displacement normalized with apTp
2 plotted for different values of isolation periods

(Tb/Tp) and different values of force reduction factor Ry. Top plot, symmetric Ricker pulse; bottom plot,
antisymmetric Ricker pulse.
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continue to be designed to remain elastic, with the force reduction factors accounting only for the
possible overstrength of the isolated structures. Only the flexible, long-period isolated structures can
be designed to respond inelastically following the conventional ‘equal displacement’ rule. Such
structures are not typical candidates for seismic isolation: nevertheless, tall buildings have been
seismically isolated in Japan [46] and in the USA [47, 48] and have performed well during the 2011
Great Tohoku Earthquake [14].

The maximum total (relative to the ground) roof displacements, uroof, normalized using apTp
2, for

the structure–isolation systems in Figure 4 are plotted in Figure 6. It is worth noting that these
maximum total displacement spectra are roughly the same in the elastic (Ry = 1) and the two
inelastic cases (Ry = 1.5 and Ry = 3) across the range of different isolation periods (Tb/Tp). This
observation leads to the conclusion that the maximum total roof displacement of the structure-
isolation system with respect to the ground is preserved across the structure period spectrum
(normalized with respect to the excitation pulse period). As Kikuchi et al. [17], Thiravechyan et al.
[18], and Makris and Kampas [27] have shown, the vibration period that governs the response of the
structure–isolation system is close to (and slightly smaller than) the isolation period Tb. Because the
isolation period is relatively long, the structure–isolation system is in the displacement-controlled
range of the pulse excitation response spectrum. Hence, the maximum total roof displacements
change slightly with the variation of the seismic force reduction factor Ry for the isolated structure
and can be predicted using the ‘equal displacement’ rule. However, the distribution of the total roof
displacement between the base isolation system and the isolated structure changes depending on
how the isolated structure responds. As shown in Figure 3, practically, all of the roof displacement

Figure 7. g-Ts/Tp spectra for different values of normalized isolation periods Tb/Tp and force reduction fac-
tors Ry. Hardening a= 0.02, mass ratio gm= 0.5 (light building), and normalized bearing yield force mfg/ap =

0.05. Top plot, symmetric Ricker pulse; bottom plot, antisymmetric Ricker pulse.
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of the elastic isolated structure is accommodated by the bearings (the structural deformation is very
small). In contrast, the total displacement of inelastic isolated structures is distributed between the
structure and the isolation system. Furthermore, the distribution ratio is not constant but varies
through the response time history depending on the sequence and duration of yielding events in the
structure and the isolation system. More research is needed to fully understand why the inelastic
deformation of typical base-isolated structures is larger than expected following the ‘equal
displacement’ rule.

6.2. Effects of design parameters

The effects of the design parameters listed in equation (30) on the inelastic response of seismically
isolated structures are investigated in this section. The effect of the weight of the seismically
isolated structure is examined first. The g-Ts/Tp spectra for a small value of the mass ratio, gm= 0.5,
are plotted in Figure 7. This gm value corresponds to a one-story structure where the roof and the
floor slab have the same mass. Compared with the case of a heavier structure (Figure 4), the lighter
seismically isolated structure develops slightly smaller displacement ductility demands for the period
ratio of interest for typical seismically isolated structures (Ts/Tp< 1.5) and for modest strength
reduction factor values (Ry = 1.5). Hence, weaker interaction between the lighter structure and the
seismic isolation system decreases the displacement ductility demands for the structure.

Figure 8. g-Ts/Tp spectra for different values of normalized isolation periods Tb/Tp and force reduction fac-
tors Ry. Hardening a= 0.00, mass ratio gm= 0.8 (heavy building), and normalized bearing yield force mfg/

ap = 0.05. Top plot, symmetric Ricker pulse; bottom plot, antisymmetric Ricker pulse.
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The influence of structure stiffness hardening ratio, as, is investigated next in Figure 8, where the g-
Ts/Tp spectra are plotted for elastic perfectly plastic seismically isolated structures (hardening ratio
a= 0). As expected, post-yield hardening (a = 0.02 in Figure 4) limits the magnitude of displacement
of any structure, including seismically isolated ones. However, significant differences between the
perfectly plastic and the hardening structures are apparent only when Ts/Tp< 0.5, that is, for stiff
seismically isolated structures. This observation suggests that it is desirable to ensure that
seismically isolated structures develop significant and sustainable hardening after they yield.

The effects of the seismic isolation system design parameters are investigated next. The influence of
the normalized yield strength of the seismic isolation system (the bearings), Q

msþmbð Þap , is shown in

Figure 9, where the g-Ts/Tp spectra are plotted for twice-as-large value of Q
msþmbð Þap ¼ 0:1 than those

in Figure 4 where Q
msþmbð Þap ¼ 0:05 . Stronger bearings (larger Q) or a smaller excitation pulse

(smaller ap) slightly decreases the displacement ductility demand for the isolated structure. Note that
when Q

msþmbð Þap increases, the strength of the structure also changes so that Ry stays constant.

The g-Ts/Tp spectra for a seismic isolation system with additional viscous dampers are shown in
Figure 10. Evidently, the presence of the extra damping makes all of the spectra smoother, slightly
elongates the displacement-controlled spectral region, reduces the importance of the pulse shape and
the isolation period, but does not significantly reduce the displacement ductility demand on the
inelastic seismically isolated structure.

Figure 9. g-Ts/Tp spectra for different values of normalized isolation periods Tb/Tp and force reduction
factors Ry. Hardening a= 0.02, mass ratio gm= 0.8 (heavy building), normalized bearing yield force

mfg/ap = 0.10. Top plot, symmetric Ricker pulse; bottom plot, antisymmetric Ricker pulse.
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7. CONCLUSIONS

In this paper, we addressed the dynamics of inelastic seismically isolated structures. We used an
inelastic 2-degree-of-freedom model to examine the dynamic response of such structures under
analytical acceleration pulse ground excitation, and we organized the results by using dimensional
analysis. The focus of our investigation was the relation between the yield strength of the isolated
structure, its corresponding displacement ductility demand, and its fundamental vibration period. We
find the following:

(1) The displacement ductility demand for a relatively stiff seismically isolated structure designed to
yield under the expected seismic base shear grows rapidly with decreasing yield strength (for the
same period) and increasing stiffness (for the same yield strength). We observe that a slight
overestimate of the strength reduction factor may cause a disproportionately large displacement
ductility demand that may exceed the ductility capacity of the seismically isolated structure and
may lead to collapse. In this sense, the stiff inelastic seismically isolated structures are quasi-
brittle.

(1) The spectral region where the seismically isolated structures are susceptible to such quasi-brittle
behavior is significantly longer than that for the corresponding fixed-base structures. We

Figure 10. g-Ts/Tp spectra for different values of normalized isolation periods Tb/Tp and force reduction
factors Ry. Hardening a= 0.02, mass ratio gm= 0.8 (heavy building), normalized bearing yield force mfg/
ap = 0.05, and extra viscous damping at the base with xb = 0.1. Top plot, symmetric Ricker pulse; bottom

plot, antisymmetric Ricker pulse.
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observe an effective shortening of the displacement-controlled region (where the ‘equal
displacement’ rule applies) of the response spectrum for inelastic seismically isolated structures.

(2) Although the maximum displacement of the inelastic seismically isolated structure with respect
to the ground is preserved, the distribution of this displacement between the seismic isolation
system and the structure varies considerably and depends on the sequence and duration of the
yielding events in the structure and the isolation system.

(3) It is desirable that inelastic seismically isolated structures develop significant and sustainable
post-yield hardening to limit the magnitude of displacement and thus control the ductility
demand.

(4) Stronger seismic isolation bearings and additional damping in the seismic isolation system
reduce the displacement ductility demand for the seismically isolated structures. The choice of
the seismic isolation period does not have a significant effect on the relationship between the
strength reduction factor (Ry), the ductility (m), and the structural period (Ts) as long as the
isolation period is at least twice as long as the period of the pulse excitation.

On the basis of the aforementioned findings, we conclude that designing typical seismically isolated
structures to behave elastically, as prescribed by current seismic design codes, is not overly
conservative but a necessity that emerges from the fundamental dynamics of such structures. The
advantages of correctly designed seismically isolated structures over their fixed-based counterparts
are (i) high confidence in achieving the target seismic performance objectives; and (ii) control of the
life-cycle costs of the structure. These advantages should be evaluated against the increased initial
investment in the seismic isolation system to determine the seismic design strategy that best suits the
economic needs and capabilities of the investors and owners of the structure.
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