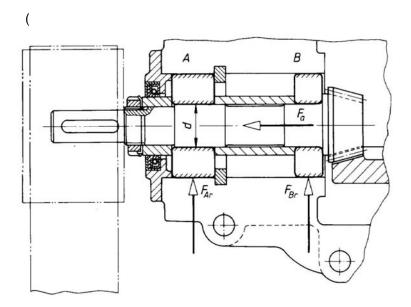
Dimensionieren 2

Prof. Dr. K. Wegener


Name	
Vorname	
Legi-Nr.	

Übung 6: Lagerung Getriebewelle

Voraussetzungen: Lagerungen

Problemstellung

In Abb. 1.1 ist die Lagerung der Antriebswelle eines universellen Kegelradgetriebes dargestellt. Die Lagerkräfte F_{Ar} und F_{Br} sowie die Axialkraft F_a auf die Ritzelwelle wurden für den hinsichtlich der Belastung ungünstigsten Fall einer aufgesetzten Riemenscheibe bereits ermittelt. Aus der Dimensionierung der Welle resultiert ein Durchmesser d=45 mm. Das Lager A ist aus konstruktiven Gründen trotz höherer Belastung als Festlager auszubilden. Gegeben sind folgende Masse und Daten:

Wellendurchmesser: d=45 mm

Drehzahl der Welle: n=1500 U/min

Axialkraft: F_a=2500 N

Radialkraft Lager A: F_{Ar} =4500 N Radialkraft Lager B: F_{Br} =3500 N

geforderte Lebensdauer:

L_h=20000 Betriebsstd.

Abb. 1.1 (B505lagZ) Lagerung der Antriebswelle eines universellen Kegelradgetriebes (FAG)

Aufgabenstellung

Wählen Sie für die Lagerung der Welle passende Lager und überprüfen Sie diese auf die geforderte Lebensdauer. Ausserdem sind folgende Fälle abzuklären:

- Reicht für die Lagerstelle A ein Rillenkugellager der schwersten Baureihe nicht aus, ist als nächstes ein Schrägkugellagerpaar in X- Anordnung zu wählen und zu überprüfen.
- Für die Lagerstelle B soll ein Rillenkugellager der gleichen Durchmesserreihe wie an der Stelle A gewählt und überprüft werden (durchgehende Gehäusebohrung).
- · Welche Passungen sind für die Welle und die Gehäusebohrung vorzusehen?

Folgende Tabellen und Lagerkatalogausschnitte werden zur Lösung benötigt:

1

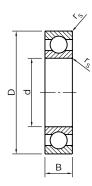


Abb. 1.2 (B503lagZ) Rillenkugellager einreihig

Welle	Abme	ssung			Tragza	ahl	Kinematisch zulässige	Thermische Bezugs- drehzahl	Kurzzeichen	Gewicht ~ kg
	d	D	В	r,	dyn. C kN	stat. Co	Drehzahl			
	mm			min			min-1		FAG	
	40	90	23	1,5	42,5	25	18000	11000	6308	0,639
	40	90	23	1,5	42,5 42,5	25 25	7500 5000	11000	6308.2ZR 6308.2RSR	0,653 0.653
	40	90	33	1,5	42,5	25	5000		62308.2RSR	0,89
	40	110	27	2	63	36,5	15000	10000	6408	1,18
45	45	75	10	0,6	15,6	12,2	22000	8500	16009	0,167
	45	75	16	1	20	14,3	22000	11000	6009	0,252
	45 45	75 75	16 16	1	20 20	14,3	9000 6000	11000	6009.2ZR 6009.2RSR	0,259 0,263
	45	85	19	1,1	31	20,4	19000	10000	6209	0,43
	45 45	85 85	19 19	1,1	31 31	20,4	8000 5300	10000	6209.2ZR 6209.2RSR	0,442 0,442
	45	85	23	1,1	31	20,4	5300		62209.2RSR	0,523
	45	100	25	1,5	53	32	16000	10000	6309	0,853
	45 45	100	25 25	1,5	53 53	32 32	6700 4500	10000	6309.2ZR 6309.2RSR	0,875 0,873
	45	100	36	1,5	53	32	4500		62309.2RSR	1,19
	45	120	29	2	76,5	45	13000	9500	6409	1,51
50	50	80	10	0,6	16	13,2	20000	7500	16010	0,181
	50 50	80	16	1	20,8	15,6	20000	10000	6010	0,28
	50	80 80	16 16	1	20,8	15,6 15,6	8500 5600	10000	6010.2ZR 6010.2RSR	0,29 0,28
	50	90	20	1,1	36,5	24	18000	9500	6210	0,466
	50 50	90 90	20 20	1,1	36,5 36,5	24 24	7500 4800	9500	6210.2ZR 6210.2RSR	0,478 0,466
	50	90	23	1,1	36,5	24	4800		62210.2RSR	0,55
	50	110	27	2	62	38	14000	9500	6310	1,09
	50 50	110 110	27 27	2	62 62	38 38	6000 4000	9500	6310.2ZR 6310.2RSR	1,12

Tab. 1.1 (B504lagZ) Tragzahlen aus Lagerkatalog für FAG Rillenkugellager einreihig (Ausschnitt)

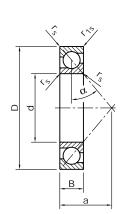


Abb. 1.3 (B509lagZ) Schrägkugellager einreihig (Druckwinkel α = 40°)

	Abme	Abmessung						ahl	Kinema- tisch	Ther- mische	Kurzzeichen	Gewicht
	d	D	В	r_n	r _{in}	a	dyn. C	stat.	zulässige Drehzahl	Bezugs- drehzahl	Lager	
	mm			min	min		kN		min-1		FAG	kg
10	10	30	9	0,6	0,3	13	5	2,5	32000	26000	7200B.TVP	0,028
12	12 12	32 37	10 12	0,6	0,3 0,6	14 16	6,95 10,6	3,4 5	28000 24000	26000 19000	7201B.TVP 7301B.TVP	0,036 0,059
15	15 15	35 42	11	0,6	0,3 0,6	16 18	8 12,9	4,3 6,55	24000 20000	22000 17000	7202B.TVP 7302B.TVP	0,045 0,09
17	17 17	40 47	12 14	0,6	0,6 0,6	18 20	10 16	5,5 8,3	20000 18000	20000 15000	7203B.TVP 7303B.TVP	0,07 0,113
20	20 20	47 52	14 15	1,1	0,6 0,6	21 23	13,4 19	7,65 10,4	18000 17000	18000 13000	7204B,TVP 7304B,TVP	0,103 0,147
25	25 25	52 62	15 17	1,1	0,6 0,6	24 27	14,6 26	9,3 15	16000 14000	16000 11000	7205B.TVP 7305B.TVP	0,127 0,221
30	30 30	62 72	16 19	1,1	0,6 0,6	27 31	20,4 32,5	13,4 20	13000 11000	13000 10000	7206B.TVP 7306B.TVP	0,207 0,342
35	35 35	72 80	17 21	1,1 1,5	0,6	31 35	27 39	18,3 25	11000 9500	12000 9000	7207B.TVP 7307B.TVP	0,295 0,447
40	40 40	80 90	18 23	1,1	0,6	34 39	32 50	23,2 32,5	9500 8500	10000 8500	7208B.TVP 7308B.TVP	0,377 0,657
45	45 45	85 100	19 25	1,1 1,5	0,6	37 43	36 60	26,5 40	8500 7500	9500 7500	7209B.TVP 7309B.TVP	0,43 0,821
50	50 50	90 110	20 27	1,1	0,6	39 47	37,5 69,5	28,5 47,5	8000 7000	9000 7000	7210B.TVP 7310B.TVP	0,485 1,05
55	55 55	100 120	21 29	1,5	1 2	43 51	46,5 78	36 56	7000 6300	8500 6700	7211B.TVP 7311B.TVP	0,645 1,36
60	60 60	110 130	22 31	1,5	1,1	47 55	56 90	44 65,5	6300 5600	7500 6300	7212B.TVP 7312B.TVP	0,779 1,72
65	65 65	120 140	23 33	1,5 2,1	1,1	50,5 60	64 102	53 75	6000 5300	7000 6000	7213B.TVP 7313B.TVP	0,975

Tab. 1.2 (B510lagZ) Tragzahlen aus Lagerkatalog für FAG Schrägkugellager einreihig (Ausschnitt)

▼ Faktor f ₀ für Rillenkugellager									
Bohrungs- kennzahl	Faktor f ₀								
	Lagerreihe 618	160	161	60	62	622	63	623	64
/3 /4 /5 /6				13	12,9 12,2 13,2 13 12,4		13,2 13		
/8 /9 00 01 02		13,9	12.4 13	12,4 13 12,4 13 13,9	13 12,4 12,1 12,2 13,1	12,1 12,2 13,1	11,3 11,1 12,1	12,1	
03 04 05 06 07		14,3 14,9 15,4 15,2 15,6		14,3 13,9 14,5 14,8 14,8	13,1 13,1 13,8 13,8 13,8	13,1 13,1 13,8 13,8 13,8	12,2 12,1 12,4 13 13,1	12,2 12,1 12,4 13 13,1	10,9 11 12,1 12,2 12,1
08 09 10 11		15.9 15.9 16.1 16.1 16.3		15,2 15,4 15,6 15,4 15,5	14 14,1 14,3 14,3 14,3	14 14,1 14.3	13 13 13 12,9 13,1	13 13 13	12.2 12.1 12.2 12.2 12.3
13 14 15 16 17		16.4 16.2 16.4 16.4 16.4		15,7 15,5 15,7 15,6 15,7	14,3 14,4 14,7 14,6 14,7		13,2 13,2 13,2 13,2 13,1		12,3 12,1 12,2 12,3 12,3

Tab. 1.3 (B506lagZ) Tabelle zur Bestimmung von f_0 für Rillenkugellager (FAG)

▼ Radial-und Axialfaktoren der Rillenkugellager

	norma	normale Lagerluft									
$\frac{f_0 \cdot F_a}{C_0}$	е	$\frac{F_a}{F_r}$	≤e	$\frac{F_a}{F_r} > e$							
		Χ	Υ	Χ	Υ						
0,3 0,5	0,22 0,24	1	0	0,56 0,56	2 1,8						
0.9	0,28 0,32	1	0	0,56	1,58 1,4						
1,6 3 6	0,36 0,43	1	0	0,56 0,56	1,2						

Tab. 1.4 Tabelle mit Radialund Axialfaktoren der Rillenkugellager (FAG)

Dynamische Tragzahl C für zusammengepaßte Schrägkugellager

Sind mehrere Schrägkugellager gleicher Größe und Ausführung nebeneinander eingebaut, so ergibt sich die Tragzahl der Lagergruppe zu

$$C = i^{0,7} \cdot C_{Einzellager}[kN]$$

C dynamische Tragzahl der Lagergruppe [kN]

i Anzahl der Lager

Für Lagerpaare ergibt sich somit

$$C = 1.625 \cdot C_{Einzellager} [kN]$$

Dynamisch äquivalente Belastung

Schrägkugellager, Reihe 72B und 73B mit Druckwinkel $\alpha = 40^{\circ}$

Einzellager:

$$P = F_r$$
 [kN] für $\frac{F_a}{F_r} \le 1,14$

$$P = 0.35 \cdot F_r + 0.57 \cdot F_a$$
 [kN] für $\frac{F_a}{F_r} > 1.14$

Lagerpaar in O- oder X-Anordnung:

$$P = F_r + 0.55 \cdot F_a$$
 [kN] für $\frac{F_a}{F_c} \le 1.14$

$$P = 0.57 \cdot F_r + 0.93 \cdot F_a$$
 [kN] für $\frac{F_a}{F_r} > 1.14$

Tab. 1.4 Ausschnitt aus dem FAG-Wälzlagerkatalog