Wahlfach: Fertigungstechnik Übung F

Demo: Optimierung eines flexiblen Fertigungssystems (FFS) durch Simulation

Zoltán Sárosi

sarosi@iwf.mavt.ethz.ch

CLA F 34.2

Definition: Simulation

Simulation ist das Nachbilden eines dynamischen Prozesses in einem System mit Hilfe eines experimentierfähigen Modells, um zu Erkenntnissen zu gelangen, die auf die Wirklichkeit übertragbar sind.

Quelle: VDI Richtlinie 3633 - Blatt 1

Vorteile von Simulationsmodellen

Im Vergleich zu analytischen Methoden:

- Untersuchung von komplexen Systemen
- Wesentlich höheren Grad an Realitätsnähe ohne vereinfachende Annahmen über Verteilungen, Zufälligkeit oder Unabhängigkeit.
- Flexible Sensitivitätsuntersuchungen bezüglich der angenommenen, statischen Verteilungen
- Mathematisch weniger schwierig als die Verwendung von analytischen Ansätzen.
- Anschauliche Darstellung des Systemverhaltens, weil die zeitliche Entwicklung des Systemzustandes Schritt für Schritt nachvollzogen wird.

Quelle: P. Acél

Wann ist eine Simulation sinnvoll und notwendig?

- Wenn Untersuchungen und Experimente am System nicht möglich sind, weil
 - Zu sensibel
 - Zu gefährlich
 - Zu teuer
 - Nicht zugänglich oder nicht real existent
 - Anderer, nicht direkt experimentell erfassbarer Zeitmassstab
- Analytische Methoden sind nicht möglich
- Wenn auf einem Fachgebiet Neuland beschritten wird.
- Komplexe Wirkungszusammenhänge überfordern die menschliche Vorstellungskraft

Quelle: P. Acél

Vorgehen in der Simulationsanwendung

- Situationsanalyse
- 2. Zielformulierung
- 3. Problemabgrenzung
- 4. Versuchsplanung
- 5. Modellkonzeption
- 6. Datenerhebung
- 7. Modellerstellung
- 8. Verifizierung
- 9. Validierung
- 10. Variation
- 11. Optimierung
- 12. Interpretation
- 13. Dokumentation
- 14. Umsetzung

Flexibles Fertigungssystem

Problemstellung

Sie wurden gerade zum neuen Werkstattleiter der Firma ABC Turbo Systems AG ernannt. Diese Fabrik produziert Abgasturbolader, die z.B. im Schiffbau, im Lokomotivbau oder in stationären Generatoranlagen zur Stromerzeugung eingesetzt werden.

Sie werden mit folgenden Problemen konfrontiert:

- schlechte Lieferfähigkeit,
- zu lange Lieferfristen,
- veralteter Maschinenpark
- unsynchronisierte Fertigung.

Problemstellung

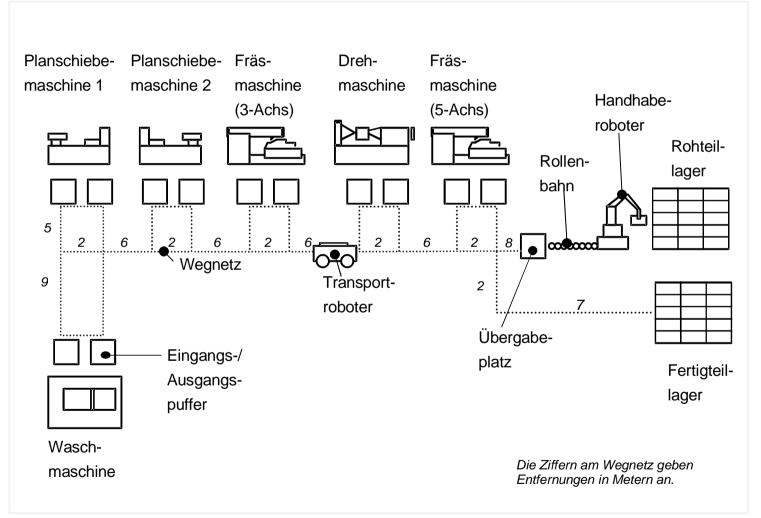
Ihr Vorgänger hat bereits Verbesserungen vorgenommen, unter anderem die Anlage umgebaut und mit einem induktiven Transportsystem (FTS) versehen. Trotzdem wurden nur geringe Verbesserungen in Hinsicht der genannten Probleme erzielt.

Nach den Ergebnissen einer Projektarbeit könnte die Firma aber die dreifache Menge von Turboladern am Markt absetzen.

Sie erhalten daher die Aufgabe, das FFS mit vertretbarem finanziellen Aufwand derart zu verbessern, dass eine **Durchlaufzeitverkürzung auf mindestens**1/3 der Zeit, gültig von Rohteillager (RTL) bis Fertigteillager (FTL) bei gleichzeitiger **Verdoppelung**des Ausstosses erreicht wird.

Problemstellung

In einer vorangegangenen Studie wurde weiterhin ermittelt, welche Massnahmen zur Verbesserung prinzipiell technisch möglich wären, welchen Nutzen diese hätten und welche Kosten damit verbunden sind. Die Ergebnisse dieser Studie wurden in einem Massnahmenkatalog zusammengestellt.


Das Instrument der computerunterstützten Simulation wird zur Lösungsfindung benutzt werden.

In die Kostenrechnung fliessen lediglich die statischen Anschaffungs- und Umstellungskosten ein. In der Ergebnistabelle sind die Kosten auf ein Jahr abzuschreiben.

Ist-Situation Layout

Produkte

Es werden ausschliesslich die drei Gehäusetypen "7002", "7003" und "7004" gefertigt.

Die Rohteile für die Gehäuse werden in folgendem Rhythmus aus dem RTL in das System eingeschleust:

•7002: alle 50.0 Minuten (erstmals zum Zeitpunkt 0.0),

•7003: alle 60.0 Minuten (erstmals zum Zeitpunkt 17.0) und

•7004: alle 70.0 Minuten (erstmals zum Zeitpunkt 31.0).

Arbeitsplan

Operation Produkt	Hand	Plan1	Plan2	Fräs3A	Fräs5A	Wasch	Dreh
Gehäuse Typ 7002	þ						
Gehäuse Typ 7003	b			ϕ	þ	þ	9
Gehäuse Typ 7004	b			$\frac{1}{2}$		þ	P
Operationszeit in Minuten (für alle Produkte gleich)	2.5	40.0	21.0	42.0	14.0	12.0	15.0

Zusätzliche Inputs

Rollerbahn:

Kapazität: 10 Stück

Länge: 10 m

Durchschn. Geschw.: 2.8 m/min

FTS:

Durchschn. Geschw.: 25 m/min

Durchschn. Be- und Entladezeit: 1.0 min

Zeitsteuerung:

1 Jahr = 250 Tage; 1 Tag = 2 Schichten;

1 Schicht = 480 Minuten

Aufgaben

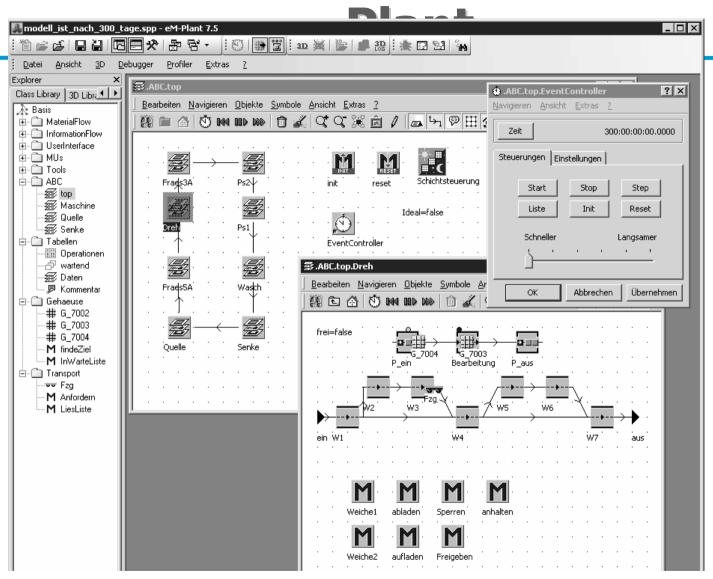
- Engpässe finden mit Hilfe der Simulation
- Ergebnisse verifizieren mittels statischer Berechnung
- Auswirkungen der einzelnen Massnahmen analysieren
- Die optimale Lösung finden:
 - DLZ auf 1/3 senken
 - Ausstoss exakt* im Teilmix verdoppeln
 - finanzielles Optimum finden
- Die Ergebnisse begründen
- *) übrige Teile verursachen Entsorgungsgebühren von 1'000 CHF

Massnahmenkatalog - Teil I.

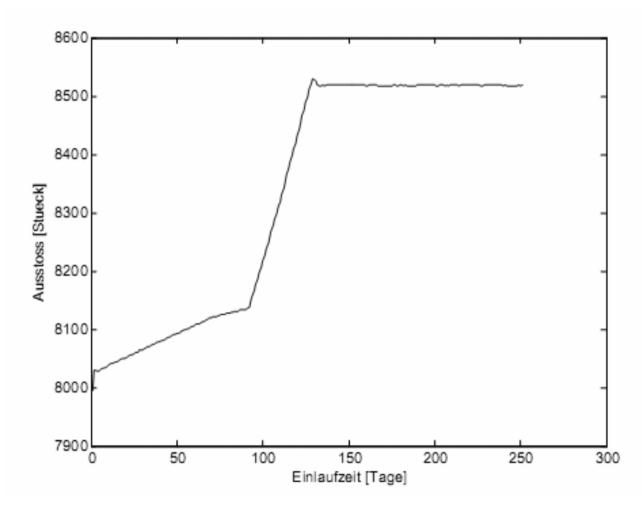
Nr.	Massnahme	Änderung im Modell	Nutzen	Kosten)*
				CHF
1	Einführung 2 1/2-Schicht-Betrieb	Änderung der	Erhöhung des Durchsatzes	80.000
		Tagesverfügbarkeit		
2	Anschaffung zusätzlicher	Einsatz eines weiteren FTS	Erhöhung der	je 200.000
	Fahrzeuge		Transportkapazität	
3	Flexibleres Einstellen des	Änderung aller	Flexibleres Einstellen des	180.000
	Teileausstosses am RTL durch ein	Zwischenankunftszeiten	Teileausstosses	
	neues Regalbediengerät	(Senkung auf 35 Min.		
-		möglich)		
4	Erhöhung der Geschwindigkeit	Änderung der Operationszeit	Geschwindigkeitserhöhung	40.000
	des Handhabungsroboters durch	von 2,5 auf 1,5 Min		
-	Einbau neuer Motoren			
5	Erhöhung der Geschwindigkeit	Änderung der	Geschwindigkeitserhöhung	6.000
	der Rollenbahn durch neue	Geschwindigkeit von 2.8 auf		
	Motoren	4.0 m/Min		
6	Verbesserung einer	Änderung der	Geschwindigkeitserhöhung	je 80.000
	Planschiebemaschine durch neue	Operationszeiten von 21.0 Min		
	Werkzeuge und	auf 12.5 Min bzw. von 40.0		
	Spannvorrichtungen	Min auf 24 Min		

)* In der Kostenrechnung sind lediglich die Anschaffungs- und Umstellungskosten berücksichtigt. Änderungen, die nicht voll ausgenutzt werden, werden bezüglich der Kosten voll angesetzt

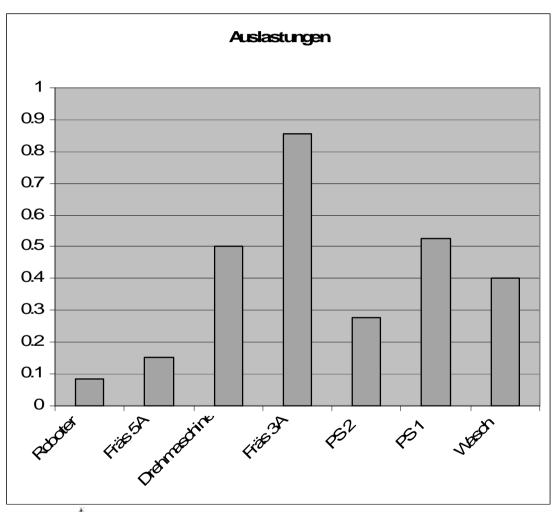
Massnahmenkatalog — Teil II.


7	Verbesserung einer Fräsmaschine durch neue Motoren und	Änderung der Operationszeit: Fraes3A auf 25.0 Min	Geschwindigkeitserhöhung	je 100.000
	Spannvorrichtungen	Fraes5A auf 8.0 Min		
8	Verbesserung der Waschmaschine durch Einbau eines neuen Motors	Änderung der Operationszeit auf 9.5 Min	Geschwindigkeitserhöhung	60.000
9	Verbesserung der Drehmaschine durch neue Werkzeuge und	Änderung der Operationszeit auf 4.5 Min	Geschwindigkeitserhöhung	180.000
	Spannvorrichtungen			
10	Zusätzliche 3-Achs-Fräsmaschine	Neue Maschine mit Operationszeit 25.0 Min	Kapazitätserhöhung	520.000
11	Zusätzliche Waschmaschine	Neue Maschine mit Operationszeit 12.0 Min	Kapazitätserhöhung	140.000
12	Neues Layout	Umplatzierung einer/ mehrerer Maschinen	Kürzere Wege für FTS	je 20.000

)* In der Kostenrechnung sind lediglich die Anschaffungs- und Umstellungskosten berücksichtigt. Änderungen, die nicht voll ausgenutzt werden, werden bezüglich der Kosten voll angesetzt.


Simulationsmodell in eM-

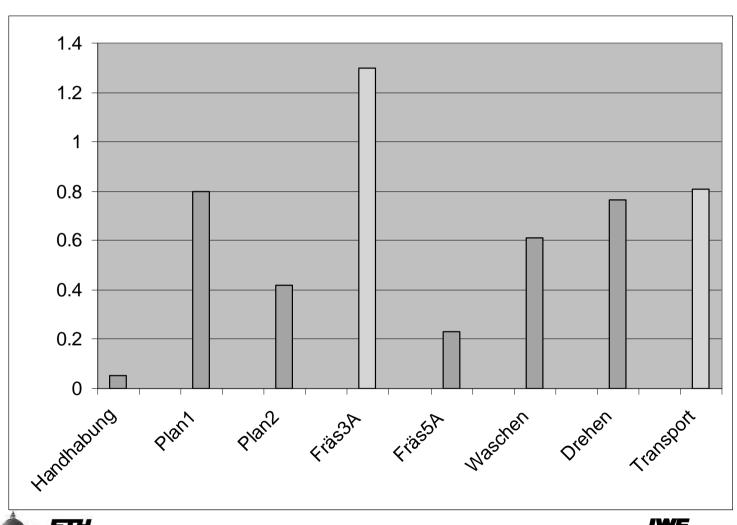
Einlaufzeit



Aufgabe 1: IST-Situation, Engpässe finden

Offensichtlicher Engpass: 3 Achs Fräsen

Häufige Blockaden von Maschinen lassen es vermuten, dass FTS ebenfalls ein Engpass ist


Statische Berechnung

Übung 2: Verbesserur	ng eines flex	xible	en Fertigur	Statis	ch I	ST											
Operation	Einlastung Istzustand Zwischenankunftszeit min	Faktor	Einlastung effektiv Zwischenankunftszeit min	Einlastung, Ankunftsrate		Handh	ab Pla	n1	Plan2	Fräs3A		Fräs5A	Waschen	Drehen	Transport	Durchlaufzeit erstes Teil	
In Rahmen: Operation	szeit pro Te	eil ui	nd Station	in min	/stc	1											
Produkttyp																	
Gehäuse Typ 7002	50	1	50	1.2	1	3	1 4	·8	1 25.2	0		0 1	14.4 1	18 1	20.64	107.7	
Gehäuse Typ 7003	60	1	60	1	1	0.127		0	0	1 42	1	14 1	12 1	15 1	17.2	102.7	
Gehäuse Typ 7004	70	1	70	0.86	1	0.109		0	0	1 36		0 1	10.28571 1	12.857 1	10.71429	84	<anm.korr!< td=""></anm.korr!<>
Operationszeit pro Te	I und Statio	n in	min, 7002	2		2.5	4	Ю	21	42		14	12	15	17.2		
Operationszeit pro Te	il und Statio	n in	min, 7003	3		2.5	4	Ю	21	42		14	12	15	17.2		
Operationszeit pro Te	il und Statio	n in	min, 7004	1		2.5	4	Ю	21	42		14	12	15	12.5		
Operationszeit total pro Station in min pro Stunde						3.237	4	18	25.2	78		14	36.68571	45.857	48.55429		
Auslastung						0.054	0	.8	0.42	1.3		0.233	0.611429	0.7643	0.809238		
Anzahl Sc 2																	
Schichtdau 8																	

Verifizierung durch statische Berechnung

Auswirkungen der Massnahmen I.

- 1.) 2.5 Schichtbetrieb: Erhöhung des Ausstosses, kürzere DLZ
- 2.) Zusätzliche Fahrzeuge: weniger Blockaden, kürzere DLZ und mehr Ausstoss
- 3.) Zwischenankunftszeiten genau Einstellen -> Teilmix halten
- 4.) Roboter ist kein Engpass -> kein Verbesserungspotenzial
- 5.) Rollenbahn ist ebenfalls kein Engpass
- 6.) Die Planschiebemaschinen werden nur für einen Gehäusetyp verwendet, und sind keine Engpässe

Auswirkungen der Massnahmen II.

7.) Da die 3A-Fräsmaschine ein Engpass ist, steckt ein mögliches Verbesserungspotenzial drin. Der Eingangspuffer ist oft geblockt. Grösste Einzelbearbeitungszeit.

Die 5A-Fräsmaschine ist aber kein Engpass und ist nur für ein Produkt nötig.

- 8.) Die Waschmaschine ist kein Engpass, eine Verbesserung bringt nur wenig.
- 9.) Die Drehmaschine hat eine kurze Bearbeitungszeit, sie blockiert ihren Eingangspuffer nicht, sie ist kein Engpass.
- 10.) siehe 7.), es ist einfach viel teurer
- 11.) siehe 8.)
- 12.) Die Layoutänderung bringt nicht viel, da das FTS immer eine ganze Runde machen muss.

Bilanz der Ist-Situation

	Ergebnistabelle IST-Situation														
Produkt	var. Kosten [kCHF]	Erlös [kCHF]	Deckungs- beitrag/Teil [kCHF]	Teile/Tag	Teile/Jahr	Prozent vom ganzen Ausstoss [%]	Deckungs- beitrag pro Durschn. DL %] Jahr [kCHF] [Tage] [Stun			[Min.]	[Sek.]				
7002	8	12	4	12.684	3171	39.25%		98	_	29	4				
7003	12	22	10	10.576	2644	32.72%	26440	100	22	8	41				
7004	19	28	9	9.06	2265	28.03%	20385	100	9	9	47				
					8080			99	23	24	32				
	·				Summe:		59509		·	·	·				
Einlaufzei	it [Tage]		50		Fixkosten:		-18600								
Simulatio	nslaufzeit	[Tage]	300		Bilanz:		40909								

Bilanz der optimalen Lösung

	Ergebnistabelle der optimalen Lösung													
Produkt	var. Kosten [kCHF]	Erlös [kCHF]	Deckungs- Beitrag/Teil [kCHF]	Teile/Tag	Teile/Jahr	Prozent vom ganzen Ausstoss [%]	Deckungs- Beitrag pro Jahr [kCHF]			[Min.]	[Sek.]			
7002	8	12	4	25.368	6342	39.24%	25368		3	32	43			
7003	12	22	10	21.156	5289	32.73%			3	3	10			
7004	19	28	9	18.12	4530	28.03%	40770		2	41	21			
					16161				3	8	38			
					Summe:		119028							
Änderung	im Austo	ss [%]:	100.01%		Fixkosten:		-18600							
Änderung	in der DL	Z [%]:	-99.87%		Bilanz:		100428							
Massnahmen: 2.5 Schicht + FFS + RTL + 3A- Fräsmasch.					Masnahme- kosten		- 560							
Einlaufze	it [Tage]:		50		Gesamt- bilanz:		99868							
Simulatio	nslaufzeit	[Tage]	300											

Begründung I.

- 1. Verbesserung der 3-Achs Fräsmaschine:
 - Hohe Auslastung in Ist-Situation
 - Eingangspuffer oft geblockt
 - -> Engpass
 - Kürzere Bearbeitungszeit ist nötig
 - Verbesserung reicht, keine zusätzliche Maschine notwendig.

Begründung II.

2. Einführung eines zusätzlichen FTS:

- Die Ausgangspuffer sind in der Ist-Situation oft voll, was die Maschinen blockiert
- Schnelleren Abtransport der Teile würde damit ermöglicht
- 3. 2.5 Schicht-Betrieb
 - Durch längere Arbeitszeit könnte die Produktion be der 3-A Fräsmaschine verdoppelten werden. Somit wäre keine zusätzliche 3-Achs Fräsmaschine nötig -> günstigere Lösung

Keine weiteren Massnahmen sind für die Erhöhung der Produktivität nötig.

Begründung III.

- 4. Teilausstoss aus dem RTL ändern:
 - Weil zu viele Teile vom Lager ausgeliefert werden, müssen die Zwischenankunftsintervalle erhöht werden.
 - Bei genauer Einstellung des Teil-Mixes können die Entsorgungsgebühren der übrigen Teile reduziert werden.

Empfohlene Literatur

- Acél P. 2007: "Betriebliche Simulation von Produktionsanlagen", Vorlesungsunterlagen IWF ETH, Zürich
- Acél P., Hrdliczka V. 1996: "Simulation in der Produktion", Vorlesungsunterlagen BWI ETH, Zürich
- VDI Richtlinie 3633-Blatt 1
- Handbuch von eM-Plant

