%Regelungstechnik Serie 8 Aufgabe 3b) %Marco Weber clear all % Clear all variables close all clc % Clear workspace % Parameters M=10; % Mass of cart [kg] m=1; % Mass of sphere on pendulum [kg] p_l=1; % Length of pendulum [m] g=9.81; % Earth's gravity [m/s^2] %Initial Conditions x0=[-0.7;0;0;0]; q=1000; %Gewichtung Matrix Q r=1; %Gewichtung Matrix R gamma=1000; %für Ctilde %Define linear matrices A=[0,1,0,0,;(M+m)*g/(M*p_l),0,0,0;0,0,0,1;-m*g/M,0,0,0]; B=[0;-1/(M*p_l);0;1/M]; C=[0,0,1,0]; % Define weighting matrices Q=diag([1,1,q,1]); R=[eye*r]; %solve Problem to determine K Atilde=[A,zeros(4,1);-C,zeros(1,1)]; Btilde=[B;0]; Ctilde=[chol(Q),zeros(4,1);zeros(1,4),eye*gamma]; %LQRi Ktilde=lqr(Atilde,Btilde,Ctilde'*Ctilde,R); K=Ktilde(1,1:4); KI=Ktilde(1,5:5); %Run simulation [t,x,z,dsoll,v]=sim('Ue8_simb',10); %Plot results figure (1) title('mit Integrator') subplot(1,3,1) plot(t,z(:,1)) legend('\phi(t)') subplot(1,3,2) plot(t,z(:,3),t,dsoll) legend('d(t)','d[soll](t)') subplot(1,3,3) plto(t,v) legend('v(t)') % figure (2) % title('ohne Integrator') % % subplot(1,3,1) % plot(t_o,z_o(:,1)) % legend('\phi[ohne I](t)') % % subplot(1,3,2) % plot(t_o,z_o(:,3),t,dsoll) % legend('d[ohne](t)','d[soll](t)') % subplot(1,3,3) % plto(t_o,v_o) % legend('v[ohne](t)')