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Preface

These notes are heavily inspired by the books [1, 3, 4].
The notes contain both Exercises and Problems; both are an integral part of the text.

The exercises are contained in the bulk of the text and they consist of routine questions that
should help the reader digest a definition, concept or proof; they are meant to be solved
without too much effort. Problems, on the contrary, are displayed at the end of each section
and are meant to be more challenging. They range from smaller questions that consist in
generalizing a result covered in the text, to introducing other results or parts of the theory
that were not covered due to time constraints.
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0 Introduction

In these notes we will study one of the most basic problems in the Calculus of Variations:
we consider minimizers of integral energies such as

E[u] ≡
ˆ

Ω
F (x, u,Du) dx, (0.1)

where Ω ⊂ Rn is a bounded smooth domain, u : Ω → Rm, and F : Ω × Rm × Rm×n → R is
assumed to be smooth. At this point, it is not entirely clear what we mean by minimizer
and, in general, this depends on the context. In these notes our focus is on unconstrained
problems, and we will simply minimize E over those smooth maps u : Ω → Rm such that

u = g on ∂Ω,

for a regular datum g : ∂Ω → Rm.

0.1 The Euler–Lagrange system

It is worth noting that, to each minimization problem as above, one can associate a Partial
Differential Equation (PDE): if u is a minimizer, at least formally we must have

E′[u](φ) ≡ d
dt

∣∣∣∣
t=0

E[u+ tφ] = 0 ∀φ ∈ C∞
c (Ω,Rm),

i.e. u is a critical point of E. Throughout these notes, we will use Greek letters α, β, γ, . . .
to represent coordinates in the domain Ω ⊂ Rn, and Roman letters i, j, k, . . . to represent
coordinates in the target Rm. A simple calculation then shows that

E′[u](φ) =
ˆ

Ω
∂ξi

α
F (x, u,Du)∂αφ

i + ∂uiF (x, u,Du)φi dx, (0.2)

or, after integrating by parts (since φ has compact support),

E′[u](φ) =
ˆ

Ω

[
−∂α(∂ξi

α
F (x, u,Du)) + ∂uiF (x, u,Du)

]
φi dx.

Since φ ∈ C∞
c (Ω,Rm) is arbitrary, we conclude that the term in square brackets must vanish

identically, i.e.

∂α(∂ξi
α
F (x, u,Du)) = ∂uiF (x, u,Du) i = 1, . . . ,m. (0.3)

This is known as the Euler–Lagrange system: it is a coupled system of m quasilinear second
order PDEs. Although the above derivation is formal, we will see later that it can be made
precise under suitable growth assumptions on F .

The analysis of (0.3) is a daunting task, but there are two cases in which it becomes
simpler: when m = 1, we have a single PDE; and when n = 1, we have a system of ordinary
differential equations, which can be approached by much more elementary methods.

It is worth noting that, in general, (0.3) is just a necessary condition for u to be a minimizer:
there are solutions of (0.3) which do not minimize E. However, whenever F is convex in the
last variables, then this necessary condition becomes sufficient, as we will see in Section 2. In
fact, an important question at this stage is what kind of assumptions should we make on F
in order to hope for a reasonable theory. In order to have a feeling for what the answer could
be, we now look at some classical examples.
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0.2 Examples of variational problems

Example 0.1 (Mechanical systems). Consider a mechanical system composed of N particles,
with respective masses mi, and whose positions at time t are given by a vector ui(t) =
(x(t), y(t), z(t)) ∈ R3. The typical energy for such a system is

F (t, u(t), u′(t)) = 1
2

N∑
i=1

mi|u′
i(t)|2 − U(t, u(t)),

where the first term is the kinetic energy of the system and the second term is the potential
energy, whose specific form depends on the system under consideration. In this case we have
n = 1 and m = 3N , and the Euler–Lagrange system is simply

miu
′′
i (t) = −∂uiU(t, u(t)), i = 1, . . . , N.

These are Newton’s Laws of Motion.

Example 0.2 (Fermat’s principle). In 1662, Fermat proposed the following principle: the
path taken by a ray of light between two given points is the path that can be traveled in
the least amount of time. If the medium is isotropic and we write u(t) = (x(t), y(t), z(t)),
then Fermat’s principle asserts that the trajectories of light are minimizers for the optical
Lagrangian

F (u(t), u′(t)) = r(u(t))|u̇(t)|.

Here r is the refractive index, i.e. the ratio between the speed of light in vacuum and in this
inhomogeneous medium. In this case we have n = m = 1, in the above notation.

Example 0.3 (Minimal surfaces). The Plateau problem is a famous problem in the Calculus
of Variations: find, among all n-dimensional surfaces in Σ ⊂ Rn+m with prescribed boundary,
the one which has least area. This question, first raised by Lagrange 1760, can be studied
experimentally by dipping a wire into soapy water: the resulting soap film is a minimal
surface. The precise formulation of Plateau’s problem depends on what we mean by “surface”
and “area”.

The simplest possible setting of Plateau’s problem is when we only consider graphical
n-surfaces:

Σ = graph(u) ≡ {(x, u(x)) ∈ Rn+m : x ∈ Ω},

where u : Ω → Rm. Here m plays the role of codimension. In this case, the fact that the
boundary of Σ is fixed means simply that u = g on ∂Ω, for some fixed function g : ∂Ω → R,
and if m = 1 then the area is simply

Area(Σ) =
ˆ

Ω
F (Du) dx, F (ξ) =

√
1 + |ξ|2. (0.4)

This is known as the nonparametric Plateau problem.
Geometrically speaking, graphical surfaces are too restrictive: although each regular sur-

face is locally a graph, this doesn’t need to happen globally. Thus we are led to consider
parametric surfaces, i.e.

Σ ≡ v(Ω), v : Ω → Rn+m,

and the area of Σ is defined in terms of v. The simplest case is clearly when n = 1: then we
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are simply considering simply curves, and we can write

Length
(
v([0, 1])

)
=
ˆ 1

0
|v̇(t)| dt, v(0) = a, v(1) = b (0.5)

where a, b ∈ Rm are the given boundary conditions. This corresponds to the case r = 1 in
Example 0.2 when m = 1.

Both the parametric and the non-parametric versions of Plateau’s problem bring with
them certain difficulties:

(i) In the non-parametric version, the integrand in (0.4) has linear growth, and this makes
functional analytic methods harder to apply (in a nutshell, L1 is not a reflexive space,
but Lp for p > 1 is). Moreover, it may be too restrictive to look for graphical solutions.

(ii) In the parametric version, although the surface may be unique the parametrization is
in general non-unique. Indeed, in (0.5) clearly minimizers are obtained if and only if
v([0, 1]) is a straight line between (0, a) and (1, b). However, we cannot conclude that
v(t) = (b−a)t, since the length is invariant under reparametrizations; in particular, one
cannot infer any type of nice regularity properties on v. The difficulty here is due to
the fact that F (ξ) = |ξ| is not strictly convex.

Both of the above difficulties disappear when considering the Dirichlet integral:
Example 0.4 (The Dirichlet integral). We consider the Dirichlet energy

E[u] ≡
ˆ

Ω

1
2 |Du|2 dx,

for u : Ω → R. In this case, the Euler–Lagrange equation is simply the Laplace equation

∆u = 0,

thus u is a harmonic function. Note that, if V ⊂ Ω is a smooth region, then by the Divergence
Theorem we have

0 =
ˆ

V
∆u dx =

ˆ
∂V

Du · ν dσ,

i.e. the flux of u through any region is zero. This means that we can think of u as representing
any quantity in equilibrium (e.g. temperature or electrostatic potential).

One can think of the Dirichlet energy as a linearization of (0.4), since√
1 + |ξ|2 = 1 + 1

2 |ξ|2 +O(|ξ|4) as |ξ| → 0.

It is also worth noting that the non-uniqueness phenomena mentioned above are not present
for the Dirichlet energy. For instance, if n = 1 then ∆u = u′′ and so the Euler–Lagrange
equation does select the linear solution.

Note that, in the above examples, we always verified the assumption

ξ 7→ F (x, u, ξ) is convex for all (x, u) ∈ Ω × Rm.

Thinking about finite-dimensional problems, it is not surprising that convexity appears as a
natural condition in our minimization problem. In these notes we will recurrently assume
convexity-type conditions on F , which then translate into ellipticity conditions for the Euler–
Lagrange system (0.3).
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0.3 Hilbert’s problems

Let us return to the general energy considered in (0.1). Our main concern in these notes
is whether a minimizer of E exists and, if so, whether it is itself smooth. In fact, this is
precisely the content of Hilbert’s 19th and 20th problems, in his famous 1900 address at the
International Congress of Mathematicians in Paris:

• 20th problem: Has every regular variational problem a solution, provided certain as-
sumptions regarding the given boundary conditions are satisfied, and provided also if
need be that the notion of a solution shall be suitably extended?

• 19th problem: Are the solutions of regular problems in the Calculus of Variations always
necessarily analytic?

Hilbert was concerned with the case n = 2 (problems in two variables) and m = 1 (the scalar
case). Whenever m > 1, we say that we are dealing with a vectorial problem. As we will see
in these notes, scalar and vectorial problems differ quite dramatically, but we will try to treat
them homogeneously as far as possible.

The list of contributions towards Hilbert’s problems is enormous, and we refer the reader to
any of the references [1, 4] for a more detailed account. These problems were the inspiration for
an enormous amount of progress in the Calculus of Variations and Elliptic Partial Differential
Equations (PDE) in the last century, and by now their answer is essentially understood in
complete generality. We now briefly recall the answer to Hilbert’s problems, as a way of
outlining the contents of these notes.

Concerning the 20th problem, in Sections 1 and 2 we will take the modern approach and
develop a functional-analytic framework to prove existence of weak solutions. In the spirit of
the 20th problem, the notion of solution has to be suitably extended, and a priori solutions
are just in a Sobolev space (i.e. a Banach space of weakly differentiable functions).

The existence of weak solutions brings us naturally to the 19th problem: are the solutions
constructed by functional-analytic methods regular? Here the word regular typically means
that we would like solutions to be as regular as the data of the problem allow, e.g. if the data
is smooth we expect solutions to be smooth. We will not be so concerned with analiticity of
the solutions per se, since in any case this ultimate form of regularity only holds in rather
special circumstances.

Concerning the regularity of weak solutions, we will first have to develop, in Sections 3
and 4, the regularity theory for linear elliptic systems of the form

−∂α(Aαβ
ij ∂βu

j) = ∂αG
α
i for i = 1, . . . ,m. (0.6)

We note that linear elliptic systems arise as the Euler–Lagrange systems of quadratic energies
E. In order to have a successful linear theory, one needs in the very least that

Aαβ
ij ∈ C0(Ω).

One can then show that if Aαβ
ij , G

i
α ∈ C∞(Ω) and Aαβ

ij satisfy suitable ellipticity conditions
then u ∈ C∞(Ω).

The typical approach to the regularity for the general nonlinear problem formulated in
(0.3) is by linearization. For simplicity, let us assume that F does not depend on x or u, and
let us also suppose that it is strongly convex and has bounded Hessian: there are 0 < λ < Λ
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such that

λ|ξ|2 ≤ D2F [ξ, ξ] ≤ Λ|ξ|2 for all ξ ∈ Rm×n, (0.7)

Then, at least formally, if we differentiate (0.3), we see that

∂γ∂α

[
∂ξi

α
F (Du)

]
= ∂α

[
∂ξi

α
∂

ξj
β
F (Du) ∂β∂γu

j
]

= 0.

In other words, ∂γu
j solves a linear system as in (0.6), with coefficients

Aαβ
ij ≡ ∂ξi

α
∂

ξj
β
F (Du).

The tensor field A = (Aαβ
ij ) inherits lower and upper bounds from (0.7) but a fundamental

difficulty at this point is that A is just measurable, since we do not know a priori that Du is
even continuous. Hence the linear theory does not apply!

In the scalar case m = 1, the above gap was closed by what is now known as the De Giorgi–
Nash theorem, first proved by De Giorgi and then almost simultaneously (and independently)
by Nash in the more general parabolic setting between. The theorem asserts that, for a single
elliptic equation with measurable coefficients, solutions are Hölder continuous, and so the
linear theory can be applied in order to conclude that any minimizer of E is smooth.

In the vectorial case m > 1, the situation is fundamentally different, and around 10 years
after his theorem, De Giorgi constructed an example for n = m ≥ 3 showing that, for general
measurable (and discontinuous) coefficients A, solutions to (0.6) need not even be bounded.
As we will later see, the case n = 2 is special and there regularity does hold for other reasons.

0.4 Some notation

(i) Ω ⊂ Rn is an open set. We will often assume that it is connected; in that case, we say
it is a domain. Given another open set Ω′ ⋐ Rn, we write Ω ⋐ Ω′ if Ω ⊂ Ω′ and Ω is
compact; we then say that Ω is compactly contained in Ω′.

(ii) (u)Ω ≡ 1
|Ω|
´

Ω udx. If Ω = Br(x0), then we write (u)Br(x0) ≡ (u)x0,r.

(iii) We always write λ for the lower bound in either Legendre or Legendre–Hadamard con-
ditions of a tensor A, cf. (2.3) and (2.5) respectively. Likewise, we write Λ ≡ ∥A∥L∞ .

(iv) We always assume that 1 ≤ p ≤ ∞.
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1 Sobolev spaces

In the introduction we encountered the Dirichlet energy as one of the main prototypical
examples of energies that we will consider in these notes. To be more precise, we are concerned
with the Dirichlet problem for the Poisson equation:−∆u = f in Ω,

u = 0 on ∂Ω.
(1.1)

Our goal is to prove existence of solutions to (1.1) using functional analytical methods. The
following is a simple but natural approach:

Theorem 1.1 (Abstract Dirichlet’s principle). Let H be a Hilbert space, let ℓ ∈ H∗ and set

E[u] ≡ 1
2∥u∥2

H − ℓ(u).

Then E attains a unique minimum ū in H, and every minimizing sequence converges to it:

E(uj) → inf
v∈H

E(v) =⇒ uj → u in H.

The minimum ū is characterized by

0 = E′[u](v) ≡ d
dtE[u+ tv]

∣∣∣∣
t=0

= ⟨u, v⟩ − ℓ(v) = 0 for all v ∈ H.

We will prove more general versions of Theorem 1.1 in Section 2, but it is instructive to
give a quick proof of it here.

Proof. First note that infH E > −∞, since

E[u] ≥ 1
2∥u∥2 − ∥ℓ∥∥u∥ ≥ −1

2∥ℓ∥2.

Recall the parallelogram identity: for all u, v ∈ H, we have
1
2∥u+ v∥2 + 1

2∥u− v∥2 = ∥u∥2 + ∥v∥2

which we can rewrite as
1
4∥u− v∥2 = E[u] + E[v] − 2E

[
u+ v

2

]
,

and so we see that there is at most one minimizer. Applying this identity with u = uj and
v = uk, we also see that

1
4∥uj − uk∥2 ≤ E[uj ] + E[uk] − 2 inf E.

Thus any minimizing sequence is a Cauchy sequence, so by completeness a minimum exists.
The characterization of the minimum is part of Problem 1.1.

In order to apply Theorem 1.1 to solve (1.1), what Hilbert space H should we take? There
is really only one option, as we would like to take

∥u∥2
H = ∥Du∥2

L2 . (1.2)
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This choice leads us naturally to a certain Hilbert space, known as the Sobolev space W 1,2
0 (Ω).

Functions in this space possess certain weak differentiability properties, but in general can be
rather irregular: for instance, in general they are discontinuous. However, we expect solutions
of (1.1) to be rather smooth, if f is sufficiently nice: intuitively, they should have two more
derivatives than f . This expectation turns out to be correct, and it will be made precise in
different manners in Sections 3 and 4.

In this section we recall the definitions and some relevant properties of Sobolev spaces;
our exposition is minimalistic and most proofs will be omitted. We refer the reader to [3,
§5] for a gentle introduction to Sobolev spaces and to [6] for a comprehensive development of
their theory.

1.1 Weak derivatives

Sobolev spaces are Banach subspaces of Lp(Ω) whose elements have weak differentiability
properties. In this subsection, we quickly recall the definition and some basic properties of
weak derivatives. The basic idea is that one can talk about derivatives of very rough functions,
if one integrates by parts:

Definition 1.2 (Weak derivatives). We say that u ∈ L1
loc(Ω) has α-weak derivative equal to

gα ∈ L1
loc(Ω) if ˆ

Ω
u∂αφdx = −

ˆ
Ω
gαφdx ∀φ ∈ C∞

c (Ω).

If this holds we then write ∂αu ≡ gα, and more generally Du = (∂1u, . . . , ∂nu) if all weak
derivatives exist.

Weak derivatives enjoy most of the formal properties of usual derivatives, such as the
Leibniz rule and the fact that ∂α∂β = ∂β∂α. The next is a good exercise for the reader
unfamiliar with weak derivatives:

Exercise 1.3. Check the following:

(i) the weak derivative of x 7→ x1[0,1] + 1(1,2) is 1[0,1];
(ii) the function x 7→ x1[0,1] + 2 × 1(1,2) does not have a weak derivative.

In general, a good way of proving properties of weak derivatives is through convolution,
as the next two lemmas show.

Lemma 1.4 (Uniqueness of weak derivatives). If gα, hα ∈ L1
loc(Ω) are α-weak derivatives of

u ∈ L1
loc(Ω), then gα = hα a.e. in Ω.

Proof. The difference w ≡ gα − hα ∈ L1
loc(Ω) satisfiesˆ

Ω
w(x)φ(x) dx = 0 ∀φ ∈ C∞

c (Ω).

Let ρε be a mollifier, thus ρε ≡ ε−nρ(·/ε) where ρ ∈ C∞
c (B1(0)) has

´
Rn ρdx = 1. Fix x0 ∈ Ω

and take φ(x) ≡ ρε(x0−x) above, with ε ≤ dist(x0, ∂Ω), to get 0 = u∗ρε(x0). Since u∗ρε → u
in L1

loc(Ω), we conclude that u = 0 a.e. in Ω.
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Lemma 1.5 (Constancy lemma). If Ω is a domain and u ∈ L1
loc(Ω) has Du = 0 in the weak

sense then there is c ∈ R with u = c a.e. in Ω.

Proof. From the definition of weak derivatives, it is easy to see that if ∂αu = g in the weak
sense then

∂α(u ∗ ρε) = g ∗ ρε in Ωε ≡ {x ∈ Ω : dist(x, ∂Ω) > ε}.

Thus, when g = 0, the smooth functions u ∗ ρε are (locally) constant, and as they converge in
L1 their limit u is constant too.

Weak derivatives appear very naturally from a variational point of view: in (0.2) we saw
that, when computing E′[u] for a general variational integral, one arrives at an expression
which has just one derivative on u, instead of the two derivatives that one would expect. For
instance, when E is the classical Dirichlet energy from Example 0.4, we have

E′[u](φ) =
ˆ

Ω
Du · Dφdx, φ ∈ C∞

c (Ω);

a similar expression appears of course in Theorem 1.1. Thus, even for functions u : Ω → R
such that Du ∈ L1

loc(Ω), we can still make sense of the equation ∆u = 0 in the weak sense.
This definition is consistent: you can check that, if u is smooth, then ∆u = 0 in the weak
sense if and only if ∆u = 0 in the classical sense.

1.2 Basic properties of Sobolev spaces

We now turn to the proper definition of Sobolev spaces.

Definition 1.6. For p ∈ [1,∞], we let W 1,p(Ω) be the set of those Lp(Ω) functions whose
elements are weakly differentiable, with weak derivatives in Lp(Ω). We equip this space with
the norm

∥u∥W 1,p(Ω) ≡ ∥u∥Lp(Ω) + ∥Du∥Lp(Ω).

We denote by W 1,p
0 (Ω) the closure of C∞

c (Ω) in ∥ · ∥W 1,p(Ω). We also define higher order
spaces W k,p(Ω) and W k,p

0 (Ω) in a similar way. The definitions also extend to vector-valued
maps in an obvious way: for instance, we say that u ∈ W k,p(Ω,Rm) if ui ∈ W k,p(Ω) for all
i = 1, . . . ,m.

The above definitions admits clear local variants: for instance, we say that u ∈ W 1,p
loc (Ω)

if, for every x0 ∈ Ω, there is r > 0 such that u ∈ W 1,p(Br(x0)). We adopt similar conventions
for all other functions spaces in these notes.

Intuitively, W 1,p
0 (Ω) consists of those functions in W 1,p which vanish on ∂Ω. This intuition

can be made precise using trace theory which shows that, under appropriate smoothness
assumptions on ∂Ω, one can indeed make sense of u|∂Ω for u ∈ W k,p. In these notes, however,
we will not need or use any trace theory.

Essentially as a consequence of the fact that Lp(Ω) is a Banach space, we have:

Theorem 1.7 (Sobolev spaces are function spaces). For each k ∈ N and p ∈ [1,∞], the space
W k,p(Ω) is a Banach space.
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The next theorem shows that Sobolev spaces also appear naturally as the closure (in the
Sobolev norm) of smooth functions:

Theorem 1.8 (Density of smooth functions). Let Ω be bounded, and suppose that u ∈ W k,p(Ω)
for some p ∈ [1,∞) and some k ∈ N. There is a sequence (uj) ⊂ C∞(Ω) ∩W k,p(Ω) such that
uj → u in W k,p(Ω).

Note that the approximating sequence is not in C∞(Ω): in order to construct such a
sequence, we would need further regularity assumptions on ∂Ω.

Exercise 1.9. Show that in Theorem 1.8 one cannot take (uj) ∈ C∞(Ω) for any domain Ω.
(Hint: take n = 2 and consider the function u(reiθ) = θ defined away from the negative real
axis. Then use Problems 1.2 and 1.3 to show that u ̸∈ W 1,p.)

In these notes we will avoid discussing issues related to boundary behavior of functions,
and therefore we will typically not need to impose any regularity on ∂Ω. It is worth noting,
however, that in general functions in W 1,p(Ω) can be extended to functions in W 1,p(Rn)
whenever Ω is sufficiently smooth:

Theorem 1.10 (Extension theorem). Let Ω ⊂ Rn be a smooth domain and fix any other
domain such that Ω ⋐ Ω′. There is a bounded linear operator E : W 1,p(Ω) → W 1,p(Rn) such
that, for all u ∈ W 1,p(Ω), we have

Eu = u a.e. in Ω, supp(Eu) ⊂ Ω′.

We call Eu the extension of u. Thus Theorem 1.10 allows us to deduce many properties
of W 1,p(Ω) from properties of W 1,p(Rn).

We now give a different characterization of Sobolev spaces, which will play quite an im-
portant role in Section 3, in the context of Nirenberg’s method. The idea is to replace partial
derivatives with difference quotients.

Definition 1.11. For u : Ω → R and α ∈ {1, . . . , n} and h > 0, we define

∂h,αu(x) ≡ τh,αu(x) − u(x)
h

≡ u(x+ heα) − u(x)
h

, x ∈ Ωs,α ≡ {x ∈ Ω : x+ heα ∈ Ω}.

We encourage the reader to verify the following properties:

Exercise 1.12 (Basic properties of difference quotients). The following are easy to prove:

(i) Leibniz rule: ∂h,α(uv) = τh,αu(∂h,αv) + (∂h,αu)v;
(ii) Integration by parts: for any φ ∈ C1

c (Ω) with |h| < dist(supp(φ), ∂Ω), we haveˆ
Ω
φ∂h,αudx = −

ˆ
Ω
u∂−h,αφdx.

Having the above exercise at our disposal, we can prove the following alternative charac-
terization of Sobolev spaces:

Proposition 1.13 (Weak derivatives vs difference quotients). Let u ∈ Lp
loc(Ω) with p ∈

(1,∞). For α ∈ {1, . . . , n}, we have ∂αu ∈ Lp
loc(Ω) if and only if (∂h,αu)h≤h0 ⊂ Lp

loc is
uniformly bounded.
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Proof. Let Ω′ ⋐ Ω and suppose that 0 < |h| < dist(Ω′, ∂Ω).
We first show =⇒ . Assume first that u is smooth. For each α, we have

|u(x+ heα) − u(x)| =
∣∣∣∣∣h
ˆ 1

0
∂αu(x+ theα) dt

∣∣∣∣∣ ≤ |h|
ˆ 1

0
|∂αu(x+ theα)| dt. (1.3)

Thus, dividing by |h| and then applying Jensen’s inequality and Fubini’s theorem,ˆ
Ω′

|∂h,αu(x)|p dx ≤
ˆ

Ω′

ˆ 1

0
|∂αu(x+ theα)|p dt dx

=
ˆ 1

0

ˆ
Ω′

|∂αu(x+ theα)|p dx dt ≤
ˆ

Ω
|∂αu(x)|p dx.

By approximation, this estimate holds for an arbitrary u ∈ W 1,p(Ω). Note that this part of
the argument in fact holds also for p = 1.

Conversely, by integration by parts (cf. Exercise 1.12), we haveˆ
Ω′
u ∂h,αφ dx = −

ˆ
Ω′
∂−h,αuφdx

whenever φ ∈ C∞
c (Ω′). Recall that, for p ∈ (1,∞), bounded subsets of Lp(Ω) are weakly

compact. Thus, as we assume that the family of difference quotients is bounded in Lp(Ω′),
for some p > 1, there is a function vα and a sequence hj → 0 such that

∂−hj ,αu ⇀ v in Lp(Ω′).

But then ˆ
Ω′
u∂αφdx = lim

hj→0

ˆ
Ω′
u∂hj ,αφdx = − lim

hj→0

ˆ
Ω′
∂hj ,αuφdx = −

ˆ
Ω′
vαφ dx

and so vα = ∂αu in the weak sense, over Ω′. In particular, ∂αu ∈ Lp(Ω′) and so, as u ∈ Lp(Ω′),
we see that u ∈ W 1,p(Ω′). Note that this part of the argument in fact holds also for p = ∞
(if we replace the weak topology with the weak−∗ topology).

Inspecting the above argument in the case p = ∞ gives us a nice characterization of W 1,∞,
where we recall that C0,1(Ω) is the space of bounded Lipschitz functions in Ω:

Theorem 1.14 (W 1,∞). If Ω is either Rn or a smooth bounded domain then we have
C0,1(Ω) = W 1,∞(Ω).

Proof. We give the proof when Ω = Rn; the general case follows from Theorem 1.10. Note
that if u ∈ C0,1(Rn) then ∥∂−h,αu∥L∞ ≤ C, uniformly in h, and so from the argument above
when p = ∞ we deduce that u ∈ W 1,∞(Rn). Conversely, if u ∈ W 1,∞(Rn) and u is smooth,
then by (1.3) we have

h−1∥u(· + heα) − u∥L∞ = ∥∂h,αu∥L∞ ≤ ∥Du∥L∞(Rn).

For any u ∈ W 1,∞ we can find a sequence uj ∈ C∞(Rn) with uj → u uniformly and with
∥Duj∥L∞(Rn) ≤ ∥Du∥L∞(Rn) (indeed, it suffices to mollify u). Thus, for any x ̸= y, we have

|u(x) − u(y)|
|x− y|

= lim
j→∞

|uj(x) − uj(y)|
|x− y|

≤ ∥Du∥L∞(Rn).

12



Hence the same estimate holds for general functions in W 1,∞(Rn) which are not necessarily
smooth, and we deduce that such functions are Lipschitz.

As the final result in this subsection, we will see that W 1,p is a subspace of Lp with good
compactness properties. In order to make this precise, let X,Y be Banach spaces and suppose
that X is contained in Y as a set. Recall that:

(i) X is said to be continuously embedded in Y, X ⊂ Y, if

∥u∥Y ≤ C∥u∥X for all u ∈ X;

(ii) X is said to be compactly embedded in Y, X ⋐ Y, if it is continuously embedded and
each bounded sequence in X is pre-compact in Y.

We have the following fundamental theorem:

Theorem 1.15 (Rellich–Kondrachov Compactness Theorem). Assume Ω ⊂ Rn is a smooth
domain and p ∈ [1,∞). Then W 1,p(Ω) ⋐ Lp(Ω). Thus any bounded sequence (uj) ⊂ W 1,p(Ω)
has a subsequence which is strongly convergent in Lp(Ω).

The basic idea of the proof is again to use difference quotients in order to obtain uniform
estimates for the differences u(· + heα) − u.

1.3 Sobolev inequalities

In this subsection, we discuss inequalities relating W 1,p-spaces to other more familiar
function spaces. The case n = 1 is rather simple (see Problem 1.2), and we are specially
concerned with general dimension n > 1.

The next inequalities give continuous embeddings of W 1,p(Rn) for p ∈ [1,∞) \ {n}. They
also extend to smooth, bounded domains Ω ⊂ Rn. As usual, we define p∗ ≡ np

n−p for p < n.

Theorem 1.16 (Sobolev inequalities). Let u ∈ C1(Rn).

(i) Gagliardo–Nirenberg–Sobolev inequality: if 1 ≤ p < n and u has compact support, then

∥u∥Lp∗(Rn) ≤ C∥Du∥Lp(Rn).

(ii) Morrey’s inequality: if n < p, then

∥u∥C0,1−n/p(Rn) ≤ C∥u∥W 1,p(Rn).

The exponent p∗ appearing in the left-hand side in Theorem 1.16(i), which may appear
mysterious at first, is in fact the only exponent for which such an inequality can hold. This
can be seen through simple scaling analysis: if ur(x) = u(x/r), then

∥ur∥Lq(Rn) = rn/q∥u∥Lq(Rn), ∥Dur∥Lp(Rn) = rn/p−1∥Du∥Lp(Rn) (1.4)

and so, by sending r → 0 or r → ∞ we see that we must have n
q = n

p −1, i.e. q = p∗. Note also
that Theorem 1.16(i) shows (applying also Theorems 1.8 and 1.10) that W 1,p(Ω) ⊂ Lp∗(Ω)
continuously whenever Ω is a smooth bounded domain. In (ii) we used the Hölder space
norms, see already Definition 4.1 below.
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From Theorem 1.16 one can also deduce (in an elementary but tedious fashion) more
complicated inequalities for higher-order Sobolev spaces. We will not state these inequalities
here in their full generality, but instead we simply note the following:

Corollary 1.17. Let u ∈ W k,p(Rn) and suppose that k > n
p . Then u ∈ C

k−1−[ n
p

](Rn), where
[n

p ] is the integer part of n
p .

Thus, provided that k is sufficiently large, any function in W k,p actually in some Ck′-space,
where k′ can be determined explicitly in terms of n, k, p; the explicit dependence is typically
not very important.

From Theorem 1.16 and the extension theorem, one deduces that W 1,n(Ω) ⊂ Lq(Ω) for any
q < ∞, whenever Ω is a bounded smooth domain. Thus one may hope that W 1,n(Ω) ⊂ L∞(Ω).
While this is true for n = 1 (see Problem 1.2) it fails for any other dimension:

Exercise 1.18. Check that log log(1 + 1/|x|) ∈ W 1,n(B1(0)) \ L∞(B1(0)), whenever n > 1.

In some sense, unbounded functions in W 1,n look like the one in the previous exercise, in
that they diverge logarithmically; this fact is made extremely precise by the Moser–Trudinger
inequality [8]. For some further properties of functions in W 1,n, see Problem 4.2.

We conclude this section by discussing Poincaré inequalities. Loosely speaking, a Poincaré
inequality is an inequality of the form

∥u∥Lq ≤ C∥Du∥Lp

for appropriate choices of exponents p and q. Note that such an inequality cannot be quite
true (take u to be a constant), but essentially constants are the only obstruction to its validity.

Theorem 1.19 (Poincaré’s inequalities). Let Ω be a bounded, smooth domain and p ∈ [1,∞).
There is a constant C = C(p, n,Ω) such that the following inequalities hold.

(i) If u ∈ W 1,p
0 (Ω) then

∥u∥Lp∗ (Ω) ≤ C∥Du∥Lp(Ω).

In particular, we have

∥u∥Lp(Ω) ≤ C∥Du∥Lp(Ω). (1.5)

(ii) If u ∈ W 1,p(Ω) and we write (u)Ω ≡ 1
|Ω|
´

Ω udx, then

∥u− (u)Ω∥Lp(Ω) ≤ C∥Du∥Lp(Ω).

Proof. We note that (i) is an immediate consequence of Theorem 1.16(i): since u ∈ W 1,p
0 (Ω),

there are uj ∈ C∞
c (Ω) converging to u in W 1,p(Ω), and we can apply Theorem 1.16(i) to

each uj . If we are just interested in (1.5), then it is possible to give a simple direct proof: if
Ω ⋐ [−L,L]n and we write x̄ = (x2, . . . , xn) then

u(x1, x̄) =
ˆ 1

−L
∂1u(t, x̄) dt =⇒ |u(x)|p ≤ (2L)p−1

ˆ L

−L
|∂1u(t, x)|p dt,

hence (1.5) follows by integrating the last inequality in x.
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For (ii), we argue by a contradiction argument: if the inequality fails then for each j there
is uj ∈ W 1,p(Ω) such that

∥uj − (uj)Ω∥Lp(Ω) ≥ j∥Duj∥Lp(Ω).

Thus, defining vj ≡ uj−(uj)Ω
∥uj−(uj)Ω∥Lp(Ω)

, we see that

∥vj∥Lp(Ω) = 1, (vj)Ω = 0, ∥Dvj∥Lp(Ω) ≤ 1
j
.

In particular, by Theorem 1.15, we have vj → v in Lp(Ω) and so (v)Ω = 0, ∥v∥Lp(Ω) = 1.
However, we also have Dv = 0: for any test function,ˆ

Ω
vDφ dx = lim

j→∞

ˆ
Ω
vjDφ dx = − lim

j→∞

ˆ
Ω

Dvj φ dx = 0.

Thus, by Lemma 1.5 v is a constant, which is necessarily zero since (v)Ω = 0. But ∥v∥Lp = 1,
a contradiction.

Note that Theorem 1.19(i) shows that, in W 1,p
0 (Ω), ∥Du∥Lp and ∥u∥W 1,p are equivalent

norms. Thus W 1,2
0 (Ω) can be equivalently defined as the closure of test functions under the

norm that we encountered in (1.2). This shows that W 1,2
0 (Ω) is the smallest Hilbert space in

which we can look for solutions to (1.1) using Theorem 1.1.
When Ω is a ball, for simplicity we will write

(u)Br(x0) ≡ (u)x0,r.

By rescaling, we have the following corollary of Theorem 1.19(ii):

Corollary 1.20 (Poincaré’s inequality for a ball). For each p ∈ [1,∞) there is a constant
C = C(p, n) such that, for all u ∈ W 1,p(Br(x0)), we have

∥u− (u)x0,r∥Lp(Br(x0)) ≤ Cr∥Du∥Lp(Br(x0)).

Proof. The case where r = 1 follows from Theorem 1.19(ii). For general r, write v(x) ≡
u(x0 + rx), which defines an element in W 1,p(B1(0)). Thus

∥v − (v)0,1∥Lp(B1(0)) ≤ C∥Dv∥Lp(B1(0))

and changing variables we recover the desired inequality, cf. (1.4).

1.4 Problems for Section 1

Problem 1.1 (Riesz Representation Theorem). Prove the characterization of the minimum
in Theorem 1.1 and prove also that

∥u∥H = ∥ℓ∥H∗ ≡ sup
∥v∥H=1

ℓ(v).

Deduce that there is an isometry H → H∗.

Problem 1.2 (Sobolev spaces when n = 1). Let p ∈ [1,∞) and u ∈ W 1,p(I) where I = (0, 1).
Show that u coincides a.e. with an absolutely continuous function whose derivative u′ (which
exists a.e.) is in Lp.
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Problem 1.3 (Almost every sphere is a “good sphere”). If u ∈ W 1,p(Ω) show that for a.e.
r ∈ (0,∞) we have ˆ

Ω∩∂Br(0)
[|u|p + |Du|p] dω < ∞.

Thus, for a.e. r, we have u|Ω∩∂Br(0) ∈ W 1,p(Ω ∩ ∂Br(0)).

Problem 1.4 (De Giorgi isoperimetric inequality). Let u ∈ W 1,2(B1) and consider the subsets

A ≡ {u ≤ 0}, D ≡ {u ≥ 1
2}, E ≡ {0 < u < 1

2}

of B1. For p > 1, show that there is a constant C = C(n, p) such that

|A||D| ≤ C∥Du∥Lp |E|
1
p′ ,

where 1
p + 1

p′ = 1. [Hint: reduce to the case where u = 0 in A and u = 1
2 in D, and then start

from the inequality |A||D| ≤ 2
´

A

´
D |u(x) − u(y)| dx dy.] Conclude that, for p > 1, Sobolev

functions cannot have arbitrarily fast jumps. Show that this fails for p = 1 by constructing a
sequence bounded in W 1,1 which jumps arbitrarily quickly.

Problem 1.5 (Ignoring singletons). In this problem we show that weak derivatives are some-
what robust. We take n ≥ 2.

(i) Show that for φ ∈ C∞
c (B1) there is (φj) ⊂ C∞

c (B1 \{0}) such that φj → φ in W 1,2(B1).
[Hint: let φj = φψj, where ψj is a approximation of x 7→ |x|1/j.]

(ii) Deduce that if v ∈ L2(B1) and ∂αv = 0 weakly in B1 \ {0} then ∂αv = 0 weakly in B1.
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2 Existence theory for variational problems

2.1 Existence for linear elliptic systems

The purpose of this subsection is to construct weak solutions of the linear system

−∂α(Aαβ
ij (x)∂βu

j(x)) = fi(x), i = 1, . . . ,m, (2.1)

where repeated indices (i.e. α, β, j) are always assumed to be summed. Here and in the rest
of these notes, we will assume that x 7→ Aij

αβ(x) is in measurable and bounded, with

∥A∥L∞(Ω) ≤ Λ. (2.2)

Notation 2.1. Sometimes it will be convenient to use a more compact notation. Note that
for x ∈ Ω we have A(x) Du(x) ∈ Rm×n, where its entries are (ADu)α

i = Aαβ
ij ∂βu

j . Thus we
can write (2.1) more concisely as

− div(ADu) = f,

where the divergence is taken row-wise. Given two matrices A,B ∈ Rm×n, it is also convenient
to denote by ⟨A,B⟩ = tr(ATB) = tr(ABT ) their inner product; we use the same notation to
denote inner products between vectors in Rm. Likewise we write | · | for the Euclidean norm
of both matrices and vectors.

Let us now give precisely the definition of weak solution:

Definition 2.2. A weak solution of (2.1) is a map u ∈ W 1,2
loc (Ω,Rm) such thatˆ

Ω
⟨ADu,Dφ⟩ dx ≡

ˆ
Ω
Aαβ

ij ∂βu
j∂αφ

i =
ˆ

Ω
fiφ

i ≡
ˆ

Ω
⟨f, φ⟩ dx ∀φ ∈ C∞

c (Ω,Rm).

In other words, u is a weak solution of (2.1) if the weak derivative of Aαβ
ij ∂βu

j is fi.
Note that this definition is very natural from the variational viewpoint. For instance, if A
is symmetric, i.e. if Aij

αβ = Aji
βα, then linear systems as in (2.1) arise naturally as the Euler–

Lagrange system for the energy

E[u] ≡
ˆ

Ω

1
2⟨ADu,Du⟩ − ⟨f, u⟩ dx, u : Ω → Rm.

Thus, in this case, the definition of a weak solution u asserts precisely that E′[u](φ) = 0 for
all φ ∈ C∞

c (Ω,Rm), i.e. it asserts that u is a critical point of E. It is convenient to give a
name for the quadratic form on the left-hand side of the definition of weak solution:

aA(u, φ) ≡
ˆ

Ω
⟨ADu,Dφ⟩ dx.

Let us now turn to the existence of weak solutions. We will first assume that the 4-tensor
A satisfies the following ellipticity condition:

Definition 2.3. We say that A(x) = (Aαβ
ij (x)) satisfies the Legendre condition if there is

λ > 0 such that

⟨Aξ, ξ⟩ ≥ λ|ξ|2 for a.e. x and for all ξ ∈ Rm×n. (2.3)

Note that, if A is symmetric and it satisfies the Legendre condition, then aA is a scalar
product in W 1,2

0 (Ω,Rm) which is equivalent to the standard one. In particular, under these
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assumptions, existence of a solution to (2.1) follows from Theorem 1.1. There is a more
general result in this direction, which does not require any symmetry assumptions:

Theorem 2.4 (Lax–Milgram). Let H be a Hilbert space and let a : H ×H → R be a bilinear
form such that:

(i) a is continuous: there is Λ > 0 such that a(u, v) ≤ Λ∥u∥∥v∥ for all u, v ∈ H;
(ii) a is coercive: there is λ > 0 such that a(u, u) ≥ λ∥u∥2 for all u ∈ H.

For any ℓ ∈ H∗ there is a unique uℓ ∈ H with

a(uℓ, ·) = ℓ.

Proof. For each fixed u ∈ H our assumptions guarantee that a(u, ·) ∈ H∗. Thus, by the Riesz
Representation Theorem, for each u ∈ H there is a unique vector in H, which we denote by
Tu, such that

a(u, ·) = ⟨·, Tu⟩.

This clearly defines an operator T : H → H, which is easily seen to be linear, since a is
bilinear. Since a is bounded, so is T : we have

∥Tu∥2 = ⟨Tu, Tu⟩ = a(u, Tu) ≤ Λ∥u∥∥Tu∥,

i.e. ∥Tu∥ ≤ Λ∥u∥ for all u ∈ H. Since a is coercive, so is T : we have

λ∥u∥2 ≤ a(u, u) = ⟨Tu, u⟩ ≤ ∥Tu∥∥u∥,

i.e. λ∥u∥2 ≤ ∥Tu∥. This last inequality shows that T is injective and has closed range. In
fact, T is onto H: if not, since its range is closed, there would be w ̸= 0 orthogonal to the
range of T , and so

λ∥w∥2 ≤ a(w,w) = ⟨Tw,w⟩ = 0,

a contradiction. Thus T : H → H is a linear isomorphism, from which the conclusion follows:
writing ℓ = ⟨·, w⟩ for some w ∈ H, we simply take uℓ = T−1w.

Note that, in view of (2.2), the continuity assumption on aA is always satisfied. Thus, in
order to prove existence of aW 1,2

0 (Ω,Rm)-solution of (2.1), we only need to ask for coercivity of
the form aA. Clearly the Legendre condition implies coercivity, but is this condition natural?

In order to answer this question, let us first consider the case where A has constant-
coefficients, thus we assume that A = (Aαβ

ij ) is x-independent. We want to compare the two
following coercivity conditions, one of which is pointwise (like in the Legendre condition), the
other being integral (like in Lax–Milgram’s theorem):

(i) ⟨Aξ, ξ⟩ ≥ λ|ξ|2 for all ξ ∈ Rm×n;
(ii) aA(u, u) ≥ λ

´
Ω |Du|2 dx for all u ∈ W 1,2

0 (Ω,Rm).

Clearly (i) =⇒ (ii), so we want to understand whether the converse holds. It turns out that
the answer is in general no:

Example 2.5. Take n = m = 2 and consider

Aαβ
ij ξ

i
αξ

j
β = ⟨Aξ, ξ⟩ = det(ξ) + ε|ξ|2,
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for some ε > 0. If we take ξ = diag(t,−t) then

⟨Aξ, ξ⟩ = −t2 + 2t2ε = t2(2ε− 1) < 0

whenever ε < 1
2 . Hence, in this case, (i) fails even for λ = 0. However, it is easy to see that

(ii) holds with λ = ε, sinceˆ
Ω

det Dudx = 0 for all u ∈ W 1,2
0 (Ω,R2).

This last identity can be proved first for smooth functions u ∈ C∞
c (Ω,R2), the general case

following by an approximation argument. For test functions, the identity follows from the
divergence theorem, since

det Du = ∂1u
1∂2u

2 − ∂2u
1∂1u

2 = ∂1(u1∂2u
2) − ∂2(u1∂1u

2). (2.4)

The previous example shows that integral coercivity conditions do not imply the Legendre
condition. However, they do imply another (weaker) type of pointwise coercivity:

Definition 2.6. We say that A(x) = (Aαβ
ij (x)) satisfies the Legendre–Hadamard condition if

there is λ > 0 such that, for any a ∈ Rm, b ∈ Rn,

⟨A(a⊗ b), a⊗ b⟩ ≥ λ|a|2|b|2 for a.e. x in Ω. (2.5)

Here ξ = a⊗ b is a rank-one matrix, with entries (a⊗ b)i
α = aibα, thus (2.5) reads as

⟨Aξ, ξ⟩ = Aαβ
ij a

iajbαbβ ≥ λ|a|2|b|2 = λ|ξ|2.

Exercise 2.7. Check that a matrix ξ ∈ Rm×n has rank one if and only if it can be written
in the form ξ = a⊗ b for a ∈ Rn, b ∈ Rm. Then check that Example 2.5 satisfies (2.5).

It should be clear that if either m = 1 or if n = 1 then the Legendre and the Legendre–
Hadamard conditions are equivalent, while Example 2.5 shows that they differ if m,n > 1.

We are yet to justify that the Legendre–Hadamard condition is the correct condition in
general. Let us first show that it is a necessary condition:

Proposition 2.8. Suppose that A is constant and that

aA(u, u) ≥ λ

ˆ
Ω

|Du|2 dx ∀u ∈ W 1,2
0 (Ω,Rm). (2.6)

Then A satisfies the Legendre–Hadamard condition (2.5).

Proof. We begin by extending aA to complex-valued maps, through

aA(u, v) ≡
ˆ

Ω
Aαβ

ij ∂αu
i∂βvj dx =

ˆ
Ω

⟨ADu,Dv⟩ dx.

In general, we have

aA(u, u) = aA(Reu,Reu) + aA(Im u, Im u) + i
[
aA(Im u,Reu) − aA(Reu, Im u)

]
,

where the second term vanishes whenever A is symmetric. We now fix φ ∈ C∞
c (Ω), v ∈

Rn, w ∈ Rm. The idea is to take ut(x) = φ(x)eitx·vw and send t → ∞. Note that

Dut(x) = eitx·v (Dφ(x) ⊗ w
)

+ itφ(x)eitx·v (v ⊗ w) ,
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and as the last term is a scalar multiple of a fixed matrix v ⊗ w, we see that

aA(Im ut,Reut) − aA(Reut, Im ut) = o(t2),

which means that aA(ut, ut) behaves as though A is symmetric. Thus

aA(Reut,Reut)+aA(Im ut, Im ut) = aA(ut, ut)+o(t2) = t2
ˆ

Ω
φ(x)2⟨A(v⊗w), v⊗w⟩ dx+o(t2),

and so, after rearranging, since A is constant,

⟨A(v ⊗ w), v ⊗ w⟩
ˆ

Ω
φ2 dx = 1

t2
[
aA(Reut,Reut) + aA(Im ut, Im ut)

]
+ o(1)

≥ λ

t2

ˆ
Ω

|D(Reut)|2 + |D(Im ut)|2 dx

= λ |v ⊗ w|2
ˆ

Ω
φ2 dx+ o(1),

since in general |Du|2 = |D(Reu)|2 + |D(Im u)|2 for a complex-valued map. The conclusion
follows by choosing any non-zero φ.

We note that there is a generalization of Proposition 2.8 to the case where A has variable
coefficients, see Problem 2.1. We now turn to the converse of Proposition 2.8, which asserts
the sufficiency of the Legendre–Hadamard condition for coercivity:

Theorem 2.9 (G̊arding’s inequality). Let A be constant and satisfy the Legendre–Hadamard
condition. Then (2.6) holds.

Proof. The proof relies on the Fourier transform, which makes transparent why the Legendre–
Hadamard condition is useful. Recall that, for f ∈ L2(Rn), its Fourier transform is

f̂(ξ) ≡
ˆ
Rn

f(x)e−2πix·ξ dx.

The Fourier transform is an isometry in L2 (Parseval’s identity) and satisfies ∂̂αf(ξ) = 2πiξαf̂
(derivatives are converted into multiplication and conversely). Using these properties, and
extending u ∈ W 1,2

0 (Ω) by zero outside Ω, we have

aA(u, u) = Aαβ
ij

ˆ
Rn

∂̂αui∂̂βuj dξ = (2π)2Aαβ
ij

ˆ
Rn

ξαξβû
iûj dξ

≥ (2π)2λ

ˆ
Rn

|ξ|2|û|2 dξ = λ

ˆ
Rn

|D̂u|2 dξ = λ

ˆ
Rn

|Du|2 dx,

as wished.

Corollary 2.10 (Existence). Let A have constant coefficients and satisfy the Legendre–
Hadamard condition. Then for any f ∈ L2(Ω,Rm×n) there is a unique weak solution to
the Dirichlet problem ∂α(Aαβ

ij ∂βu
j) = ∂αf

α
i in Ω,

u = 0 on ∂Ω.
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Proof. Note that the weak formulation of the PDE is that, for all φ ∈ C∞
c (Ω,Rm),ˆ

Ω
Aαβ

ij ∂βu
j∂αφ

i dx =
ˆ

Ω
f i

α∂αφ
i dx.

The right-hand side in this identity defines a linear functional ℓ(φ), which is bounded in
W 1,2(Ω,Rm), since

|ℓ(φ)| =
∣∣∣∣∣
ˆ

Ω
f i

α∂αφ
i dx

∣∣∣∣∣ ≤ ∥f∥L2(Ω)∥Dφ∥L2(Ω)

by Hölder’s inequality. Since the bilinear form aA is coercive thanks to G̊arding’s inequality,
and bounded by assumption (2.2), the conclusion follows from the Lax–Milgram theorem.

We now generalize G̊arding’s inequality to the case of variable coefficients. The basic idea,
which is ubiquitous in PDE, is to treat the oscillations in the coefficients perturbatively.

Corollary 2.11. Let A = A(x) ∈ C0(Ω) satisfy the Legendre–Hadamard condition. Then aA

is weakly coercive: there are λ0 > 0, λ1 ≥ 0 such that

aA(u, u) ≥ λ0

ˆ
Ω

|Du|2 dx− λ1

ˆ
Ω

|u|2 dx for all u ∈ W 1,2
0 (Ω,Rm).

Proof. Take x0 ∈ Ω and r small enough. Let us first suppose that u ∈ W 1,2
0 (Br(x0)). Then,

by Theorem 2.9, we have

aA(u, u) = Aαβ
ij (x0)

ˆ
Ω
∂αu

i∂βu
j dx+

ˆ
Ω

[Aαβ
ij (x) −Aαβ

ij (x0)]∂αu
i∂βu

j dx

≥
(
λ− ω(r)

)ˆ
Ω

|Du|2 dx,

where ω(r) ≡ sup{maxα,β,i,j |Aαβ
ij (x) − Aαβ

ij (y)| : x, y ∈ Ω, |x − y| ≤ r} is the modulus of
continuity of A.

In order to deal with general maps, fix r so small that λ0 ≡ λ − ω(r) > 0, and cover Ω
with a finite number of balls {Br(xk)}. Let {φ2

k} be a partition of unity associated with this
covering, i.e. φk ∈ C∞

c (Br(xk)) and ∑k φ
2
k = 1 on Ω. Thus

aA(u, u) =
ˆ

Ω
Aαβ

ij

∑
k

φ2
k∂αu

i∂βu
j dx =

∑
k

[ˆ
Ω
Aαβ

ij ∂α(φku
i)∂β(φku

j) dx−
ˆ

Ω
errork dx

]

≥
∑

k

[
λ0

ˆ
Ω

|D(φku)|2 dx−
ˆ

Ω
errork dx

]
,

where

errork = Aαβ
ij u

iuj∂αφk∂βφk +Aαβ
ij φku

j∂αu
i∂βφk +Aαβ

ij φku
i∂αφk∂βu

j .

Since D(φku) = φkDu+ u⊗ Dφk, we have

|D(φku)|2 = φ2
k|Du|2 + |u⊗ Dφk|2 + 2φk⟨Du, u⊗ Dφk⟩

Applying Young’s inequality |2ab| ≤ εa2 + ε−1b2 we get

2φk⟨Du, u⊗ Dφ⟩ ≥ −εφ2
k|Du|2 − 1

2ε |u|2|Dφk|2

21



and so, for a constant Cε = C(ε, {φk}k), we have

aA(u, u) ≥ (λ0 − ε)
ˆ

Ω
|Du|2 − Cε

ˆ
Ω

|u|2 dx−
ˆ

Ω

∑
k

errork dx.

It remains to deal with the error terms, which we estimate similarly: e.g. we have∣∣∣Aαβ
ij u

iuj∂αφk∂βφk

∣∣∣ ≤ CΛ|u|2,
∣∣∣Aαβ

ij φku
j∂αu

i∂βφk

∣∣∣ ≤ εφ2
k|Du|2 + CΛε−1|u|2|Dφk|2.

Thus, all in all, we get

aA(u, u) ≥ (λ0 − 2ε)
ˆ

Ω
|Du|2 − Cε

ˆ
Ω

|u|2 dx,

and so we can now choose ε = λ0/4 to get the conclusion.

Remark 2.12. Corollary 2.11 is essentially optimal. If A = A(x) ∈ L∞ is not continuous
then the above weak coercivity estimate fails [10] and if A ∈ C0(Ω) is continuous (but does
not have small BMO-norm) then aA is not strongly coercive [11].

2.2 Existence for nonlinear variational problems: the Direct Method

As discussed in the introduction, the classical problem in the Calculus of Variations is to
consider critical points of integral energies such as

E[u] ≡
ˆ

Ω
F (x, u,Du) dx, (2.7)

where u : Ω → Rm as usual, and F : Ω × Rm × Rm×n → R is smooth. If F is quadratic in Du
then we obtain a linear elliptic system as in (2.1), but in general a formal application of the
chain rule leads us to the quasilinear Euler–Lagrange system

∂α(∂ξi
α
F (x, u,Du)) = ∂uiF (x, u,Du) i = 1, . . . ,m. (2.8)

We now want to give precise conditions under which this formal calculation can be made
rigorous. To do so, let us introduce the following definition, which will play a key role in these
notes:

Definition 2.13. We say that u ∈ W 1,p(Ω,Rm) is a minimizer for E in W 1,p(Ω,Rm) if

E[u] ≤ E[u+ φ] for all φ ∈ W 1,p
0 (Ω,Rm).

Equivalently, u minimizes E in its own Dirichlet class W 1,p
u (Ω,Rm) ≡ u+W 1,p

0 (Ω,Rm).

Under suitable growth conditions on the integrand F , one can derive the Euler–Lagrange
system:

Proposition 2.14 (Euler–Lagrange system). Let F : Ω × Rm × Rm×n → R be smooth and
suppose that there is g ∈ Lp′(Ω) and C ≥ 0 such that, at all points (x, u, ξ) ∈ Ω×Rm ×Rm×n,

|F (x, u, ξ)| ≤ g(x) + C(|u|p + |ξ|p),
|∂uF (x, u, ξ)| + |∂ξF (x, u, ξ)| ≤ g(x) + C(|u|p−1 + |ξ|p−1),
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for some p ∈ [1,∞); here 1
p + 1

p′ = 1. If u ∈ W 1,p(Ω,Rm) is a minimizer for E then u is a
weak solution of (2.8), in the sense that, for all φ ∈ W 1,p

0 (Ω,Rm), we haveˆ
Ω

−⟨∂ξF (x, u,Du),Dφ⟩ dx =
ˆ

Ω
⟨∂uF (x, u,Du), φ⟩ dx.

Proof. Fix φ ∈ W 1,p
0 (Ω,Rm) and let e(t) ≡ E[u + tφ]. Note that, by the growth condition

on F itself, e : R → R is finite. We can then write
e(t) − e(0)

t
= 1
t

ˆ
Ω

ˆ t

0

d
dsF (x, u+ sφ,Du+ sDφ) dsdx =

ˆ
Ω
h(x, t) dx,

where we set

h(x, t) ≡ 1
t

ˆ t

0
⟨∂uF (x, u+ sφ,Du+ sDφ), φ⟩ + ⟨∂ξF (x, u+ sφ,Du+ sDφ),Dφ⟩ ds

where the brackets denote the natural inner products between vectors or matrices. Since u is
a minimizer, we have

0 = lim
t→0

e(t) − e(0)
t

= lim
t→0

ˆ
Ω
h(x, t) dx.

provided the limits exist. For a.e. x ∈ Ω we clearly have

lim
t→0

h(x, t) = ⟨∂uF (x, u,Du), φ⟩ + ⟨∂ξF (x, u,Du),Dφ⟩

and so we only need to justify that we can apply the Dominated Convergence Theorem. This
in turn follows from the growth conditions on the derivatives of F . Indeed, we have

|⟨∂uF (x, u+ sφ,Du+ sDφ), φ⟩| ≤ g(x)|Dφ(x)| + C(|u+ sφ|p−1 + |Du+ sDφ|p−1)|φ|,
|⟨∂ξF (x, u+ sφ,Du+ sDφ),Dφ⟩| ≤ g(x)|Dφ(x)| + C(|u+ sφ|p−1 + |Du+ sDφ|p−1)|Dφ|.

By Hölder’s inequality, these estimates show that we have, for t ≤ 1,
ˆ

Ω
|h(x, t)| dx ≤ 2∥g∥Lp′ ∥Dφ∥Lp + 2C∥φ∥W 1,p

ˆ t

0

∥u+ sφ∥p−1
W 1,p

t
ds

≤ 2∥g∥Lp′ ∥Dφ∥Lp + 2C∥φ∥W 1,p

(
∥u∥W 1,p + ∥φ∥W 1,p

)p−1
.

Thus the Dominated Convergence Theorem is applicable.

In general, there is no systematic form of constructing all solutions to (2.8). A special
case occurs whenever the integrand is convex, and we then have the following converse to
Proposition 2.14:

Proposition 2.15. Assume that F : Ω × Rm × Rm×n → R is smooth and that

(u, ξ) 7→ F (x, u, ξ) is convex.

Then each weak solution u ∈ W 1,p(Ω,Rm) of (2.8) is a minimizer of E in W 1,p.

Proof. By the convexity assumption, we have for a.e. x the inequality

F (x, v,Dv) ≥ F (x, u,Du) + ⟨∂ξF (x, u,Du),Dv − Du⟩ + ⟨∂uF (x, u,Du), v − u⟩

whenever v is a Sobolev map. Taking v ∈ u+W 1,p
0 (Ω,Rm) and integrating the above inequality
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over Ω, we find

E[v] ≥ E[u] +
ˆ

Ω

[
⟨∂ξF (x, u,Du),D(v − u)⟩ + ⟨∂uF (x, u,Du), v − u⟩

]
dx,

and the last integral vanishes due to the boundary conditions on v and the fact that u is a
solution of (2.8). Thus E[v] ≥ E[u], as wished.

As in finite-dimensional problems, for general integrands which are not convex in (u, ξ),
there are solutions of (2.8) which are not minimizers. Thus one may ask for a procedure to
find all solutions to (2.8). In general this is a difficult question: we already saw, in Corollary
2.11, that there are difficulties in solving the Euler–Lagrange system even when it is linear
and just x-dependent. Instead of looking for all solutions of (2.8), we will be content with
constructing minimizers of (2.7): unlike the case of critical points, there is a systematic
approach for constructing minimizers, which is based on the so-called Direct Method of the
Calculus of Variations:

Theorem 2.16 (Direct method). Let X be a reflexive Banach space and let Y ⊂ X be a
weakly closed set. Suppose that E : X → R is a (non-linear) functional satisfying the following
conditions:

(i) coercivity: E[v] → ∞ if ∥v∥ → ∞.
(ii) sequential weak lower semicontinuity: if (uj) ⊂ Y and uj ⇀ u in X, then

E[u] ≤ lim inf
j→∞

E[uj ].

Then E is bounded from below on Y and attains its infimum on Y.

Proof. Let (uj) ⊂ Y be a minimizing sequence in Y, i.e.

lim
j→∞

E[uj ] = inf
v∈Y

E[v].

By the coercivity condition, (uj) is a bounded sequence and so, up to a subsequence, uj ⇀ u
for some u ∈ X, since X is reflexive. Since Y is weakly closed u ∈ Y. By weak lsc,

E[u] ≤ lim inf
j→∞

E[uj ],

and the conclusion follows.

The coercivity condition holds e.g. if we impose suitable pointwise conditions on F . Here
we are mostly concerned with the problem of finding conditions under which sequential wlsc
holds; we are of course interested in taking X to be a Sobolev space. For p ∈ [1,∞), we say
that a sequence uj converges weakly to u in W 1,p(Ω), denoted by uj ⇀ u in W 1,p, if uj ⇀ u
in Lp(Ω) and Duj ⇀ Du in Lp(Ω); this definition coincides with the usual functional analytic
definition of weak convergence [6, Exercise 11.64]. The following classical theorem gives us a
sufficient condition for sequential wlsc:

Theorem 2.17 (Tonelli). Assume that F : Ω × Rm × Rm×n → R is smooth, bounded from
below, and that

ξ 7→ F (x, u, ξ) is convex.

Then E is sequentially wlsc in W 1,p(Ω,Rm) for any p ∈ [1,∞).
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Proof. Without loss of generality we can assume that F ≥ 0, otherwise we add a large
constant to F . Let uj ⇀ u in W 1,p(Ω,Rm); we aim to show that

E[u] ≤ lim inf
j→∞

E[uj ].

By passing to a subsequence, which we do not relabel, we can replace the lim inf with an
actual limit. By the Rellich–Kondrachov compactness theorem (Theorem 1.15) we see that,
up to a subsequence, uj → u in Lp(Ω) and so, up to a further subsequence, uj → u a.e. in Ω.
We can now apply Egorov’s theorem: for each ε > 0 there is a set Eε with |Ω \ Eε| < ε and
such that uj → u uniformly on Eε. We may assume that Eε′ ⊆ Eε if ε′ ≤ ε. Let us take the
“good set” of points

Gε ≡
{
x ∈ Eε : |u(x)| + |Du(x)| ≤ 1

ε

}
,

and note that |Ω \Gε| → 0 as ε → 0.
We now apply the convexity of F in the last variable, together with F ≥ 0, to estimate

E[uj ] ≥
ˆ

Gε

F (x, uj ,Duj) dx

≥
ˆ

Gε

F (x, uj ,Du) dx+
ˆ

Gε

∂ξF (x, uj ,Du) · (Duj − Du) dx.

Now we inspect each of the terms separately. By construction of the set Gε, we have

lim
j→∞

ˆ
Gε

F (x, uj ,Du) dx =
ˆ

Gε

F (x, u,Du) dx.

Moreover, since ∂ξF (x, uj ,Du) → ∂ξF (x, u,Du) uniformly on Gε and Duj ⇀ Du in Lp, we
have

lim
j→∞

ˆ
Gε

∂ξF (x, uj ,Du) · (Duj − Du) dx = 0.

Thus we see that

lim
j→∞

E[uj ] ≥
ˆ

Gε

F (x, u,Du) dx.

Since F ≥ 0 and ε > 0 is arbitrary, the conclusion follows from the Monotone Convergence
Theorem.

Corollary 2.18 (Existence of minimizers). Let F be as in Theorem 2.17 and assume in
addition that, for some p ∈ (1,∞) and c1 > 0, c2 ≥ 0, we have

F (x, u, ξ) ≥ c1|ξ|p − c2 for all (x, u, ξ) ∈ Ω × Rm × Rm×n

Then for each g ∈ C∞(Ω,Rm), E has a minimizer in W 1,p
g (Ω,Rm) ≡ g +W 1,p

0 (Ω,Rm).

Proof. We want to apply Theorem 2.16 with X = W 1,p(Ω,Rm) and Y = W 1,p
g (Ω,Rm); the

assumption p ∈ (1,∞) guarantees that X is reflexive. Note that, by Mazur’s Theorem, Y is a
weakly closed space. Hence, by Theorem 2.17, it suffices to check the coercivity of E.

Clearly our hypotheses implies the coercivity inequality E[v] ≥ c1∥Dv∥p
Lp(Ω) − c2|Ω|. By

the Poincaré inequality, for each v ∈ W 1,p
g (Ω,Rm) we have

∥v∥Lp ≤ ∥v − g∥Lp + ∥g∥Lp ≤ C∥Dv − Dg∥Lp + ∥g∥Lp ≤ C(∥Dv∥Lp + ∥g∥W 1,p).
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Thus ∥v∥W 1,p ≤ C(∥Dv∥Lp + 1) and so E[v] → ∞ when ∥v∥W 1,p → ∞, as wished.

The assumptions in Corollary 2.10 are fairly optimal. We first give a classical example
which shows that minimizers need not exist can fail even if coercivity fails at single point:

Example 2.19 (Weierstrass). Take n = m = 1, let F : (0, 1) × R × R → R be defined by
F (x, u, ξ) = xξ2 and consider the problem

inf
{
E[u] : u ∈ W 1,2(0, 1) and u(0) = 1, u(1) = 0

}
.

Note that this example verifies all of the conditions of Corollary 2.10, except that the coercivity
fails at a single point. We claim that the above infimum is zero: indeed,

uk(x) =

1 if x ∈ [0, 1
k ],

− log x
log k if x ∈ ( 1

k , 1],

satisfies E[uk] = 1
log k → 0 as k → ∞. Clearly there is no admissible function with E[u] = 0

(otherwise we would have that u is constant), and so the infimum is not attained.

The next example shows that, in the absence of convexity, minimizers need not exist:

Example 2.20 (Bolza). Let again n = m = 1, take F (x, u, ξ) = (ξ2 − 1)2 + u4 and consider
the problem

inf
{
E[u] : u ∈ W 1,4(0, 1) and u(0) = 0, u(1) = 0

}
.

We claim that this infimum is zero, and so there is no minimizer, since E[u] = 0 forces
simultaneously u = 0 and |u′| = 1, which is impossible. To see this, we simply construct a
sequence (uk) ∈ W 1,4

0 (0, 1) with |u′
k| = 1 and |uk| ≤ 1/(2k): this can be achieved by setting

uk(x) =

x if x ∈ [0, 1
2k ],

1
k − x if x ∈ [ 1

2k ,
1
k ],

and then extending uk periodically. We then have

0 ≤ E[uk] ≤ 1
(2k)4 → 0,

as wished.

Example 2.20 is scalar and indeed, in the scalar case, convexity is essentially a necessary
condition for existence of minimizers. In the vectorial case, however, this is not the case. This
is illustrated most clearly in the case of quadratic energies, such as the ones we discussed in
Section 2.1; we leave for the reader the next simple exercise:

Exercise 2.21. Define F : Rm×n → R to be the quadratic energy

F (ξ) ≡ ⟨Aξ, ξ⟩ = Aij
αβξ

α
i ξ

β
j

where A is x-independent. Show that F is convex if and only if F ≥ 0, i.e. if and only if it
satisfies the Legendre condition with λ = 0. Conclude that the quadratic form in Example
2.5 is not convex.
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In the general vectorial case, the correct convexity-type condition is called quasiconvexity,
but this is outside the scope of these notes. Nonetheless, we refer the reader to Problem 2.4
for a general family of vectorial non-convex examples where one can still prove existence of
minimizers.

2.3 Problems for Section 2

Problem 2.1. Generalize Proposition 2.8 to variable coefficients A = A(x) ∈ L∞(Ω) by using
Lebesgue’s differentiation theorem and choosing φ suitably. For simplicity you may assume
that A is symmetric in (i, j) and in (α, β).

Problem 2.2 (Korn’s inequality). Use G̊arding’s inequality to deduce Korn’s inequality:

λ

ˆ
Ω

|Du|2 dx ≤
ˆ

Ω

∣∣∣∣Du+ (Du)T

2

∣∣∣∣2 dx for all u ∈ W 1,2
0 (Ω,Rn).

Then give a direct proof of Korn’s inequality by writing

2
∣∣∣∣Du+ (Du)T

2

∣∣∣∣2 = |Du|2 + (div u)2 + L(Du,Du),

where
´

Ω L(Du,Du) dx = 0 for all u ∈ W 1,2
0 (Ω,Rn).

Problem 2.3 (Mazur’s theorem and lsc). Recall Mazur’s Theorem: if X is a normed space
with uj ⇀ u in X, then there is a sequence (vk) contained in the convex hull of (uj)∞

j=1 such
that vk → u in X. Use Mazur’s Theorem and Fatou’s Lemma to give a different proof of
Tonelli’s Theorem in the case where F is u-independent.

Problem 2.4 (Polyconvexity). Let 2 = n = m < p.

(i) Use (2.4) to show that if uj ⇀ u in W 1,p(Ω,R2) then det Duj ⇀ det Du in Lp/2(Ω).
(ii) Follow the strategy of Tonelli’s theorem to prove that if F : Ω × R2 × R2×2 × R → R is

smooth and (ξ, δ) 7→ F (x, u, ξ, δ) is convex for all (x, u), then

E[u] =
ˆ

Ω
F (x, u,Du,det Du) dx

is sequentially weakly lower semicontinuous in W 1,p. Such integrands are called poly-
convex [2].

(iii) Give an example of F = F (ξ, δ) as in (ii) which is not convex and for which one can
prove existence of minimizers in W 1,p

g (Ω,R2) for g ∈ C∞(Ω,R2).
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3 L2-theory for linear elliptic systems

3.1 The model case: harmonic functions

Recall that a weakly harmonic function u ∈ W 1,2(Ω) is a function for which

E′[u](φ) =
ˆ

Ω
⟨Du,Dφ⟩ dx = 0 ∀φ ∈ W 1,2

0 (Ω), (3.1)

where E is the Dirichlet energy from Example 0.4. In this subsection we sketch a proof that
weakly harmonic functions are smooth. There are of course many different ways of proving
this result: for instance, one can give a short proof by using the fact that harmonic functions
have the mean value property. The proof we give here is instead more complicated but also
much more robust: we will be able to generalize it without too much difficulty to very general
linear PDEs below. The following is the crucial step in the approach we take here:

Theorem 3.1 (Caccioppoli’s inequality). Let u ∈ W 1,2(Ω) be such that ∆u = 0 weakly. For
any ball BR(x0) ⊂ Ω we haveˆ

Br(x0)
|Du|2 dx ≤ 16

(R− r)2

ˆ
BR(x0)\Br(x0)

|u− u0|2 dx

for all u0 ∈ R and all r < R.

Proof. Let η ∈ C∞
c (BR(x0)) be a cut-off function such that 0 ≤ η ≤ 1, η = 1 in Br(x0) and

|Dη| ≤ 2
R−r . We test the weak formulation of ∆u = 0 with φ = η2(u − u0) ∈ W 1,2

0 (Ω) to
obtain

0 =
ˆ

Ω
⟨Du,Dφ⟩ dx =

ˆ
Ω
η2|Du|2 + (u− u0)2η⟨Du,Dη⟩ dx.

Using Hölder’s inequality, we findˆ
BR(x0)

η2|Du|2 dx ≤
ˆ

BR(x0)
2η|Du||u− u0||Dη| dx

≤
(ˆ

BR(x0)
η2|Du|2 dx

) 1
2
(

4
ˆ

BR(x0)
|u− u0|2|Dη|2 dx

) 1
2

and so, rearranging, we obtainˆ
Br(x0)

|Du|2 dx ≤
ˆ

BR(x0)
η2|Du|2 dx ≤ 16

(R− r)2

ˆ
BR(x0)\Br(x0)

|u− u0|2 dx,

as claimed.

Since derivatives of smooth harmonic functions are themselves harmonic, by applying
Theorem 3.1 in suitable annuli, one can deduce a priori estimates for higher order derivatives:

Corollary 3.2. Let u ∈ C∞(Ω) be a harmonic function, i.e. ∆u = 0. For all k ≥ 1 and all
balls BR(x0) ⊂ Ω, we haveˆ

B R
2

(x0)
|Dku|2 dx ≤ C(k, r)

ˆ
BR(x0)

|u|2 dx.

Exercise 3.3. Prove Corollary 3.2.

28



We call the estimates in Corollary 3.2 a priori since, in the statement, we are already
assuming that u ∈ C∞, which is what we want to prove! However, since the Laplace equation
is linear with constant coefficients, the a priori estimate from Corollary 3.2, together with the
Sobolev embedding theorem, implies the following:

Theorem 3.4. Let u ∈ W 1,2(Ω) be a weakly harmonic function. Then u ∈ C∞(Ω).

Proof. By Theorem 1.16, it suffices to prove that u ∈ W k,2(Ω) for all k ≥ 1. Consider the
mollified functions uε ≡ u ∗ ρε, which are defined on Ωε ≡ {x ∈ Ω : dist(x, ∂Ω) > ε}. We
claim that, on Ωε, we have ∆uε = 0: indeed, for φ ∈ C∞

c (Ωε), we haveˆ
Ω

⟨Duε,Dφ⟩ dx =
ˆ

Ω
⟨Du ∗ ρε,Dφ⟩ dx =

ˆ
Ω

⟨Du,Dφ ∗ ρε⟩ dx =
ˆ

Ω
⟨Du,D(φ ∗ ρε)⟩ dx = 0,

since φ ∗ ρε ∈ C∞
c (Ω). Thus uε is weakly harmonic on Ωε, but since it is smooth it is then

actually harmonic. Now let us fix a ball BR(x0) ⋐ Ω. Sinceˆ
BR(x0)

|uε|2 dx ≤
ˆ

BR+ε(x0)
|u|2 dx,

by Corollary 3.2 we see that (uε)ε>0 ⊂ W k,2(BR/2(x0)) is bounded. Since uε → u in
W 1,2(BR/2(x0)), we deduce that also u ∈ W k,2(BR/2(x0)): this can be seen from the fact
that (uε) is weakly pre-compact in W k,2(BR/2(x0)) and so, by uniqueness of limits, u is the
only accumulation point of the sequence.

We defined weakly harmonic functions through the variational formulation (3.1). This
definition is natural and it extends in a straightforward way to critical points of the general
variational integral (0.1). However, in the case of the Dirichlet energy, one can consider an
even weaker notion of critical point, by integrating by parts again in (3.1): let us say that
u ∈ L1

loc(Ω) is harmonic in the sense of distributions ifˆ
Ω
u∆φ dx = 0 ∀φ ∈ C∞

c (Ω).

The approach outlined in this section can be used to give a proof of Weyl’s lemma: any L1
loc

function which is harmonic in the sense of distributions is smooth, cf. Problem 3.1.

3.2 Regularity for linear elliptic systems

Having studied in some detail the case of harmonic functions, we now turn to the general
divergence-form linear elliptic systems

∂α(Aαβ
ij (x)∂βu

j) = ∂αF
α
i , i = 1, . . . ,m, (3.2)

which we encountered in Section 2.1. We refer the reader to Problems 3.2 and 3.3 for more
general results in the case where the right-hand side is not in the divergence form.

We begin with the general version of Theorem 3.1:

Theorem 3.5 (Caccioppoli’s inequality). Let F ∈ L2(Ω,Rm×n) and let u ∈ W 1,2(Ω,Rm) be
a weak solution of (3.2). Assume that:

(i) either Aαβ
ij ∈ L∞(Ω) satisfy the Legendre condition (2.3);
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(ii) or Aαβ
ij ∈ C0(Ω) satisfy the Legendre–Hadamard condition (2.5).

For any ball BR(x0) ⊂ Ω, with R small enough in case (ii), and any u0 ∈ Rm, we have
ˆ

Br(x0)
|Du|2 dx ≤ C

(
1

(R− r)2

ˆ
BR(x0)\Br(x0)

|u− u0|2 dx+
ˆ

BR(x0)
|F |2 dx

)
for all r < R. The constant C depends on λ,Λ ≡ ∥A∥∞ and on the modulus of continuity of
A in case (ii).

Proof. We will only deal with case (i), which is slightly simpler. As in the proof of Theorem
3.1, the idea is to test the weak formulation of (3.2), that isˆ

Ω
⟨ADu,Dφ⟩ dx =

ˆ
Ω

⟨F,Dφ⟩ dx,

with φ = (u − u0)η2, where η ∈ C∞
c (BR(x0)) is a cut-off function such that 0 ≤ η ≤ 1,

η = 1 in Br(x0) and |Dη| ≤ 2
R−r . Since Dφ = η2Du+ η(u− u0) ⊗ Dη, we obtainˆ

BR(x0)
η2⟨ADu,Du⟩ dx+ 2

ˆ
BR(x0)

η⟨ADu, (u− u0) ⊗ Dη⟩ dx =

=
ˆ

BR(x0)
η2⟨F,Du⟩ dx+ 2

ˆ
BR(x0)

η⟨F, (u− u0) ⊗ Dη⟩ dx.

We now treat each of the terms separately. The main term is the first one, which we can
estimate using (2.3):

λ

ˆ
BR(x0)

η2|Du|2 dx ≤
ˆ

BR(x0)
η2⟨ADu,Du⟩ dx.

As for the second term, we use Cauchy–Schwarz and Young’s inequality, together with the
properties of η:

2
∣∣∣∣∣
ˆ

BR(x0)
η⟨ADu, (u− u0) ⊗ Dη⟩ dx

∣∣∣∣∣ ≤ 2
ˆ

BR(x0)
|A|(η|Du|)(|u− u0||Dη|) dx

≤ εΛ
ˆ

BR(x0)
η2|Du|2 dx+ 4Λ

ε(R− r)2

ˆ
BR(x0)\Br(x0)

|u− u0|2 dx.

The terms on the right-hand side are dealt with similarly: since η ≤ 1,ˆ
BR(x0)

η2⟨F,Du⟩ dx ≤ εΛ
ˆ

BR(x0)
η2|Du|2 dx+ 1

4εΛ

ˆ
BR(x0)

|F |2 dx,

2
ˆ

BR(x0)
η⟨F, (u− u0) ⊗ Dη⟩ dx ≤ 4

ˆ
BR(x0)

|F |2 dx+ 4
(R− r)2

ˆ
BR(x0)\Br(x0)

|u− u0|2 dx.

Thus, combining the above estimates, we obtain

λ

ˆ
BR(x0)

η2|Du|2 dx ≤ 2εΛ
ˆ

BR(x0)
η2|Du|2 dx

+ 4(Λ/ε+ 1)
(R− r)2

ˆ
BR(x0)\Br(x0)

|u− u0|2 dx+
(

4 + 1
4εΛ

) ˆ
BR(x0)

|F |2 dx.

We choose ε = λ/(4Λ) in order to reabsorb the η2|Du|2 term and obtain the conclusion.
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Exercise 3.6. Prove Theorem 3.5 in case (ii) using G̊arding’s inequality in Corollary 2.11.
In fact, recall from that proof that, if R is sufficiently small, then

λ0

ˆ
BR(x0)

|Du|2 dx ≤
ˆ

BR(x0)
⟨ADu,Du⟩ dx

for all u ∈ W 1,2
0 (BR(x0),Rm).

Remark 3.7. Similarly to Remark 2.12, the continuity assumption in case (ii) cannot be
dropped [5].

We now want to proceed in a similar way as we did for harmonic functions, i.e. by proving
higher order estimates and then iterating this result. There is, however, a key difference: recall
that Corollary 3.2 is a consequence of the fact that the derivative of a harmonic function is
harmonic, since ∂α and ∆ commute. However, in the general x-dependent case we consider
here, this is no longer true, and differentiating the equation would lead to extra terms on the
right-hand side. Thus, instead of differentiating, we use Nirenberg’s method by considering
difference quotients ∂h,α and proving estimates uniform in h.

Theorem 3.8 (W 2,2-estimate). Let F ∈ W 1,2(Ω,Rm×n) and let u ∈ W 1,2(Ω,Rm) be a weak
solution of (3.2). Assume that Aαβ

ij ∈ C0,1(Ω) satisfy the Legendre–Hadamard condition.
Then we have u ∈ W 2,2

loc (Ω,Rm) and, for any Ω′ ⋐ Ω,

∥D2u∥L2(Ω′) ≤ C(Ω,Ω′, A)
(
∥u∥L2(Ω) + ∥F∥W 1,2(Ω)

)
.

Proof. By a covering argument it is enough to prove the result when Ω′ = BR(x0) and
Ω = B4R(x0). We also assume that x0 = 0 without loss of generality, and so we suppress the
center of the balls from the notation.

Recall that (3.2) means that, for any φ ∈ C∞
c (Ω,Rm), we haveˆ

Ω
⟨ADu,Dφ⟩ dx =

ˆ
Ω

⟨F,Dφ⟩.

For h small enough (depending on φ), we can consider as another test function τ−h,αφ, to getˆ
Ω

⟨(τh,αA)D(τh,αu),Dφ⟩ dx =
ˆ

Ω
⟨τh,αF,Dφ⟩ dx,

since of course D and τh,α commute, and where we used also Exercise 1.12. Subtracting the
previous two identities and dividing by h, we getˆ

Ω
⟨τh,αAD(∂h,αu),Dφ⟩ dx+

ˆ
Ω

⟨∂h,αADu,Dφ⟩ dx =
ˆ

Ω
⟨∂h,αF,Dφ⟩ dx.

Thus, we see that ∂h,αu is a weak solution of a system identical to (3.2): we can thus apply
Theorem 3.5 to getˆ

BR

|∂h,αDu|2 dx ≲
1
R2

ˆ
B2R

|∂h,αu|2 dx+
ˆ

B2R

|∂h,αA|2|Du|2 dx+
ˆ

B2R

|∂h,αF |2 dx.

Applying Proposition 1.13, we see that all of the terms on the right-hand side are bounded
as h → 0, and so Du ∈ W 1,2(BR,Rm×n). Thus, sending h → 0, and summing the resulting
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estimate over α, we obtainˆ
BR

|D2u|2 dx ≤ C(λ,Λ)
(

1
R2

ˆ
B2R

|Du|2 dx+ ∥DA∥2
L∞

ˆ
B2R

|Du|2 dx+
ˆ

B2R

|DF |2 dx
)

≤ C(R,A)
(ˆ

B4R

|u|2 +
ˆ

B2R

|F |2 dx+
ˆ

B2R

|DF |2 dx
)
,

where the last line follows by applying Theorem 3.5 again.

As before, we can iterate Theorem 3.8 in a straight-forward manner to obtain estimates
of arbitrarily high order:

Theorem 3.9 (Higher order regularity). Let u ∈ W 1,2(Ω,Rm) be a weak solution of (3.2).
Assume that Aαβ

ij ∈ Ck,1(Ω) satisfy the Legendre–Hadamard condition for some k ≥ 0. If
F ∈ W k+1,2(Ω) then u ∈ W k+2,2

loc (Ω,Rm), and for every Ω′ ⋐ Ω we have

∥Dk+2u∥L2(Ω′) ≤ C(k,Ω′,Ω, λ, ∥A∥Ck,1)
(
∥u∥L2(Ω) + ∥F∥W k+1,2(Ω)

)
.

Proof. See Problem 3.5.

As a consequence of Theorem 3.9 we see that, when the data of (3.2) is smooth, so is the
solution.

Corollary 3.10. Let u ∈ W 1,2(Ω,Rm) be a weak solution of (3.2). Assume that A satisfies
the Legendre–Hadamard condition, and that Aαβ

ij , F
α
i ∈ C∞(Ω). Then u ∈ C∞(Ω,Rm).

Proof. By Theorem 3.9, u ∈ W k,2
loc (Ω,Rm) for all k ≥ 0, and so by the Sobolev embedding

theorem we have u ∈ C∞(Ω).

3.3 Decay estimates

We conclude this section by returning to the case of systems with constant coefficients;
we will prove in particular two simple decay estimates that will play a very important role in
the next section. We will always consider the homogeneous problem

∂α(Aαβ
ij ∂βu

j) = 0, i = 1, . . . ,m (3.3)

where moreover

A is constant and satisfies the Legendre–Hadamard condition. (3.4)

Remark 3.11. As motivation for the estiamtes in this section, let us inspect Caccioppoli’s
inequality. There are two things which are yet to take advantage of:

(i) we have freedom in choosing u0 ∈ Rm, and so far we have only taken u0 = 0;
(ii) the integral of |u−u0|2 on the right-hand side is over an annulus BR(x0)\Br(x0), while

so far we have only applied the (weaker) estimateˆ
Br(x0)

|Du|2 dx ≤ C

(R− r)2

ˆ
BR(x0)

|u− u0|2 dx.

We will see in this section that both points above lead to improved information.
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Let us begin with point (i) in the above remark. Clearly Caccioppoli’s estimate is strongest
when u0 is chosen to minimize the right-hand side. The next exercise shows that the optimal
choice of u0 is given by the average of u:

Exercise 3.12. Let 1 ≤ p < ∞ and consider, for u ∈ Lp(Ω,Rm), the problem

inf
u0∈Rm

ˆ
Ω

|u(x) − u0|p dx.

(i) Show that, when p = 2, the infimum is attained at (u)Ω ≡ 1
|Ω|
´

Ω udx.
(ii) Show that, for general p, we still have for any u0 ∈ Rm the inequalityˆ

Ω
|u− (u)Ω|p dx ≤ 2p

ˆ
Ω

|u− u0|p dx.

Taking u0 to be an average will allow us to use Poincaré’s inequality. Recall that, when
Ω = Br(x0), we write (u)Ω ≡ (u)x0,r. We then have:

Lemma 3.13 (Decay estimates for systems with constant coefficients). Let u ∈ W 1,2
loc (Ω,Rm)

be a weak solution of (3.3), where A satisfies (3.4). We haveˆ
Br(x0)

|u|2 dx ≤ C

(
r

R

)n ˆ
BR(x0)

|u|2 dx, (3.5)
ˆ

Br(x0)
|u− (u)x0,r|2 dx ≤ C

(
r

R

)n+2 ˆ
BR(x0)

|u− (u)x0,R|2 dx, (3.6)

for any Br(x0) ⊂ BR(x0) ⋐ Ω, where C = C(n, λ,Λ).

Proof. Let us first prove (3.5). By rescaling and translating (i.e. by considering ux0,R ≡
u(x0 + R·) instead of u) we can assume that x0 = 0, R = 1. Let k be an integer such that
k > n

2 , i.e. such that W k,2 ⊂ C0. By Caccioppoli’s inequality, we haveˆ
B 1

2

|Du|2 dx ≤ C(λ,Λ)
ˆ

B1

|u|2 dx.

Since the coefficients are constant, each derivative of u also solves (2.1), and so by iterating
this inequality (or alternatively by applying Theorem 3.9) we see that

∥u∥L∞(B2−k ) ≤ C∥u∥W k,2(B2−k ) ≤ C(λ,Λ)∥u∥L2(B1).

Thus, if r ≤ 2−k, thenˆ
Br

|u|2 dx ≤ Crn∥u∥2
L∞(B2−k ) ≤ Crn

ˆ
B1

|u|2 dx.

This is the only interesting case, because if r > 2−k then the inequality holds trivially with
C = (2k)n, since

´
Br

|u|2 dx ≤
´

B1
|u|2 dx.

We now prove (3.6), which follows by applying the previous inequality to the derivatives
of u, which are also solutions of (2.1), since A is constant. Let us first assume that r ≤ R

2 ;
as before, this is the only interesting case. Applying the Poincaré inequality (Corollary 1.20),
(3.5) and Caccioppoli’s inequality, we haveˆ

Br(x0)
|u− (u)x0,r|2 dx ≤ Cr2

ˆ
Br(x0)

|Du|2 dx
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≤ Cr2
(
r

R

)n ˆ
BR(x0)

|Du|2 dx

≤ C

(
r

R

)n+2 ˆ
BR(x0)

|u− (u)x0,R|2 dx.

When r ≥ R
2 , we can simply estimate

ˆ
Br(x0)

|u− (u)x0,r|2 dx ≤
ˆ

Br(x0)
|u− (u)x0,R|2 dx ≤ 2n+2

(
r

R

)n+2 ˆ
BR(x0)

|u− (u)x0,r|2 dx,

where in the first inequality we used Exercise 3.12.

Exercise 3.14. Fill in the details for the “scaling argument” used in the proof above. Then
use the mean-value formula to prove directly that, when u is harmonic, (3.5) holds with C = 1.

Let us now return to Remark 3.11, in particular to point (ii). We will use both the fact
that we should choose u0 to be the average of u over the annulus, together with the fact that
the integral is over an annulus rather than a ball.

Lemma 3.15 (Widman’s hole-filing technique). Let u ∈ W 1,2(Ω,Rm) be a weak solution of
(3.3), where A satisfies (3.4). Then there is an exponent α ∈ (0, 1) such thatˆ

Br(x0)
|Du|2 dx ≤ C

(
r

R

)α ˆ
BR(x0)

|Du|2 dx,

whenever Br(x0) ⊂ BR(x0) ⋐ Ω, where C = C(n, λ,Λ).

Proof. As before, by replacing u with ux0,R ≡ u(x0 +R·), we can assume that R = 1, x0 = 0.
Applying Caccioppoli’s inequality with u0 = (u)B1\B1/2 , together with Poincaré’s inequality,
we get ˆ

B1/2

|Du|2 dx ≤ C

R2

ˆ
B1\B1/2

|u− u0|2 dx ≤ C0

ˆ
B1\B1/2

|Du|2 dx.

We now add C
´

B1/2
|Du|2 dx to both sides (i.e. we “fill the hole” on the integral in the right-

hand side), to find that

(C0 + 1)
ˆ

B1/2

|Du|2 dx ≤ C0

ˆ
B1

|Du|2 dx

or, rearranging and writing θ ≡ C0
C0+1 < 1, we obtain the decay inequalityˆ
B1/2

|Du|2 dx ≤ θ

ˆ
B1

|Du|2 dx.

This inequality is striking: it asserts that there is always at most a universal fraction of the
energy of u concentrated on a ball of half the radius. We iterate this estimate k times to getˆ

B2−k

|Du|2 dx ≤ θk

ˆ
B1

|Du|2 dx.

Now fix r > 0, and let k is the unique integer such that 2−k−1 ≤ r < 2−k. Writing α ≡
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log2(1/θ) > 0, we have θk = 2k log2 θ = (2−k)α ≤ (2r)α, and soˆ
Br

|Du|2 dx ≤
ˆ

B2−k

|Du|2 dx ≤ 2αrα

ˆ
B1

|Du|2 dx

as wished.

As we will see in the next section, when n = 2 Lemma 3.15 already implies that u ∈ C0,α/2.
This type of estimate will also be useful in Section ??, when we study nonlinear problems in
the plane. For now, we simply note the following:

Corollary 3.16. Assume (3.4) holds and let u : Rn → Rm be an entire solution of (3.3) withˆ
Rn

|Du|2 dx < ∞.

Then u is constant.

Proof. Indeed, for any 0 < r < R, we haveˆ
Br(0)

|Du|2 ≤ C

(
r

R

)α ˆ
BR(0)

|Du|2 dx ≤ C

(
r

R

)α ˆ
Rn

|Du|2 dx → 0

as R → ∞. Thus
´

Br(0) |Du|2 dx = 0, for any r > 0, so u is constant.

In particular, when n = 2, from the Caccioppoli inequality we obtainˆ
BR(0)

|Du|2 ≤ C

R2

ˆ
B2R(0)

|u|2 dx ≤ C∥u∥2
L∞(R2).

Thus Corollary 3.16 implies the Liouville theorem: if u ∈ L∞(R2,Rm) is an entire solution of
(3.2) then u is constant. In fact, we have the following more general version of this result:

Theorem 3.17 (Liouville’s Theorem). Assume (3.4) holds and let u : Rn → Rm be an entire
solution of (3.3) such that

|u(x)| ≤ C(1 + |x|k) for all x ∈ Rn,

for some k ∈ N. Then u is a polynomial of degree at most k.

Proof. We will show that Dk+1u = 0; since u is smooth by Corollary 3.10, this implies1 that
u is a polynomial of degree at most k. Fix 0 < r ≤ 2R, and applying (3.5) and Caccioppoli’s
inequality (k + 1)-times, we obtainˆ

Br(0)
|Dk+1u|2 dx ≤ C

(
r

R

)n ˆ
BR(0)

|Dk+1u|2 dx

≤ C

(
r

R

)n 1
R2k+2

ˆ
B2k+1R

(0)
|u|2 dx

≤ C

(
r

R

)nR2k+n

R2k+2 = C
rn

R2 .

Thus, sending R → ∞, we conclude that
´

Br(0) |Dk+1u|2 dx = 0. Since r > 0 is arbitrary, the
conclusion follows.

1The same is true even for L1
loc functions which satisfy Dk+1u = 0 weakly, cf. Lemma 1.5 for the case k = 0.

35



3.4 Problems for Section 3

Problem 3.1 (Weyl’s lemma). Use the strategy of Section 3.1 to give a proof of Weyl’s
lemma: any function u ∈ L2

loc(Ω) which is harmonic in the sense of distributions is smooth.

Problem 3.2 (Poisson equation). Let u ∈ W 1,2
loc (Ω) be a weak solution of

−∆u = f. (3.7)

The goal of this problem is to prove that if f ∈ L2(Ω) then u ∈ W 2,2
loc (Ω).

(i) Integrate by parts to prove that, for a solution u ∈ C∞
c (Ω) of (3.7),ˆ

Ω
|D2u|2 dx =

ˆ
Ω

|f |2 dx.

(ii) Now let u ∈ C∞(Ω) be a solution of (3.7). By deriving the equation for ηu, where
η ∈ C∞

c (Ω) is a cutoff function, show that for any Ω0 ⋐ Ω1 ⋐ Ω we haveˆ
Ω0

|D2u|2 dx ≤ C(Ω0,Ω1)
ˆ

Ω1

(
|f |2 + |u|2 + |Du|2

)
dx.

(iii) Deduce from the above a priori estimate that, if u ∈ W 1,2
loc (Ω) is a weak solution of (3.7),

then u ∈ W 2,2
loc (Ω).

(iv) Give a different proof of the fact that u ∈ W 2,2
loc (Ω) by testing the weak formulation of

(3.7) against ∂−h,α(η2∂h,αu).

Problem 3.3 (Non-divergence form right-hand side). Let u ∈ W 1,2(Ω,Rm) be a weak solution
of the system

−∂α(Aαβ
ij (x)∂βu

j) = fi, i = 1, . . . ,m,

where f ∈ L2(Ω,Rm).

(i) Whenever BR(x0) ⊂ Ω and u0 ∈ Rm, prove the Caccioppoli estimate
ˆ

Br(x0)
|Du|2 dx ≤ C

(
1

(R− r)2

ˆ
BR(x0)\Br(x0)

|u− u0|2 dx+R2
ˆ

BR(x0)
|f |2 dx

)
.

[Hint: reduce this to Theorem 3.5 by constructing F 1 ∈ L2(Ω,Rm) with fi = ∂1F
1
i .]

(ii) Using the test function −∂−h,α(η2∂h,αu) and part (i), prove that u ∈ W 2,2
loc (Ω,Rm).

Problem 3.4 (Boundary regularity). Let Ω = B+
1 (0) ≡ B1(0) ∩ Rn

+, where

Rn
+ ≡ {x ∈ Rn : xn > 0}.

For g ∈ W 1,2(Ω,Rn), consider the weak solution u ∈ W 1,2
0 (Ω) of the Dirichlet problem∆u = div g in Ω,

u = 0 on ∂Ω.

The goal of this problem is to show that u ∈ W 2,2(B+
1/2(0)).

(i) Test the equation with ∂−h,α(η2∂h,αu) where α ̸= n and η ∈ C∞
c (Ω), and obtain esti-

mates showing that ∂αu ∈ W 1,2(B+
1/2(0)).

36



(ii) Use the equation ∆u = div g to deduce that ∂nnu ∈ W 1,2(B+
1/2(0)) as well.

Problem 3.5 (Higher order regularity). Use an induction argument to prove Theorem 3.9.
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4 Schauder theory for linear elliptic systems

4.1 Hölder, Morrey and Campanato spaces

In this section we develop the classical perturbation theory of Schauder for linear elliptic
systems in divergence form

∂α(Aαβ
ij ∂βu

j) = ∂αF
α
i for i = 1, . . . ,m, (4.1)

that we already studied in the previous two sections. In Section 3 we studied how the Sobolev
regularity of the data A,F is related to the regularity of the solution u. In Schauder theory
one instead measures this regularity in a different scale of function spaces, which we begin by
introducing.

Definition 4.1. For α ∈ (0, 1], a map u : Ω → Rm is said to be α-Hölder continuous, and we
write u ∈ C0,α(Ω,Rm) if [u]C0,α(Ω,Rm) < ∞, where

[u]C0,α(Ω,Rm) ≡ sup
x,y∈Ω:x ̸=y

|u(x) − u(y)|
|x− y|α

.

The space C0,α(Ω,Rm) is a Banach space with the norm

∥u∥C0,α ≡ ∥u∥L∞ + [u]C0,α

As usual, we say that u ∈ C0,α
loc (Ω,Rm) if any point in Ω has a neighborhood Ω′ where

u ∈ C0,α(Ω′,Rm). We also define for k ∈ N the spaces Ck,α(Ω) in a similar way.

We refer the reader to Problem 4.1 for some basic properties of Hölder spaces.
In these notes, we will follow Campanato’s approach to Schauder theory. For this ap-

proach, we will introduce the following spaces, which are naturally motivated by the two
decay estimates of Lemma 3.13:

Definition 4.2. Let Ω(x0, r) ≡ Ω ∩Br(x0). For 1 ≤ p < ∞ and µ ≥ 0 we define:

(i) the Morrey space Lp,µ(Ω) as the space of those functions in Lp(Ω) such that

∥u∥p
Lp,µ(Ω) ≡ sup

x0∈Ω,0<r<diam(Ω)
r−µ

ˆ
Ω(x0,r)

|u|p dx < ∞;

(ii) the Campanato space Lp,µ(Ω) as the space of those functions in Lp(Ω) such that

[u]pLp,µ(Ω) ≡ sup
x0∈Ω,0<r<diam(Ω)

r−µ

ˆ
Ω(x0,r)

|u− (u)x0,r|p dx < ∞,

where we exceptionally write (u)x0,r ≡ 1
|Ω(x0,r)|

´
Ω(x0,r) udx. We write

∥u∥Lp,µ(Ω) ≡ ∥u∥Lp(Ω) + [u]Lp,µ .

Both Morrey and Campanato spaces are Banach spaces, although we will not use this fact.
Let us first look quickly into Morrey spaces. They are only interesting when µ ∈ [0, n],

and they serve as a scale of function spaces between Lp and L∞:

Lp,0 = Lp, Lp,n = L∞, Lp,µ = {0} if µ > n,
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as can be easily checked using Lebesgue’s differentiation theorem. Hölder’s inequality shows
that Lq,µ are ordered, i.e. Lq,µ ⊆ Lp,µ whenever q ≥ p.

We now investigate in more detail Campanato spaces. Here and in the rest of this section,
we implicitly assume that Ω satisfies the following mild regularity condition, which is always
satisfied for smooth or even Lipschitz domains:

|Ω(r, x0)| ≥ crn for all x0 ∈ Ω, r ∈ (0,diam(Ω)). (4.2)

We will split our analysis in the cases µ < n and µ > n; the critical case µ = n is more subtle,
and will be addressed in Problem 4.2.
Theorem 4.3 (Characterization of Campanato spaces). Let p ∈ [1,∞).

(i) 0 ≤ µ < n: then Lp,µ(Ω) and Lp,µ(Ω) are equivalent spaces.
(ii) n < µ ≤ n+ p: then Lp,µ(Ω) and C0,α(Ω), with α = µ−n

p , are equivalent spaces.
Proof. Let us first dispense with the easy inclusions. For each µ ≥ 0, we have Lp,µ ⊆ Lp,µ:
using (a+ b)p ≤ 2p−1(ap + bp) and Jensen’s inequality, we have
ˆ

Ω(x0,r)
|u− (u)x0,r|p dx ≤ 2p−1

[ˆ
Ω(x0,r)

|u|p dx+ |Ω(x0, r)||(u)x0,r|p
]

≤ 2p

ˆ
Ω(x0,r)

|u|p dx.

The inclusion C0,α ⊂ Lp,n+αp is also easy, because we can take averages of the pointwise
estimate |u(x) − u(y)| ≤ [u]C0,α(2r)α, which holds for all x, y ∈ Br(x0). Thus

|u(x) − (u)x0,r| =
∣∣∣∣∣ 1
|Ω(x0, r)|

ˆ
Ω(x0,r)

[
u(x) − u(y)

]
dy
∣∣∣∣∣ ≤ [u]C0,α(2r)α

and so, integrating in x, we getˆ
Ω(x0,r)

|u(x) − (u)x0,r|p dx ≤ [u]pC0,α(2r)αp|Br(x0)| ≤ C[u]pC0,αr
n+αp.

Hence the rest of the proof is dedicated to prove that Lp,µ is contained either in a Morrey
space in case (i), or in a Hölder space in case (ii). Throughout the proof, we let C denote a
generic constant depending on n, p, µ and Ω.

The key point in the proof, in either of the two cases, is to have good estimates on the
growth of the averages f(r) ≡ |(u)x0,r|p, as r → 0. To do so, we want to estimate how much
f can change from one dyadic scale to the next. Given 0 < r < R and x, x0 ∈ Ω, we have

|(u)x0,r − (u)x0,R|p ≤ 2p−1 (|u(x) − (u)x0,R|p + |u(x) − (u)x0,r|p
)

and so, integrating in x and using (4.2), we get

|(u)x0,r − (u)x0,R|p ≤ 2p−1

crn

(ˆ
Ω(x0,R)

|u− (u)x0,R|p dx+
ˆ

Ω(x0,r)
|u− (u)x0,r|p dx

)

≤ C

rn
(Rµ + rµ) [u]pLp,µ

≤ C
Rµ

rn
[u]pLp,µ ,

since r < R. Thus, taking the p-th rooth, we get

|(u)x0,r − (u)x0,R| ≤ CR
µ
p r

− n
p [u]Lp,µ = C

(
R

r

)n
p

R
µ−n

p [u]Lp,µ .
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Now we assume that r,R are in adjacent dyadic scales. To be precise, fix 0 < ρ < diam(Ω),
which we think of as a fixed constant, corresponding to the initial dyadic scale, and take

r ≡ 2−(k+1)ρ, R ≡ 2−kρ.

With these choices, the previous estimate takes the form

|(u)x0,ρ/2k+1 − (u)x0,ρ/2k | ≤ C[u]Lp,µ

(
ρ

2k

)µ−n
p

(4.3)

and notice how the behavior of the right-hand side will change depending on whether we are
in case (i) or (ii). Let us sum (4.3) from the initial scale k = 0 to some large scale k = N − 1
to get

|(u)x0,ρ/2N − (u)x0,ρ| ≤ C[u]Lp,µρ
µ−n

p

2N n−µ
p − 1

2
n−µ

p − 1

 . (4.4)

At this point, we split the analysis depending on whether µ < n or µ > n.
Let us first deal with the case (i), where µ < n; in this case, the term in parentheses in

(4.4) is comparable to 2N n−µ
p , and so we obtain

|(u)x0,ρ/2N − (u)x0,ρ| ≤ C[u]Lp,µ

(
ρ

2N

)µ−n
p

. (4.5)

Now let r ∈ (0,diam(Ω)) be arbitrary. We can thus find a unique N ∈ N and a unique
1
2 diam(Ω) ≤ ρ ≤ diam(Ω) such that r = ρ/2N . Thus (4.5) yields

|(u)x0,r|p ≤ 2p−1 (|(u)x0,ρ|p + |(u)x0,r − (u)x0,ρ|p
)

≤ 2p−1
(
C diam(Ω)−n∥u∥p

Lp + Crµ−n[u]pLp,µ

)
.

(4.6)

This is the desired estimate for |(u)x0,r|p, which easily implies the conclusion. Indeed, by the
triangle inequality, we haveˆ

Ω(x0,r)
|u|p dx ≤ 2p−1

ˆ
Ω(x0,r)

|u− (u)x0,r|p dx+ crn|(u)x0,r|p ≤ Crµ[u]pLp,µ + Crn|(u)x0,r|p,

and so inserting (4.6) into this estimate, and using the fact that r ≤ diam(Ω), we get

r−µ

ˆ
Ω(x0,r)

|u|p dx ≤ C[u]pLp,µ + C diam(Ω)−µ∥u∥p
Lp

as wished.
Now let us deal with case (ii), so we assume that µ > n. Going back to (4.3), note that

since µ > n this inequality asserts that, for fixed ρ and x0, the sequence
(
(u)x0,ρ/2k

)
k

is
Cauchy and so it has a limit, say ũ(x0). By Lebesgue’s differentiation theorem, we must have

u(x0) = ũ(x0) for a.e. x0 in Ω.

We now claim that ũ is a continuous representative for u. Sending N → ∞ in (4.4), as µ > n,
we obtain

|ũ(x0) − (u)x0,ρ| ≤ C[u]Lp,µρ
µ−n

p . (4.7)

Thus we see that (u)x,ρ → ũ(x) uniformly as ρ → 0; since x 7→ (u)x,ρ is continuous, we deduce
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that also ũ is continuous. Thus we can identify u with its continuous representative ũ.
We now prove that, in fact, u is Hölder continuous: given x, y ∈ Ω and writing ρ = |x−y|,

using (4.7) we have
|u(x) − u(y)| ≤ |(u)x,2ρ − u(x)| + |(u)x,2ρ − (u)y,2ρ| + |(u)y,2ρ − u(y)|

≤ C[u]Lp,µρ
µ−n

p + |(u)x,2ρ − (u)y,2ρ|.
(4.8)

Thus it remains to deal with the last term. Since Ω(x, ρ) ⊂ Ω(y, 2ρ), we have

|(u)x,2ρ − (u)y,2ρ|p ≤ Cρ−n

ˆ
Ω(x,ρ)

|(u)x,2ρ − (u)y,2ρ|p dz

≤ 2p−1ρ−n

(ˆ
Ω(x,2ρ)

|u(z) − (u)x,2ρ|p dz +
ˆ

Ω(y,2ρ)
|u(z) − (u)y,2ρ|p dz

)
≤ 2pρµ−n[u]Lp,µ

This, combined with (4.8), yields the conclusion.

Theorem 4.3(ii) is interesting in that it gives an integral (rather than pointwise) char-
acterization of Hölder spaces. Note that Hölder spaces are only interesting for α ≤ 1, cf.
Problem 4.1, so the restriction µ ≤ n + p is natural, although not strictly necessary for the
above argument.

We now observe that Theorem 4.3 actually implies Morrey’s embedding from Theorem
1.16(ii). To see this, we first state the following:

Lemma 4.4. Let p ∈ (1,∞) and µ ≥ 0. If |Du| ∈ Lp,µ
loc (Ω) then u ∈ Lp,µ+p

loc (Ω).

Proof. We have
1

rµ+p

ˆ
Br(x0)

|u− (u)x0,r|p dx ≤ C
1
rµ

ˆ
Br(x0)

|Du|p dx ≤ ∥u∥p
Lp,µ(Ω),

by the Poincaré inequality in Corollary 1.20.

Corollary 4.5. Let p > n. If u ∈ W 1,p(Ω) then u ∈ C0,α
loc (Ω) with α = 1 − n

p .

Proof. By Lemma 4.4, if u ∈ W 1,p(Ω) then Du ∈ Lp(Ω) = Lp,0(Ω) and so u ∈ Lp,p
loc(Ω). The

conclusion then follows from Theorem 4.3(ii).

We conclude this section with an elementary but very useful technical lemma, that we will
use several times in the sequel.

Lemma 4.6 (Iteration lemma). Consider a non-decreasing function ϕ : (0, R0] → [0,+∞)
which satisfies, for some constants A,B, ε > 0 and 0 < β < α,

ϕ(r) ≤ A

[(
r

R

)α

+ ε

]
ϕ(R) +BRβ for all 0 < r ≤ R ≤ R0.

Then there is C = C(α, β,A) and ε0 = ε0(α, β,A) such that, if ε ≤ ε0, we have

ϕ(r) ≤ C

[
ϕ(R)
Rβ

+B

]
rβ for all 0 < r ≤ R ≤ R0.
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Proof. Since ε ∈ (0, 1) let us assume without loss of generality that A > 1
2 . Let us take

γ ≡ α+β
2 . We choose τ ∈ (0, 1) with 2Aτα = τγ and ε0 so that ε0 ≤ τα. Thus

ϕ(τR) ≤ A(τα + ε0)ϕ(R) +BRβ ≤ 2Aταϕ(R) +BRβ = τγϕ(R) +BRβ.

Thus, iterating once, we get

ϕ(τ2R) ≤ τγϕ(τR) +BτβRβ ≤ τ2γϕ(R) + τγBRβ +BτβRβ = τ2γϕ(R) +BRβτβ(1 + τγ−β).

Hence, iterating the first estimate k times, we get

ϕ(τkR) ≤ τkγϕ(R) +BRβτ (k−1)β
k−1∑
i=0

τ i(γ−β)

= τkγϕ(R) +BRβτ (k−1)β 1 − τk(γ−β)

1 − τγ−β
≤ Cτ (k+1)β[ϕ(R) +BRβ].

Now for 0 < r < R, let k ∈ N be such that τk+1R < r ≤ τkR. Then

ϕ(r) ≤ ϕ(τkR) ≤ Cτ (k+1)β[ϕ(R) +BRβ] ≤ C
[
ϕ(R) +BRβ

] ( r
R

)β

,

as wished.

4.2 Interior Schauder estimates

The fundamental idea in Schauder theory is to reduce the study of (4.1) to the constant
coefficient case, so we begin by proving estimates in that case.

Theorem 4.7 (Constant coefficients). Let u ∈ W 1,2
loc (Ω,Rm) be a weak solution of (4.1),

where A is constant and satisfies the Legendre–Hadamard condition. If F ∈ L2,µ
loc (Ω,Rm×n)

for µ ∈ [0, n+ 2) then Du ∈ L2,µ
loc (Ω,Rm×n), with the estimate

∥Du∥L2,µ(Ω′′) ≤ C(∥Du∥L2(Ω′) + [F ]L2,µ(Ω′)),

where Ω′′ ⋐ Ω′ ⋐ Ω and C = C(n,m,Ω′,Ω′′, λ,Λ, µ).

Proof. For a ball BR(x0) ⋐ Ω, let us write u = v + w, where v is the unique solution todiv(ADv) = 0 in BR(x0),
v = u on ∂BR(x0);

note that the solution exists by Corollary 2.10. By Lemma 3.13, we getˆ
Br(x0)

|Dv − (Dv)x0,r|2 dx ≤ C

(
r

R

)n+2 ˆ
BR(x0)

|Dv − (Dv)x0,R|2 dx

and so, using the triangle inequality, we getˆ
Br(x0)

|Du− (Du)x0,r|2 ≤ 2
ˆ

Br(x0)
|Dv − (Dv)x0,r|2 + 2

ˆ
Br(x0)

|Dw − (Dw)x0,r|2

≤ C

(
r

R

)n+2 ˆ
BR(x0)

|Dv − (Dv)x0,R|2 + 2
ˆ

Br(x0)
|Dw − (Dw)x0,r|2

≤ C

(
r

R

)n+2 ˆ
BR(x0)

|Du− (Du)x0,R|2 + C

ˆ
BR(x0)

|Dw − (Dw)x0,R|2.

(4.9)
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We now want to estimate the last term, using Exercise 3.12 to writeˆ
BR(x0)

|Dw − (Dw)x0,R|2 dx ≤
ˆ

BR(x0)
|Dw|2 dx.

Clearly, by its definition, w ∈ W 1,2
0 (BR(x0),Rm) is a weak solution ofdiv(ADw) = divF in BR(x0),

w = 0 on ∂BR(x0),

and so we haveˆ
BR(x0)

⟨ADw,Dφ⟩ dx =
ˆ

BR(x0)
⟨F,Dφ⟩ dx =

ˆ
BR(x0)

⟨F − (F )x0,R,Dφ⟩ dx

for any φ ∈ W 1,2
0 (BR(x0),Rm). Thus, taking φ = w and using G̊arding’s inequality, we get

λ

ˆ
BR(x0)

|Dw|2 ≤
ˆ

BR(x0)
⟨ADw,Dw⟩ dx

≤
(ˆ

BR(x0)
|F − (F )x0,R|2 dx

)1/2(ˆ
BR(x0)

|Dw|2 dx
)1/2

.

So, combining the previous estimates,ˆ
BR(x0)

|Dw − (Dw)x0,r|2 dx ≤ C[F ]2L2,µRµ.

Inserting this estimate into (4.9), we have thus shown that

ϕ(r) ≡
ˆ

Br(x0)
|Du− (Du)x0,r|2 dx ≤ C

(
r

R

)n+2
ϕ(R) + C[F ]2L2,µRµ

and so Lemma 4.6, applied with α = n+ 2 and β = µ yields

ϕ(r) ≤ C

((
r

R

)µ

ϕ(R) + C[F ]2L2,µrµ

)
≤ C

(
∥Du∥2

L2

(
r

R

)µ

+ [F ]2L2,µrµ

)
,

which yields the conclusion.

We now treat the case of variable coefficients.

Theorem 4.8 (Variable coefficients). Fix σ ∈ (0, 1). Let u ∈ W 1,2
loc (Ω,Rm) be a weak solution

of (4.1), where F ∈ C0,σ
loc (Ω,Rm×n) and Aij

αβ ∈ C0,σ
loc (Ω) satisfies the Legendre–Hadamard

condition. Then Du ∈ C0,σ
loc (Ω,Rm×n), with the estimate

∥Du∥C0,σ(Ω′′) ≤ C(∥Du∥L2(Ω′) + ∥F∥C0,σ(Ω′)),

where Ω′′ ⋐ Ω′ ⋐ Ω and C = C(n,m,Ω′,Ω′′, λ,Λ, σ, [A]C0,σ ).

Proof. As in the proof of Corollary 2.11, the idea is to treat the case of variable coefficients
as a perturbation of the constant coefficient case. In particular, we use Korn’s trick:

div(A(x0)Du) = divG, G(x) ≡ −
(
A(x) −A(x0)

)
Du(x) + F (x) − (F )x0,R.
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We now argue as in the proof of Theorem 4.7, and we let v be the solution ofdiv(A(x0)Dv) = 0 in BR(x0),
v = u on ∂BR(x0).

Arguing exactly as in the proof of Theorem 4.7 (i.e. using (3.6)), with w = u− v, we getˆ
Br(x0)

|Du− (Du)x0,r|2 ≤ C

(
r

R

)n+2 ˆ
BR(x0)

|Du− (Du)x0,R|2 + C

ˆ
BR(x0)

|Dw|2. (4.10)

Also as before, we have an estimate for the last term, by plugging in w as test function in its
own equation, and using the fact that A ∈ C0,σ:ˆ

BR(x0)
|Dw|2 ≤ C

ˆ
BR(x0)

|G|2 ≤
ˆ

BR(x0)
|F − (F )x0,R|2 + CR2σ

ˆ
BR(x0)

|Du|2

≤ C[F ]2L2,n+2σRn+2σ + CR2σ

ˆ
BR(x0)

|Du|2.
(4.11)

Thus, writing

ϕ(r) ≡
ˆ

Br(x0)
|Du− (Du)x0,r|2 dx,

we arrive at

ϕ(r) ≤ C

(
r

R

)n+2
ϕ(R) + C[F ]2L2,n+2σRn+2σ + CR2σ

ˆ
BR(x0)

|Du|2. (4.12)

In order to be able to conclude, we need an estimate on the last term in (4.12). For this,
we argue exactly as for (4.10), but we use (3.5) instead of (3.6): this yieldsˆ

Br(x0)
|Du|2 dx ≤ C

(
r

R

)n ˆ
BR(x0)

|Du|2 dx+ C

ˆ
BR(x0)

|Dw|2 dx

≤ C

[(
r

R

)n

+R2σ

]ˆ
BR(x0)

|Du|2 dx+ C[F ]2L2,n+2σRn+2σ,

where the last line follows from (4.11). Let ε > 0 be arbitrarily small and suppose without
loss of generality that R ≤ R0 ≤ 1 is sufficiently small. Since Rn+2σ ≤ Rn−ε, if we set
ψ(r) =

´
Br(x0) |Du|2, we can apply Lemma 4.6 with α = n and β = n− ε to get

ˆ
Br(x0)

|Du|2 dx ≤ C(ε,R0)
(

∥Du∥2
L2(BR0 (x0)) + [F ]2L2,n+2σ

)
rn−ε.

Recall that [F ]L2,n+2σ is comparable to [F ]C0,σ by Theorem 4.3.
We can now complete the proof. Returning to (4.12), we see that

ϕ(r) ≤ C

((
r

R

)n+2
ϕ(R) + [F ]2L2,n+2σRn+2σ +R2σRn−ε

)

and so, by Lemma 4.6, we have that Du ∈ L2,n+2σ−ε
loc (Ω) ∼= C

0,σ−ε/2
loc , by Theorem 4.3(ii).

Thus in particular Du is bounded and so actually (4.12) improves to

ϕ(r) ≤ C

((
r

R

)n+2
ϕ(R) + ([F ]2L2,n+2σ + 1)Rn+2σ

)
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which, again by Lemma 4.6, yields ϕ(r) ≤ Crn+2σ. Thus Du ∈ L2,n+2σ
loc (Ω) ∼= C0,σ

loc as
wished.

By iterating the above result, we obtain the following analogue of Theorem 3.9:

Theorem 4.9 (Higher-order regularity). Let u ∈ W 1,2
loc (Ω,Rm) be a weak solution of (4.1).

If Aαβ
ij ∈ Ck,σ

loc (Ω) satisfy the Legendre–Hadamard condition and Fα
i ∈ Ck,σ

loc (Ω) then we have
u ∈ Ck+1,σ

loc (Ω,Rm).

Proof. Differentiate the system and argue inductively, see Problem 4.5.

Thus Schauder theory allows us to reprove Corollary 3.10 in a rather different way.

4.3 Schauder theory as an existence theory

Recall that our strategy in Sections 2–3 was to first construct, using Functional Analytic
methods, weak solutions of (4.1) and then to prove regularity of such solutions. In Schauder
theory, instead, one can construct regular solutions directly without passing through some
generalized notion of solution. For this reason, Schauder theory is not just a regularity theory,
but an existence theory as well, and in fact it is substantially older than the approach based
on Sobolev spaces.

In this subsection we sketch how to use Schauder theory to obtain existence of solutions
over a smooth domain Ω. There are two crucial ingredients in the method:

(i) Solvability of the Poisson equation: for F ∈ C1,α(Ω,Rm) there is a unique solution
u ∈ C2,α(Ω,Rm) of ∆u = divF in Ω,

u = 0 on ∂Ω.

(ii) Global Schauder estimates: For F ∈ C1,α(Ω,Rm), any solution of (4.1) satisfies

∥u∥C2,α(Ω) ≤ C(Ω,m, λ,Λ, ∥A∥C1,α(Ω))∥F∥C1,α(Ω).

There are several ways of obtaining (i) without passing through the theory of Sobolev
spaces. For instance, if Ω is a ball then one can write the unique solution of the Poisson
equation explicitly, through the corresponding Green’s function. If Ω is a more general domain
then one needs to use other ideas, such as barriers and Perron’s method.

Concerning (ii), note that this is simply a global (i.e. up to the boundary) version of
Theorem 4.9. Since the focus of these notes is on interior regularity, and in any case the main
ideas in the proof of (ii) are already contained in the proof of Theorem 4.9, we do not present
the proof of (ii) here.

In any case, let us now see how (i) and (ii) combined yield an existence theorem for linear
elliptic systems satisfying the Legendre–Hadamard condition. We consider two operators

L0 = ∆: X → Y, L1 = div(AD·) : X → Y,

where

X = C2,α(Ω,Rm) ∩ {u|∂Ω = 0}, Y = C1,α(Ω).
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From (i) we already know that L0 is surjective, and our goal is now to show that L1 is
surjective as well. That this is the case follows from the a priori estimate (ii) together with
the following abstract result:

Theorem 4.10 (Continuity method). Let L0, L1 : X → Y be bounded linear operators between
Banach spaces. Set

Lt ≡ (1 − t)L0 + tL1, t ∈ [0, 1].

Suppose that

∥u∥X ≤ C∥Ltu∥Y for all u ∈ X, all t ∈ [0, 1]. (4.13)

If L0 is surjective, then so is L1.

Proof. Suppose that Ls is surjective, for some s ∈ [0, 1]. By (4.13), Ls is injective as well
and hence we have a bounded inverse L−1

s : Y → X. We now rewrite the equation Ltu = f as

Lsu = f + (Ls − Lt)u = f + (t− s)(L0u− L1u)

or, in yet another way,

u = L−1
s f + (t− s)L−1

s (L0u− L1u) ≡ Tu.

Thus we need to find a fixed point of T : X → Y. We estimate

∥Tu− Tv∥ ≤ ∥L−1
s ∥(∥L0∥ + ∥L1∥)|t− s|∥u− v∥.

According to (4.13) we have ∥L−1
s ∥ ≤ C and so if |t − s| ≤ 1

2(C∥L0∥ + ∥L1∥)−1 ≡ c, we can
apply the contraction mapping theorem to find a fixed point of T . Thus, if Ls is surjective
then so is Lt whenever |t− s| ≤ c, and the conclusion follows.

4.4 Problems for Section 4

Problem 4.1 (Properties of Hölder spaces). Let α ∈ (0, 1].

(i) Show that C0,α(Ω,Rm) is a Banach space.
(ii) Show that, if α > 1 and Ω is connected, C0,α(Ω,Rm) contains only constants.
(iii) Prove that the embedding C0,α(Ω,Rm) ⊂ C0,β(Ω,Rm), for 0 < β < α ≤ 1, is compact.

(iv) Let Ω = (−1, 1). Show that the function x 7→ |x|
1
2 is in C0,1/2(Ω) but that it cannot be

approximated in C0,1/2 by smooth functions.

Problem 4.2 (Functions of bounded mean oscillation). The space L1,n is a very important
function space, both in elliptic PDE and in Harmonic Analysis, and it is more commonly
known as

BMO(Ω) ≡ L1,n(Ω).

Let us take Ω to be a ball.

(i) Use the Poincaré inequality to show that W 1,n(Ω) ⊂ BMO(Ω).
(ii) Show that L∞(Ω) ⊂ BMO(Ω).
(iii) Prove that the previous inclusions are strict, by showing that log ∈ BMO(0, 1).
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In fact, a famous result in Harmonic Analysis due to John and Nirenberg asserts that, for all
p ∈ [1,∞), the spaces Lp,n are equivalent to BMO.

Problem 4.3 (Continuous coefficients). Let u ∈ W 1,2
loc (Ω,Rm) be a weak solution of (4.1),

where Aαβ
ij ∈ C0(Ω) satisfies the Legendre–Hadamard condition. Use Korn’s trick to prove

that if F ∈ L2,µ
loc (Ω,Rm×n) for some µ ∈ [0, n) then Du ∈ L2,µ

loc (Ω). Conclude from Lemma 4.4
that if µ ∈ (n− 2, n) then u is Hölder continuous.

Problem 4.4 (Non-divergence form right-hand side). Let u ∈ W 1,2(Ω,Rm) solve

−∂α(Aαβ
ij ∂βu

j) = fi for i = 1, . . . ,m,

where A is constant and f ∈ L2,µ(Ω,Rm) for some µ ∈ [0, n). Following the proof of Theorem
4.7, show that u ∈ L2,µ+2

loc (Ω).

Problem 4.5 (Higher order regularity). Prove Theorem 4.9.
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