
Peterson Lock in Java

In the proof above we assumed all variables are atomic registers, the read and
write operations take effect at a single point in time between the invocation
of an operation and the operation completing. The Java memory model is
different. We first provide an intuitive explanation of why the above proof of
mutual exclusion still holds under the Java memory model. Further below you
will find a more formal explanation. Simplified we can say that:

1. Program order is observed within a thread.

2. A read of an atomic or volatile variable synchronizes with all “previous”
writes to it.

3. A read of an atomic variable always sees the “last” value written to it.

Thus, since we read victim (a volatile) before we read flag, we will also see
the changes to flag, and all the ordering and visibility guarantees we used in the
first proof are still valid.

However, starvation freedom no longer holds if flag is not volatile. Lets
say thread B is in the critical section and A is stuck in the while loop. B will
eventually exit the critical section and write flag[B] = false, but now, since flag
is not volatile and there are no happens-before edges between the two threads,
we have no guarantee that thread A will ever see that write. The Java memory
model allows for an execution where A never sees the write and starves.

More formal explanation (optional)

As hinted in the shorter explanation, we do not need to reinvent the proof, but
just have to justify the key arguments using the Java memory model. The first
step is to express the assumption WA(victim = A) → WB(victim = B). In
the Java memory model, every execution has a “synchronization order” (SO),
which totally orders all the synchronization actions that were performed in the
execution. SO was less of a focus in the lecture, but it is an important part of
the memory model and needed for this proof. We now assume

WA(victim = A)
SO→ WB(victim = B),

i.e. we assume that B’s write comes after A’s in SO. Because the two writes
are synchronization actions and SO is a total order, either this or the other
analogous case must occur. From this we can derive the following:

� RB(victim) must return B, since the read of a volatile variable must
see the last write to it in synchronization order (see 17.4.7, point 5 in
the specification). (Note that happens-before is not enough to deduce
this. Both writes to victim happen-before the read, but are otherwise not
ordered in happens-before.)

1

https://docs.oracle.com/javase/specs/jls/se11/html/jls-17.html#jls-17.4.7


� WA(victim = A)
SW→ RB(victim), since a write to a volatile variable

synchronizes-with all subsequent writes to the variable in synchronization
order (see 17.4.4, bullet point number two in the specification). Then

WA(flag[A] = true)
HB(PO)→ WA(victim = A)

HB(SW )→ RB(victim)
HB(PO)→ RB(flag[A])

and by transitivity WA(flag[A] = true)
HB→ RB(flag[A]), guaranteeing

us that indeed thread B must see A’s flag as set. To be precise, we
can conclude this because all other writes to flag[A] happen-before the
write WA(flag[A] = true) (due to program order) and “happens-before
consistency” (you can search for this in the specification) tells us that a
read may only see the last write(s) in happens-before order (or any other
write not in happens-before, but there is no such write here).

This then again gives us our desired contradiction, namely that thread B cannot
have read false in the while loop.

2

https://docs.oracle.com/javase/specs/jls/se11/html/jls-17.html#jls-17.4.4
https://docs.oracle.com/javase/specs/jls/se11/html/jls-17.html#jls-17.4

