
e.g. to react to user input while playing your cat video

simple table in memory

tasks would now be stored more as
some kind of list

(e.g. we would like make sure to
periodically check whether a
button was pressed, even if
a large number of other tasks
are waiting)

If we interrupt what is being executed on the processor and intend to continue later, we somehow need to
remember where we stopped. We now need to specify more precisely what a "task" exactly is, such that
we know what "state" or CONTEXT to store when interrupting one task and what state to restore when loading
another in its place. Lets call the tasks PROCESSES and the action of interrupting one process to run another instead
a CONTEXT SWITCH (between processes).

A process (e.g. a web browser) may want to run multiple unrelated sequences of (machine code) instructions /
THREADS of execution on the processor to ...
- allow these instructions to run in parallel (by relying on the scheduler to schedule each of your different
threads of execution often enough)
- gain more computing power by exploiting the fact that your processor has multiple cores

Lets call such a thread of execution a THREAD. Since a thread literally is what points to a sequence of instructions
for the processor, whenever the processor is executing something it will be executing the instructions of some
thread (belonging to some process). A process could also only have one thread, like a single-threaded Java program.

We can also have a context switch between threads of the same process. Our final view of keeping the processor
busy looks something like this:

Processes are generally isolated from each other and for example have different views of memory (this is
accomplished with "virtual memory", which you will learn about in DDCA).

A context switch
is comparatively CHEAP,
since mostly only
CPU registers and the
stack (local variables)
need to be restored

if t_1 writes something to memory t_2 can see it!
=> the threads can communicate

in the end the scheduler assigns threads for the
processor to execute

A context switch between
processes will be relatively
EXPENSIVE, since the
process' "view of memory"
must be saved and restored
along with other metadata

However threads of the same process share the memory of the process:

