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If we interrupt what is being executed on the processor and intend to continue later, we somehow need to
remember where we stopped. We now need to specify more precisely what a "task" exactly is, such that

we know what "state" or CONTEXT to store when interrupting one task and what state to restore when loading
another in its place. Lets call the tasks PROCESSES and the action of interrupting one process to run another instead
a CONTEXT SWITCH (between processes).

A process (e.g. a web browser) may want to run multiple unrelated sequences of (machine code) instructions /
THREADS of execution on the processor to ...

- allow these instructions to run in parallel (by relying on the scheduler to schedule each of your different
threads of execution often enough) : : ; '
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Lets call such a thread of execution a THREAD. Since a thread literally is what points to a sequence of instructions
for the processor, whenever the processor is executing something it will be executing the instructions of some
thread (belonging to some process). A process could also only have one thread, like a single-threaded Java program.



We can also have a context switch between threads of the same process. Our final view of keeping the processor
busy looks something like this:
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Processes are generally isolated from each other and for example have different views of memory (this is
accomplished with "virtual memory", which you will learn about in DDCA).

Meww%

A context switch between P1 / Mew\ulrra 0.&
processes will be relatively \ p1
EXPENSIVE, since the

process' "view of memory"

must be saved and restored
along with other metadata

—— )

However threads of the same process share the memory of the process:
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