Vo collection 0f owe
Why, de e neel faresds /processes and o scheduler! e Progyira ms
5 Oie
S,‘“{\Aajrio(/\: b% fask heve | mean (»eq oso.nt i‘r;& aﬁv\e‘\

We have & processor and want o decapy it with some tasks (£or o lowy time).
M fUn Sewme +0~5 ks aqaqin and agaim oo {;xed orday.

1Ta ® @ weasore 4
caSO0ve rME
>

simple table in memory

Mdr( A'A‘V\O«\PML'. allow (or ‘\'&Sks ‘l’o come av\* %ale.tz.\ll‘bx im+erac+iav\ w{“’\

-|—ll\e avtsde world (e.oQ, Pressiaq o\lw\'H’ov\).
TV hew P"”ble‘"‘s? o keep trock 0C AiCferent tasks 4 st

° 0Or AQr o_(, e,)(ecu"l'i OV\?\ -3 5([,\9_40\(;\;\2 (e.g. we would like make sure to
periodically check whether a

. button was pressed, even if

a large number of other tasks
‘T% /j%d«eju\\er > \OTOCC%OV are waiting)

Tx

F

tasks would now be stored more as
some kind of list

‘Zﬂmewlmrtbde &%o\w\f(}\ WP +o AQW ‘H\o& ‘}asks a(wm,%g Tah 1[\r0w\ (mo&,'w\mg% 1o end
Qeu\a;\r\(wa proble ms: one 6l Ter {he othery
o what i€ a Task is long or qets stock T (e.q. while lop)

oWhat 1€ we really nced Yo ran something ot b\ﬂab\ priovity 7 (e.q. car brea kgr [
in o 1eslg)

o(}J‘t\o\J( }.( we No\u\+ \ow\—r\w\mk% ‘\'a‘oksa LQ% A€5k+0p CAV(VOWN w\e&\ B\w\neer)

Make it preemptive (allow for taske to be interrapted):
~—%"\0N do e do ‘H’\i57.

If we interrupt what is being executed on the processor and intend to continue later, we somehow need to
remember where we stopped. We now need to specify more precisely what a "task" exactly is, such that

we know what "state" or CONTEXT to store when interrupting one task and what state to restore when loading
another in its place. Lets call the tasks PROCESSES and the action of interrupting one process to run another instead
a CONTEXT SWITCH (between processes).

A process (e.g. a web browser) may want to run multiple unrelated sequences of (machine code) instructions /
THREADS of execution on the processor to ...

- allow these instructions to run in parallel (by relying on the scheduler to schedule each of your different
threads of execution often enough) : : ; '

- gain more computing power by eproitelh% %ﬁer?gcctt ttI%)aLtJSi/%rulrn Potcvélg_lc,lgr %Iéag%%%?&%cggréléjeo

Lets call such a thread of execution a THREAD. Since a thread literally is what points to a sequence of instructions
for the processor, whenever the processor is executing something it will be executing the instructions of some
thread (belonging to some process). A process could also only have one thread, like a single-threaded Java program.



We can also have a context switch between threads of the same process. Our final view of keeping the processor
busy looks something like this:

Pro ce sy
-‘—‘I\V €O q

+MRAAw

PV’(JL-QSS & /9 P\' 0Cesoy

Have

P\'ll cess %

fhreotn
u taresd 34\

Processes are generally isolated from each other and for example have different views of memory (this is
accomplished with "virtual memory", which you will learn about in DDCA).

Meww%

A context switch between P1 / Mew\ulrra 0.&
processes will be relatively \ p1
EXPENSIVE, since the

process' "view of memory"

must be saved and restored
along with other metadata

—— )

However threads of the same process share the memory of the process:

P Memovy o ¢ P
A context switch t ‘//
is comparatively CHEAP,
since mostly only
CPU registers and the
stack (local variables) V{

{
need to be restored t \\

»



