
Intro Expressions for-loops Debugging

Exercise Session

Week 03

Adel Gavranović
agavranovic@student.ethz.ch

1 / 35

Intro Expressions for-loops Debugging

Today’s topics

polybox for session material

Mail to TA

Intro

Expressions

for-loops

Debugging

2 / 35

Intro Expressions for-loops Debugging

Follow-up

Are all of you able to use [code]expert now?
Use the ”Playground” on [code]expert to test out ideas and
play around with stuff you’ve learned. You can find it under
”Code Examples” at the very bottom of the page
The moodle-page for the Self-Assessments is now open
and much better visible from the course page, give them a
try!

3 / 35

Intro Expressions for-loops Debugging

Questions re: Homework?

4 / 35

Intro Expressions for-loops Debugging

Expressions

Repetition: what was a bool again?
Precedences
(Parenthesis) are your best friends
Order matters
Be aware of short circuits

5 / 35

←
reasons

for lots of bugs

Intro Expressions for-loops Debugging

Booleans

usually just called bools

either true or false

false == 0

true != 0

whenever true turns into a number (int), it’ll be the
number 1
whenever a number that is != 0 turns into a bool, it’ll turn
into true

6 / 35

Intro Expressions for-loops Debugging

Booleans

usually just called bools

either true or false
false == 0

true != 0

whenever true turns into a number (int), it’ll be the
number 1
whenever a number that is != 0 turns into a bool, it’ll turn
into true

6 / 35

Intro Expressions for-loops Debugging

Booleans

usually just called bools

either true or false
false == 0

true != 0

whenever true turns into a number (int), it’ll be the
number 1
whenever a number that is != 0 turns into a bool, it’ll turn
into true

6 / 35

Intro Expressions for-loops Debugging

Precedences Ranking

1. a++, a--

2. ++a, --a, -a, !a, *a, &a

3. *, /, %

4. +, -

5. <, <=, >, >=

6. == !=

7. &&

8. ||

9. =, +=, -=, *=, /=, %=

7 / 35

✓
⇐+Ca -it)) (d%piles

}
A-d

or

Intro Expressions for-loops Debugging

(use) (parenthesis) (!)

(parenthesis) work much like in real math
used to make the correct evaluation obvious
or to change the way the expression is evaluated

Task

Make the evaluation of the following expression obvious:
3 < 4 + 1 && 2 < 3

Hint: use the previous slide

Solution

(3 < (4 + 1)) && (2 < 3)

8 / 35

5+(7-2)
..¥15 -171.2

Intro Expressions for-loops Debugging

(use) (parenthesis) (!)

(parenthesis) work much like in real math
used to make the correct evaluation obvious
or to change the way the expression is evaluated

Task

Make the evaluation of the following expression obvious:
3 < 4 + 1 && 2 < 3

Hint: use the previous slide

Solution

(3 < (4 + 1)) && (2 < 3)

8 / 35

((DC)

Intro Expressions for-loops Debugging

(use) (parenthesis) (!)

(parenthesis) work much like in real math
used to make the correct evaluation obvious
or to change the way the expression is evaluated

Task

Make the evaluation of the following expression obvious:
3 < 4 + 1 && 2 < 3

Hint: use the previous slide

Solution

(3 < (4 + 1)) && (2 < 3)

8 / 35

Intro Expressions for-loops Debugging

Multiple operators with same precedence

Quick Task

How would you parenthesize the expression below to make it
obvious?
false && false && true

Quick Solution

Just ”read” from left to right:
(false && false) && true

9 / 35

d l)

Intro Expressions for-loops Debugging

Multiple operators with same precedence

Quick Task

How would you parenthesize the expression below to make it
obvious?
false && false && true

Quick Solution

Just ”read” from left to right:
(false && false) && true

9 / 35

Intro Expressions for-loops Debugging

Short Circuits

Short Circuit

”&&” and ”||” evaluate the left expression first and if it’s false

they won’t check the right side.

What are the implications of that? See next slide.

10 / 35

-

((x - -
- y) C . . . - s)
Fue athena chin

if it knows
what it'll eva't ' to ,
I

Intro Expressions for-loops Debugging

Short Circuit in Code

if (3 > 2 && 10 > 11){

std::cout << "Of course not!\n";

} // not a short circuit evaluation

int a = 3;

if (false && ++a < 2){

std::cout << "Of course not!\n";

} // a short circuit evaluation

std::cout << a << "\n"; // what will be the output?

if (++a < 2 && false){

std::cout << "Of course not!\n";

} // another short circuit evaluation

std::cout << a << "\n"; // what will be the output?

11 / 35

Intro Expressions for-loops Debugging

Let’s check comprehension

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
x == 1 || 1 / (x - 1) < 1

Remember: Parenthesis are your friends.

Solution

First: parenthesize!
(x == 1) || ((1 / (x - 1)) < 1), start on left side
(1 == 1) || ((1 / (x - 1)) < 1)

true || ((1 / (x - 1)) < 1)*
true

*(true || whatever) always eval’s to (true)

12 / 35

(II I

Intro Expressions for-loops Debugging

Let’s check comprehension

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
x == 1 || 1 / (x - 1) < 1

Remember: Parenthesis are your friends.

Solution

First: parenthesize!
(x == 1) || ((1 / (x - 1)) < 1), start on left side

(1 == 1) || ((1 / (x - 1)) < 1)

true || ((1 / (x - 1)) < 1)*
true

*(true || whatever) always eval’s to (true)

12 / 35

Intro Expressions for-loops Debugging

Let’s check comprehension

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
x == 1 || 1 / (x - 1) < 1

Remember: Parenthesis are your friends.

Solution

First: parenthesize!
(x == 1) || ((1 / (x - 1)) < 1), start on left side
(1 == 1) || ((1 / (x - 1)) < 1)

true || ((1 / (x - 1)) < 1)*
true

*(true || whatever) always eval’s to (true)

12 / 35

Intro Expressions for-loops Debugging

Let’s check comprehension

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
x == 1 || 1 / (x - 1) < 1

Remember: Parenthesis are your friends.

Solution

First: parenthesize!
(x == 1) || ((1 / (x - 1)) < 1), start on left side
(1 == 1) || ((1 / (x - 1)) < 1)

true || ((1 / (x - 1)) < 1)*

true

*(true || whatever) always eval’s to (true)

12 / 35

Intro Expressions for-loops Debugging

Let’s check comprehension

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
x == 1 || 1 / (x - 1) < 1

Remember: Parenthesis are your friends.

Solution

First: parenthesize!
(x == 1) || ((1 / (x - 1)) < 1), start on left side
(1 == 1) || ((1 / (x - 1)) < 1)

true || ((1 / (x - 1)) < 1)*
true

*(true || whatever) always eval’s to (true)

12 / 35

Intro Expressions for-loops Debugging

And another one

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
!(1 < 2 && x == 1) + 1

Solution

!(1 < 2 && x == 1) + 1

(!((1 < 2) && (x == 1))) + 1

(!((true) && (true))) + 1

(!(true)) + 1

false + 1

0 + 1

1

13 / 35

C) s ,
I-7

Enemies#
-

! (true) t a
-

false t
a

T + a = ⇐ true)

Intro Expressions for-loops Debugging

And another one

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
!(1 < 2 && x == 1) + 1

Solution

!(1 < 2 && x == 1) + 1

(!((1 < 2) && (x == 1))) + 1

(!((true) && (true))) + 1

(!(true)) + 1

false + 1

0 + 1

1

13 / 35

Intro Expressions for-loops Debugging

And another one

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
!(1 < 2 && x == 1) + 1

Solution

!(1 < 2 && x == 1) + 1

(!((1 < 2) && (x == 1))) + 1

(!((true) && (true))) + 1

(!(true)) + 1

false + 1

0 + 1

1

13 / 35

Intro Expressions for-loops Debugging

And another one

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
!(1 < 2 && x == 1) + 1

Solution

!(1 < 2 && x == 1) + 1

(!((1 < 2) && (x == 1))) + 1

(!((true) && (true))) + 1

(!(true)) + 1

false + 1

0 + 1

1

13 / 35

Intro Expressions for-loops Debugging

And another one

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
!(1 < 2 && x == 1) + 1

Solution

!(1 < 2 && x == 1) + 1

(!((1 < 2) && (x == 1))) + 1

(!((true) && (true))) + 1

(!(true)) + 1

false + 1

0 + 1

1

13 / 35

Intro Expressions for-loops Debugging

And another one

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
!(1 < 2 && x == 1) + 1

Solution

!(1 < 2 && x == 1) + 1

(!((1 < 2) && (x == 1))) + 1

(!((true) && (true))) + 1

(!(true)) + 1

false + 1

0 + 1

1

13 / 35

Intro Expressions for-loops Debugging

And another one

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
!(1 < 2 && x == 1) + 1

Solution

!(1 < 2 && x == 1) + 1

(!((1 < 2) && (x == 1))) + 1

(!((true) && (true))) + 1

(!(true)) + 1

false + 1

0 + 1

1

13 / 35

Intro Expressions for-loops Debugging

And another one

Task

Evaluate the following expression by hand and write down each
intermediate step. Assume int x = 1:
!(1 < 2 && x == 1) + 1

Solution

!(1 < 2 && x == 1) + 1

(!((1 < 2) && (x == 1))) + 1

(!((true) && (true))) + 1

(!(true)) + 1

false + 1

0 + 1

1

13 / 35

Intro Expressions for-loops Debugging

Questions?

14 / 35

< a)a 4
-

true or false
9oro~ C 4

-

true

Intro Expressions for-loops Debugging

for-loops

what is a loop
we’ll get to know scopes a bit better
an intro to Program Tracing

15 / 35

Intro Expressions for-loops Debugging

Scope

Any time you use the {squiggly brackets} you create a
scope

You can think of a scope as a closed world in itself
Information can’t flow out of the scope, but outside
information (variables etc.) is availabe inside the scope
When the scope closes (program hits the right ”}”) the
information inside of that scope dies
([code]expert example)

16 / 35

Intro Expressions for-loops Debugging

Scope

Any time you use the {squiggly brackets} you create a
scope
You can think of a scope as a closed world in itself

Information can’t flow out of the scope, but outside
information (variables etc.) is availabe inside the scope
When the scope closes (program hits the right ”}”) the
information inside of that scope dies
([code]expert example)

16 / 35

Intro Expressions for-loops Debugging

Scope

Any time you use the {squiggly brackets} you create a
scope
You can think of a scope as a closed world in itself
Information can’t flow out of the scope, but outside
information (variables etc.) is availabe inside the scope

When the scope closes (program hits the right ”}”) the
information inside of that scope dies
([code]expert example)

16 / 35

Intro Expressions for-loops Debugging

Scope

Any time you use the {squiggly brackets} you create a
scope
You can think of a scope as a closed world in itself
Information can’t flow out of the scope, but outside
information (variables etc.) is availabe inside the scope
When the scope closes (program hits the right ”}”) the
information inside of that scope dies
([code]expert example)

16 / 35

Intro Expressions for-loops Debugging

General structure of a for-loop

for(init; contition; expression){

statement 1;

statement 2;

...

}

Important note

the expression-part will get executed after the statements.

17 / 35

int n = - - - y n : int i. a

z : ian ;

" } example
① YE ③

3 : Itt 's

-3d (1,214,3

{
a,④(theaekaHcod -

q

3 4
•

Intro Expressions for-loops Debugging

Program Tracing

”Program Tracing is the process of executing program code by
hand, with concrete inputs.”

It’s quite an important skill in the beginning. At some point,
you’ll be able to do it in your head. You’ll see an example with a
simple for-loop in the next few slides.

18 / 35

Intro Expressions for-loops Debugging

Concrete example of a for-loop

:: open ”example of a for-loop”-slides ::

19 / 35

Intro Expressions for-loops Debugging

Questions?

20 / 35

Intro Expressions for-loops Debugging

Exercise: Strange Sum

Task

Open ”Strange Sum” in your [code]expert and give it a try it
yourself. Solve it individually with pen and paper.

Description:

Write a program that reads a number n > 0 from standard input
and outputs the sum of all positive numbers up to n that are
odd but not divisible by 5. (10min)

21 / 35

()

Intro Expressions for-loops Debugging

Space for student solution (attempts)

22 / 35

strum

for (int I' = a ; ; ite z)

if (i 405) . .

Intro Expressions for-loops Debugging

Solution to ”Strange Sum”

// input

unsigned int strangesum = 0;

unsigned int n;

std::cin >> n;

// computation

for(unsigned int i = 1; i <= n; i++){

if((i % 2) == 1){

if(i % 5){

strangesum += i;

}

}

}

// output

std::cout << strangesum << "\n";

23 / 35

Intro Expressions for-loops Debugging

Sweeter solution to ”Strange Sum”

// input

unsigned int strangesum = 0;

unsigned int n;

std::cin >> n;

// computation

for(unsigned int i = 1; i <= n; i++){

if(((i % 2) == 1) && (i % 5)){

strangesum += i;

}

}

// output

std::cout << strangesum << "\n";

24 / 35

Intro Expressions for-loops Debugging

Even sweeter solution to ”Strange Sum”

// input

unsigned int strangesum = 0;

unsigned int n;

std::cin >> n;

// computation

for(unsigned int i = 1; i <= n; i+=2){

if(i % 5){

strangesum += i;

}

}

// output

std::cout << strangesum << "\n";

25 / 35

Intro Expressions for-loops Debugging

Questions?

26 / 35

Intro Expressions for-loops Debugging

Exercise: Largest Power

Task

Open ”Largest Power” in your [code]expert and give it a try it
yourself. Solve it individually with pen and paper.

Description:

Write a program that inputs a positive natural number n and
outputs the largest number p that is a power of 2 and smaller or
equal to n. (15min)

Task

Now, discuss with your neighbor. Did they have a similar
approach? What can you learn from each other? (7min)

27 / 35

Intro Expressions for-loops Debugging

Exercise: Largest Power

Task

Open ”Largest Power” in your [code]expert and give it a try it
yourself. Solve it individually with pen and paper.

Description:

Write a program that inputs a positive natural number n and
outputs the largest number p that is a power of 2 and smaller or
equal to n. (15min)

Task

Now, discuss with your neighbor. Did they have a similar
approach? What can you learn from each other? (7min)

27 / 35

Intro Expressions for-loops Debugging

Space for student solution (attempts)

28 / 35

Intro Expressions for-loops Debugging

Solution to ”Largest Power”

#include <iostream>

#include <cassert>

int main () {

unsigned int n;

std::cin >> n;

assert(n >= 1);

unsigned int power = 1;

for (; power <= n / 2; power *= 2);

std::cout << power << std::endl;

return 0;

}

29 / 35

→

Intro Expressions for-loops Debugging

Debugging

”Debugging is the process of finding and resolving bugs
(defects or problems that prevent correct operation) within
programs, software, or systems.”

You’ll spend a lot of time doing this, so try to do it effectively.

Task

Propose a way of finding the bug in the following code.

30 / 35

Intro Expressions for-loops Debugging

Debugging

”Debugging is the process of finding and resolving bugs
(defects or problems that prevent correct operation) within
programs, software, or systems.”

You’ll spend a lot of time doing this, so try to do it effectively.

Task

Propose a way of finding the bug in the following code.

30 / 35

Intro Expressions for-loops Debugging

Debugging non terminating.cpp

int main () {

const int n = 6;

// Compute n^12

int prod = 1;

for (int i = 1; 1 <= i < 13; ++i) {

prod *= n;

}

// Output stars

for (int i = 1; i < prod; ++i) {

std::cout << "*";

}

std::cout << "\n";

return 0;

}

31 / 35

Intro Expressions for-loops Debugging

Live demo

Disclaimer: This might go horribly wrong

32 / 35

Intro Expressions for-loops Debugging

Debugging non terminating.cpp

Question

How can we know at which line the program gets stuck?

Answer

Try to print something to the console at various lines and see
what gets printed.

Question

Why doesn’t the first loop terminate?

Answer

The condition is wrong. It should be: 1 <= i && i < 13.

33 / 35

Intro Expressions for-loops Debugging

Debugging non terminating.cpp

Question

How can we know at which line the program gets stuck?

Answer

Try to print something to the console at various lines and see
what gets printed.

Question

Why doesn’t the first loop terminate?

Answer

The condition is wrong. It should be: 1 <= i && i < 13.

33 / 35

Intro Expressions for-loops Debugging

Debugging non terminating.cpp

Question

How can we know at which line the program gets stuck?

Answer

Try to print something to the console at various lines and see
what gets printed.

Question

Why doesn’t the first loop terminate?

Answer

The condition is wrong. It should be: 1 <= i && i < 13.

33 / 35

Intro Expressions for-loops Debugging

Debugging non terminating.cpp

Question

How can we know at which line the program gets stuck?

Answer

Try to print something to the console at various lines and see
what gets printed.

Question

Why doesn’t the first loop terminate?

Answer

The condition is wrong. It should be: 1 <= i && i < 13.

33 / 35

Intro Expressions for-loops Debugging

Debugging non terminating.cpp

Question

How can we investigate further why the program does not print
anything?

Answer

Print the value of prod after the first loop

Question

How we can get to know why prod became negative?

Answer

Print the value of prod in each interation of the first loop

34 / 35

Intro Expressions for-loops Debugging

Debugging non terminating.cpp

Question

How can we investigate further why the program does not print
anything?

Answer

Print the value of prod after the first loop

Question

How we can get to know why prod became negative?

Answer

Print the value of prod in each interation of the first loop

34 / 35

Intro Expressions for-loops Debugging

Debugging non terminating.cpp

Question

How can we investigate further why the program does not print
anything?

Answer

Print the value of prod after the first loop

Question

How we can get to know why prod became negative?

Answer

Print the value of prod in each interation of the first loop

34 / 35

Intro Expressions for-loops Debugging

Debugging non terminating.cpp

Question

How can we investigate further why the program does not print
anything?

Answer

Print the value of prod after the first loop

Question

How we can get to know why prod became negative?

Answer

Print the value of prod in each interation of the first loop

34 / 35

Intro Expressions for-loops Debugging

Final Questions?

35 / 35

