
Introduction Expressions Loops Computing Mathematical Series Scopes

Exercise Session

Week 04

Adel Gavranović

agavranovic@student.ethz.ch

1 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Today’s topics

polybox for session material

Mail to TA

Introduction

Expressions

Loops

Computing Mathematical Series

Scopes

2 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Comments on last Exercise Session

I’m sorry the live demo didn’t work out. I think I messed up

by not compiling the ”improved” code properly.

3 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Comments on last [code]expert Exercises

please don’t use using namespace std

don’t use libraries or features that we didn’t cover in the

lectures (yet)

read the task carefully

deadlines are strict regarding XP

submit your code, no matter how ”bad” it seems: you can

learn a lot from doing so!

use comments and tabs

try to structure your answers. It looks nicer and makes

grading easier

when solving exercises, you’re allowed to use everything

(handouts, slides, summaries(!), recordings) we give you

4 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Questions or Comments re: Exercises?

5 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Objectives Checklist

After the exercise session, take a look at this slide again and

make sure you can tick the boxes, and if you can’t:

Ask questions or send me an e-mail. I’m here to help!

Now I...

⇤ can evaluate complex expressions involving arithmetic and

boolian operators

⇤ can encode mathematical sums into C++

⇤ know about the types float and double in C++ (much

more on them soon)

⇤ can implement for, while and do-while-loops

⇤ can trace programms that have for, while and

do-while-loops in them

⇤ can turn each kind of loop into a different kind of loop

6 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Quick Recap on Types

Types (we’ve covered so far)

logical variables: bool {false, true}
integers: unsigned int, int {-7, 2, 0}
floating point numbers: float, double {1.4, -4.3, 7.0}

Sometimes there are multiple types in one (expression).

How do we compare different types with each other?

Generality Order of Types (we’ve covered so far)

bool < int < unsigned int < float < double

Types always convert to the most general type in any given

expression.

7 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

A Way to think about Types

Type (literal) Approximates

bool {false, true}
unsigned int (u) {N}
int {Z}
float (f) {R}
double {R}, but double the precision

8 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Evaluating Types

std::cout << 5.0/2 << std::endl;

// what type and value will this return and why?

Solution

double, 2.5, because the compiler will convert the int 2 into a

double 2.0, in order to calculate this expression.

std::cout << (1/2)*5.0/2 << std::endl;

// what type and value will this return and why?

Solution

double, 0, because the compiler will first calculate the

expression on the left 1/2 which evaluates to 0 because it’s an

integer division. The rest is trivial, because 0*anything

evaluates to 0. But that 0 will have type double.

9 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Literals

There are certain letters the compiler associates with certain

types. So, if you want to tell the Compiler ”Hey, don’t treat this

2.0 as a double, but instead as a float” you’d have to add f at

the end of the value. Like this:

std::cout << (5/2)*5.0f/2 << std::endl;

// what type and value will this return and why?

Solution

float, 5.0, (which can be written as 5.0f).

First, the compiler evaluates 5/2, which results in 2, because

integer division works that way. Then the compiler calculates

2.0f*5.0f: The int 2 has been turned into a float 2

because float is the more general of the types that are

involved. The same for the *2 later.

10 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Literals

There are certain letters the compiler associates with certain

types. So, if you want to tell the Compiler ”Hey, don’t treat this

2.0 as a double, but instead as a float” you’d have to add f at

the end of the value. Like this:

std::cout << (5/2)*5.0f/2 << std::endl;

// what type and value will this return and why?

Solution

float, 5.0, (which can be written as 5.0f).

First, the compiler evaluates 5/2, which results in 2, because

integer division works that way. Then the compiler calculates

2.0f*5.0f: The int 2 has been turned into a float 2

because float is the more general of the types that are

involved. The same for the *2 later.

10 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Questions?

11 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Exercises

:: exercises slides.pdf ::

(Solutions can be found on exercises handout.pdf)

12 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Exercise in Loops and Tracing

std::cout << "Enter a number: ";

unsigned int n;

std::cin >> n;

// Can a user observe a difference between the outputs?

// loop 1

for (unsigned int i = 1; i <= n; ++i) {

std::cout << i << "\n";

}

// loop 2

unsigned int i = 0;

while (i < n) {

std::cout << ++i << "\n";

}

// loop 3

i = 1;

do {

std::cout << i++ << "\n";

} while (i <= n);

13 / 21

will continue

printing forever
0110

÷
O l l l

l 000

It
10000J -a ±

Introduction Expressions Loops Computing Mathematical Series Scopes

Program Tracing

We’ve covered Program Tracing last week, but here’s an

extensive (and better) guide on how to do it: Link

14 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Converting Loops (for ! while)

// TASK: Convert the following for-loop

// into an equivalent while-loop:

for (int i = 0; i < n; ++i) {

BODY

}

// SOLUTION:

int i = 0;

while(i < n){

BODY

++i;

}

15 / 21

← not actual app -code

Introduction Expressions Loops Computing Mathematical Series Scopes

Converting Loops (for ! while)

// TASK: Convert the following for-loop

// into an equivalent while-loop:

for (int i = 0; i < n; ++i) {

BODY

}

// SOLUTION:

int i = 0;

while(i < n){

BODY

++i;

}

15 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Converting Loops (while ! for)

// TASK: Convert the following while-loop

// into an equivalent for-loop:

while(condition){

BODY

}

// SOLUTION:

for(;condition;){

BODY

}

16 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Converting Loops (do-while ! for)

// TASK: Convert the following do-while-loop

// into an equivalent for-loop:

do{

BODY

}while(condition)

// SOLUTION:

BODY

for(;condition;){

BODY

}

17 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

Questions?

18 / 21

https://en.wikipedia.org/wiki/Off-by-one_error

shifting indites is possible , just look

out for
' ' off - by - one

"

errors

→ will happen often when

"

iterating
"

over arrayspecters
(more on that later in the course)

Daddy of

c Isis,)

Introduction Expressions Loops Computing Mathematical Series Scopes

From Sum to Loop

Mathematical sums can be turned into programming loops.

Math:

nX

i=0

f (i)

C++ :

int n = 0;

int sum = 0;

for(int i = 0; i <= n; i++){

sum += f(i);

}

19 / 21

Introduction Expressions Loops Computing Mathematical Series Scopes

From Mathematical Series to Loops

Taylor Series on [code]expert

Write a program that computes sin x rounded to six significant

digits. Hint: Think which loop you should use.

Hint: Use the MacLaurin Series.

sin x =
1X

n=0

(�1)n

(2n + 1)!
x

2n+1

Task

For 10 minutes, think about how you would solve it by

using only pen and paper

Now get together with your desk neighbor(s) and try to

implement it on [code]expert in 10 minutes

20 / 21

y
numerator : fat

"

x
" " " f . . .

denominator : (2nd 1) ! f . .
.

Hint : "split up
"

total
- sum from each term

µ
>
as long as needed

Wwe during rest ofsession

Introduction Expressions Loops Computing Mathematical Series Scopes

Scopes

see exercises handout.pdf

If there still are questions after reading through it, feel free to

write me an e-mail or ask in the next exercise session

21 / 21

