Exercise Session Week 05

Adel Gavranović agavranovic@student.ethz.ch

Today's Overview

Special

- From now on: 90min sessions, no break, earlier lunch
- Please fill out the evaluation survey

Today's Topics

Intro

Repetition

Binary Representation

Normalized Floating Point Systems

Floating Point Guidelines

Comparing floats

Comments on last [code] expert **Exercises**

- I'll usually be done with correcting on Sunday morning.

 Please make sure to have a look at my feedback before the next exercise session
- Give you variables descriptive names
- Use more comments
- Use tabs to indent code
- unsigned int representation ≠ int representation (check Handout02.pdf on the polybox)

Question or Comments re: Exercises?

Intro

Learning Objectives Checklist

Now I...

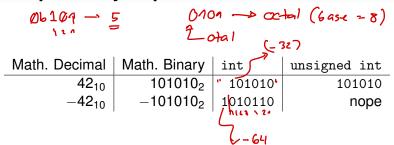
have refreshed my memory on how "two's complement representation" works
know how floating point numbers are stored
can convert a non-integer number into its binary representation
can compute the elements of the set $F(\beta, p, e_{min}, e_{max})$
can perform arithmetic operations in the set $F(\beta, p, e_{min}, e_{max})$
know the floating point guidelines and the reasoning behind them

Math. Decimal | Math. Binary | int | unsigned int

Math. Decimal	Math. Binary	int	unsigned	int
42 ₁₀				

Math. Decimal	Math. Binary	int	unsigned int
42 ₁₀	101010 ₂	101010	101010

	Math. Decimal	Math. Binary	int	unsigned int
_	42 ₁₀	101010 ₂	101010	101010
	-42_{10}			



Math. Decimal	Math. Binary	int	unsigned int
42 ₁₀	101010 ₂	101010	101010
-42_{10}	-101010_{2}	1010110	nope

int stores numbers with two's complement representation.

(Technically, the rest of the binary-representation-numbers would be filled up (to the left) with either 1's or 0's depending on the type/representation because an int stores numbers in a fixed amount of space, but we're not covering this, so don't worry about that.)

Task

Perform the following steps:

- 1. Convert the integer numbers a = 4 and b = 7 into their binary representation (not two's complement)
- 2. Add them in their binary representation
- 3. Convert the result into decimal

→ binny, add, → decinal

Task

Perform the following steps:

- 1. Convert the integer numbers a = 4 and b = 7 into their binary representation (not two's complement)
- 2. Add them in their binary representation
- 3. Convert the result into decimal

$$a = 4_{10} = 100_2$$

Task

0000 0000

Perform the following steps:

- 1. Convert the integer numbers a = 4 and b = 7 into their binary representation (not two's complement)
- 2. Add them in their binary representation
- Convert the result into decimal

$$a = 4_{10} = 100_2$$

 $b = 7_{10} = 111_2$

Task

Perform the following steps:

- 1. Convert the integer numbers a = 4 and b = 7 into their binary representation (not two's complement)
- 2. Add them in their binary representation
- 3. Convert the result into decimal

$$a = 4_{10} = 100_2$$

 $b = 7_{10} = 111_2$
 $100_2 + 111_2 = 1011_2$

Task

Perform the following steps:

- 1. Convert the integer numbers a = 4 and b = 7 into their binary representation (not two's complement)
- 2. Add them in their binary representation
- 3. Convert the result into decimal

$$a = 4_{10} = 100_2$$

 $b = 7_{10} = 111_2$
 $100_2 + 111_2 = 1011_2$
 $1011_2 = 11_{10}$

Task

Evaluate the following expressions:

2. true > false

Task

Evaluate the following expressions:

- 1.5 < 4 < 1
- 2. true > false

Solution 1

5 < 4 < 1

Task

Evaluate the following expressions:

- 1. 5 < 4 < 1
- 2. true > false

Task

Evaluate the following expressions:

- 1. 5 < 4 < 1
- 2. true > false

Solution 1

false < 1

Task

Evaluate the following expressions:

- 1. 5 < 4 < 1
- 2. true > false

Solution 1

5 < 4 < 1

(5 < 4) < 1

false < 1

0 < 1

Task

Evaluate the following expressions:

- 1.5 < 4 < 1
- 2. true > false

Solution 1

5 < 4 < 1

(5 < 4) < 1

false < 1

0 < 1

true

Task

Evaluate the following expressions:

- 1.5 < 4 < 1
- 2. true > false

Solution 1

5 < 4 < 1 (5 < 4) < 1 false < 1

0 < 1

true

Solution 2

true > false

Task

Evaluate the following expressions:

- 1.5 < 4 < 1
- 2. true > false

Solution 1

5 < 4 < 1 (5 < 4) < 1 false < 1

0 < 1

true

Solution 2

true > false
1 > 0

Task

Evaluate the following expressions:

- 1.5 < 4 < 1
- 2. true > false

Solution 1

5 < 4 < 1 (5 < 4) < 1

false < 1

0 < 1

true

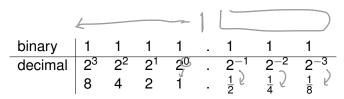
Solution 2

true > false

1 > 0

true

Questions?



binary	1	1	1	1	1	1	1
decimal	2 ³	2 ²	2 ¹	2^0	2^{-1}	2^{-2}	2^{-3}
	8	4	2	1	<u>1</u>	<u>1</u>	<u>1</u> 8

Tasks

- 1. 11.01₂ in decimal
- 2. 101.1₂ in decimal
- 3. 7.125₁₀ in binary
- 4. 4.375₁₀ in binary
- 5. 1.1 in binary

binary	1	1	1	1	1	1	1
decimal	2 ³	2 ²	2 ¹	2^{0}	2^{-1}	2^{-2}	2^{-3}
	8	4	2	1	<u>1</u>	<u>1</u>	<u>1</u>

Tasks

- 1. 11.01₂ in decimal
- 2. 101.1₂ in decimal
- 3. 7.125₁₀ in binary
- 4. 4.375₁₀ in binary
- 5. 1.1 in binary

1.
$$2+1+0+\frac{1}{4}=3.25_{10}$$

binary	1	1	1	1	1	1	1
decimal	2 ³	2^2	2 ¹	2^0	2^{-1}	2^{-2}	2^{-3}
	8	4	2	1	<u>1</u>	<u>1</u>	<u>1</u>

Tasks

- 1. 11.01₂ in decimal
- 2. 101.1₂ in decimal
- 3. 7.125₁₀ in binary
- 4. 4.375₁₀ in binary
- 5. 1.1 in binary

1.
$$2+1+0+\frac{1}{4}=3.25_{10}$$

2.
$$4+0+1+\frac{1}{2}=5.5_{10}$$

binary	1	1	1	1	1	1	1
decimal	2 ³	2^2	2 ¹	2^0	2^{-1}	2^{-2}	2^{-3}
	8	4	2	1	<u>1</u>	<u>1</u>	1 8

Tasks

- 1. 11.01₂ in decimal
- 2. 101.1₂ in decimal
- 3. 7.125₁₀ in binary
- 4. 4.375₁₀ in binary
- 5. 1.1 in binary

1.
$$2+1+0+\frac{1}{4}=3.25_{10}$$

2.
$$4 + 0 + 1 + \frac{1}{2} = 5.5_{10}$$

binary	1	1	1	1	1	1	1
decimal	2 ³	2 ²	2 ¹	2^0	2^{-1}	2^{-2}	2^{-3}
	8	4	2	1	<u>1</u>	<u>1</u>	<u>1</u> 8

Tasks

- 1. 11.01₂ in decimal
- 2. 101.1₂ in decimal
- 3. 7.125₁₀ in binary
- 4. 4.375₁₀ in binary
- 5. 1.1 in binary

1.
$$2+1+0+\frac{1}{4}=3.25_{10}$$

2.
$$4+0+1+\frac{1}{2}=5.5_{10}$$

- 3. 111.0012
- 4. 100.0112

binary	1	1	1	1	1	1	1
decimal	2 ³	2 ²	2 ¹	2^0	2^{-1}	2^{-2}	2^{-3}
	8	4	2	1	<u>1</u>	$\frac{1}{4}$	<u>1</u> 8

Tasks

- 1. 11.01₂ in decimal
- 2. 101.1₂ in decimal
- 3. 7.125₁₀ in binary
- 4. 4.375₁₀ in binary
- 5. 1.1 in binary

- 1. $2+1+0+\frac{1}{4}=3.25_{10}$
- 2. $4+0+1+\frac{1}{2}=5.5_{10}$
- 3. 111.0012
- 4. 100.0112
- 5. $1.1_{10} = 1.000110..._2$

My way of transforming decimal into binary

1. calculate the numbers before the decimal point

My way of transforming decimal into binary

- 1. calculate the numbers before the decimal point
- 2. write that number₂ down. now look at the number₁₀.rest

My way of transforming decimal into binary

- 1. calculate the numbers before the decimal point
- 2. write that number₂ down. now look at the number₁₀.rest
- 3. can you substract $\frac{1}{2^n}$ from number₁₀?

- 1. calculate the numbers before the decimal point
- 2. write that number₂ down. now look at the number₁₀.rest
- 3. can you substract $\frac{1}{2^n}$ from number₁₀? if possible, subtract $\frac{1}{2^n}$ from the number₁₀ and add a 1 at the end of your number₂

- 1. calculate the numbers before the decimal point
- 2. write that number₂ down. now look at the number₁₀.rest
- 3. can you substract $\frac{1}{2^n}$ from number₁₀? if possible, subtract $\frac{1}{2^n}$ from the number₁₀ and add a 1 at the end of your number₂ else add a 0 at the end of your number₂

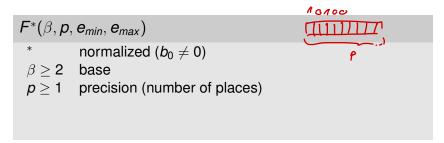
01122 0¹52 0¹2

- 1. calculate the numbers before the decimal point
- 2. write that number₂ down. now look at the number₁₀.rest
- 3. can you substract $\frac{1}{2^n}$ from number₁₀? if possible, subtract $\frac{1}{2^n}$ from the number₁₀ and add a 1 at the end of your number₂ else add a 0 at the end of your number₂
- 4. if number₁₀ = 0, stop and check your solution else, n++; and go to 3. again

- 1. calculate the numbers before the decimal point
- 2. write that number₂ down. now look at the number₁₀.rest
- 3. can you substract $\frac{1}{2^n}$ from number₁₀? if possible, subtract $\frac{1}{2^n}$ from the number₁₀ and add a 1 at the end of your number₂ else add a 0 at the end of your number₂
- 4. if $number_{10} = 0$, stop and check your solution else, n++; and go to 3. again
- 5. check solution again and remember $2^{-2} \neq \frac{1}{2}$ (common mistake)

$$F^*(eta, oldsymbol{p}, oldsymbol{e}_{min}, oldsymbol{e}_{max})$$
* normalized $(b_0
eq 0)$

```
F^*(eta, p, e_{min}, e_{max})
* normalized (b_0 \neq 0)
eta \geq \mathbf{2} base
```



```
F^*(\beta, p, e_{min}, e_{max})
* normalized (b_0 \neq 0)
\beta \geq 2 base
p \geq 1 precision (number of places)
e_{min} smallest possible exponent
```

```
F^*(\beta, p, e_{min}, e_{max})
* normalized (b_0 \neq 0)
\beta \geq 2 base
p \geq 1 precision (number of places)
e_{min} smallest possible exponent
e_{max} largest possible exponent
```

```
F^*(\beta, p, e_{min}, e_{max})
* normalized (b_0 \neq 0)
\beta \geq 2 base
p \geq 1 precision (number of places)
e_{min} smallest possible exponent
e_{max} largest possible exponent
```

$$\pm d_0.d_1d_2d_3...d_{p-1} \cdot \beta^e$$

```
F^*(\beta, p, e_{min}, e_{max})
* normalized (b_0 \neq 0)
\beta \geq 2 base
p \geq 1 precision (number of places)
e_{min} smallest possible exponent
e_{max} largest possible exponent
```

$$\pm d_0.d_1d_2d_3\dots d_{p-1}\cdot eta^e$$
 $d_i\in\{0,\dots,b-1\}$

```
F^*(\beta, p, e_{min}, e_{max})
           normalized (b_0 \neq 0)
 \beta \geq 2
          base
 p \ge 1 precision (number of places)
           smallest possible exponent
 e_{min}
           largest possible exponent
 e_{max}
```

$$\pm d_0.d_1d_2d_3\dots d_{p-1}\cdot\beta^e$$

$$d_i\in\{0,\dots,b-1\}$$

$$d_0\neq 0$$

```
F^*(\beta, p, e_{min}, e_{max})
          normalized (b_0 \neq 0)
 \beta > 2 base
 p \ge 1 precision (number of places)
          smallest possible exponent
 e_{min}
          largest possible exponent
 e_{max}
```

$$\begin{array}{c} \pm \underline{d_0.d_1d_2d_3}\dots d_{p-1}\cdot \beta^e \\ d_i \in \{0,\dots,b-1\} \\ d_0 \neq 0 \\ e \in [e_{min},e_{max}] \end{array}$$

Questions?

Exercise

Are the following numbers in the set $F_{\bullet}^{*}(2, 4, -2, 2)$?

$$\begin{array}{lll} 0000 \cdot 2^{1} & = 0_{10} \times \\ 1.000 \cdot 2^{1} & = 2_{10} \times \\ 1.001 \cdot 2^{-1} & = 0.5625_{10} \times \\ 1.0001 \cdot 2^{-1} & = 0.53125_{10} \times \\ 1.111 \cdot 2^{-2} & = 0.46875_{10} \times \\ 1.111 \cdot 2^{5} \times 2 & = 60_{10} \times \end{array}$$

Exercise

Are the following numbers in the set $F^*(2, 4, -2, 2)$?

```
\begin{array}{lll} 0.000 \cdot 2^1 & = 0_{10} \\ 1.000 \cdot 2^1 & = 2_{10} \\ 1.001 \cdot 2^{-1} & = 0.5625_{10} \\ 1.0001 \cdot 2^{-1} & = 0.53125_{10} \\ 1.111 \cdot 2^{-2} & = 0.46875_{10} \\ 1.111 \cdot 2^5 & = 60_{10} \end{array}
```

Solutions

```
is in F^*

1.000 \cdot 2^1 = 2_{10}

1.001 \cdot 2^{-1} = 0.5625_{10}

1.111 \cdot 2^{-2} = 0.46875_{10}
```

Exercise

 $1.111 \cdot 2^{5}$

Are the following numbers in the set $F^*(2, 4, -2, 2)$?

$$0.000 \cdot 2^{1} = 0_{10}$$
 $1.000 \cdot 2^{1} = 2_{10}$
 $1.001 \cdot 2^{-1} = 0.5625_{10}$
 $1.0001 \cdot 2^{-1} = 0.53125_{10}$
 $1.111 \cdot 2^{-2} = 0.46875_{10}$

 $=60_{10}$

Solutions

is in F^* $1.000 \cdot 2^{1}$ $=2_{10}$ $1.001 \cdot 2^{-1}$ $=0.5625_{10}$ $1.111 \cdot 2^{-2}$ $= 0.46875_{10}$

is not in F^* $0.000 \cdot 2^{1}$

Exercise

Are the following numbers in the set $F^*(2,4,-2,2)$?

```
\begin{array}{lll} 0.000 \cdot 2^1 & = 0_{10} \\ 1.000 \cdot 2^1 & = 2_{10} \\ 1.001 \cdot 2^{-1} & = 0.5625_{10} \\ 1.0001 \cdot 2^{-1} & = 0.53125_{10} \\ 1.111 \cdot 2^{-2} & = 0.46875_{10} \\ 1.111 \cdot 2^5 & = 60_{10} \end{array}
```

Solutions

 $1.0001 \cdot 2^{-1}$

```
is in F^*

1.000 \cdot 2^1 = 2_{10}

1.001 \cdot 2^{-1} = 0.5625_{10}

1.111 \cdot 2^{-2} = 0.46875_{10}

is not in F^*

0.000 \cdot 2^1 not "normalizable"
```

Exercise

Are the following numbers in the set $F^*(2,4,-2,2)$?

$$\begin{array}{lll} 0.000 \cdot 2^1 & = 0_{10} \\ 1.000 \cdot 2^1 & = 2_{10} \\ 1.001 \cdot 2^{-1} & = 0.5625_{10} \\ 1.0001 \cdot 2^{-1} & = 0.53125_{10} \\ 1.111 \cdot 2^{-2} & = 0.46875_{10} \\ 1.111 \cdot 2^5 & = 60_{10} \end{array}$$

Solutions

```
is in F^*

1.000 \cdot 2^1 = 2_{10}

1.001 \cdot 2^{-1} = 0.5625_{10}

1.111 \cdot 2^{-2} = 0.46875_{10}

is not in F^*
```

Exercise

Are the following numbers in the set $F^*(2, 4, -2, 2)$?

$$\begin{array}{lll} 0.000 \cdot 2^1 & = 0_{10} \\ 1.000 \cdot 2^1 & = 2_{10} \\ 1.001 \cdot 2^{-1} & = 0.5625_{10} \\ 1.0001 \cdot 2^{-1} & = 0.53125_{10} \\ 1.111 \cdot 2^{-2} & = 0.46875_{10} \\ 1.111 \cdot 2^5 & = 60_{10} \end{array}$$

Solutions

is in F^* $1.000 \cdot 2^{1}$ $=2_{10}$ $1.001 \cdot 2^{-1}$

$$1.001 \cdot 2^{-1} = 0.5625_{10}$$

 $1.111 \cdot 2^{-2} = 0.46875_{10}$

is not in F^*

$$0.000 \cdot 2^{1}$$
 not "normalizable"
 $1.0001 \cdot 2^{-1}$ $5 > p = 4$

1.111
$$\cdot$$
 2⁵ 5 \notin [-2,2]

Questions?

Exercise

State the following numbers in $F^*(2, 4, -2, 2)$ in decimal

- 1. the largest number $7.5_{10} = 1.11 \cdot 2^2$
- 2. the smallest number -3.5_{10}
- 3. the smallest non-negative number $G \cdot 125_{00} = 1.000$

How many numbers are in $F^*(2,4,-2,2)$?

Exercise

State the following numbers in $F^*(2, 4, -2, 2)$ in decimal

- 1. the largest number
- 2. the smallest number
- 3. the smallest non-negative number

How many numbers are in $F^*(2,4,-2,2)$?

Solution

largest:

State the following numbers in $F^*(2, 4, -2, 2)$ in decimal

- 1. the largest number
- the smallest number.
- 3. the smallest non-negative number

How many numbers are in $F^*(2,4,-2,2)$?

Solution

largest:

$$1.111 \cdot 2^2 = 7.5_{10}$$

smallest:

Exercise

State the following numbers in $F^*(2, 4, -2, 2)$ in decimal

- 1. the largest number
- 2. the smallest number
- 3. the smallest non-negative number

How many numbers are in $F^*(2,4,-2,2)$?

Solution

largest: $1.111 \cdot 2^2 = 7.5_{10}$

smallest: $-1.111 \cdot 2^2 = -7.5_{10}$

smallest > 0:

Exercise

State the following numbers in $F^*(2, 4, -2, 2)$ in decimal

- 1. the largest number
- 2. the smallest number

- + 11/6/1/6 12
- 3. the smallest non-negative number 21+25+25

How many numbers are in $F^*(2,4,-2,2)$? \checkmark

Solution

largest:

$$1.111 \cdot 2^2 = 7.5_{10}$$

smallest:

$$-1.111 \cdot 2^2 = -7.5_{10}$$

smallest > 0:

$$1.000 \cdot 2^{-2} = 0.25_{10}$$

Solution

For a fixed exponent there are three digits we can vary freely, and for each number also the negative number is in the set, thus resulting in $2 \cdot 2^3 = 16$ numbers per exponent. There are 5 possible exponents, thus resulting in $5 \cdot 16 = 80$ numbers. Notice that in normalized number systems we cannot count some numbers twice, as we've seen in the lecture that the representation of a number is unique.

Trick

For given $F^*(\beta, p, e_{min}, e_{max})$:

Largest: $1.11...1 \cdot 2^{e_{max}}$

Smallest: -Largest

Smallest > 0: $1.00 \dots 0 \cdot 2^{e_{min}}$

0.000, 2 enh

Questions?

Adding floats

- 1. Bring both numbers to the same exponent
- 2. Add the significand as binary numbers
- 3. Re-normalize the sum
- 4. Round if necessary

Adding floats

- 1. Bring both numbers to the same exponent
- 2. Add the significand as binary numbers
- 3. Re-normalize the sum
- 4. Round if necessary

$$F^*(2,6,-2,3)$$
 $\frac{1}{1.125_{10}+9.25_{10}}$ -5 $1.0001.001.2° +$

Adding floats

- 1. Bring both numbers to the same exponent
- 2. Add the significand as binary numbers
- 3. Re-normalize the sum
- 4. Round if necessary

```
F^*(2,6,-2,3)
1.125<sub>10</sub> + 9.25<sub>10</sub>
1.001<sub>2</sub> + 1001.01<sub>2</sub> (already same exponent (·2<sup>0</sup>))
```

Adding floats

- 1. Bring both numbers to the same exponent
- 2. Add the significand as binary numbers
- 3. Re-normalize the sum
- 4. Round if necessary

```
F^*(2,6,-2,3)\\ 1.125_{10}+9.25_{10}\\ 1.001_2+1001.01_2 \text{ (already same exponent ($\cdot$2^0$))}\\ \overline{1010.01} 1^3 \text{ (add them like you did in primary school)}
```

Adding floats

- 1. Bring both numbers to the same exponent
- 2. Add the significand as binary numbers
- 3. Re-normalize the sum
- 4. Round if necessary

```
F^*(2,6,-2,3)
1.125<sub>10</sub> + 9.25<sub>10</sub>
1.001<sub>2</sub> + 1001.01<sub>2</sub> (already same exponent (·2<sup>0</sup>))
1010.011 (add them like you did in primary school)
1.01001**\(\frac{1}{2}\) Re-normalizing, adjust e and "cut" for p
```

Adding floats

- 1. Bring both numbers to the same exponent
- 2. Add the significand as binary numbers
- 3. Re-normalize the sum
- 4. Round if necessary

```
F^*(2,6,-2\ 3)
1.125<sub>10</sub> + 9.25<sub>10</sub>
1.001<sub>2</sub> + 1001.01<sub>2</sub> (already same exponent (·2<sup>0</sup>))
1010.011 (add them like you did in primary school)
1.010011 · 2<sup>3</sup> Re-normalizing, adjust e and "cut" for p 1.01010 · 2<sup>3</sup> Rounding, like decimal: 1 up, 0 down, and carry
```

Adding floats

- 1. Bring both numbers to the same exponent
- 2. Add the significand as binary numbers
- 3. Re-normalize the sum
- 4. Round if necessary

```
F^*(2,6,-2,3)

1.125_{10}+9.25_{10}

1.001_2+1001.01_2 (already same exponent (\cdot 2^0))

1010.011 (add them like you did in primary school)

1.010011 \cdot 2^3 Re-normalizing, adjust e and "cut" for p

1.01010 \cdot 2^3 Rounding, like decimal: 1 up, 0 down, and carry

1.01010_2 \cdot 2_2^3 = 1010.10_2 = 10.5_{10}
```

Adding floats

- 1. Bring both numbers to the same exponent
- 2. Add the significand as binary numbers
- 3. Re-normalize the sum
- 4. Round if necessary

```
\begin{array}{l} F^*(2,6,-2,3) \\ 1.125_{10} + 9.25_{10} \\ 1.001_2 + 1001.01_2 \text{ (already same exponent ($\cdot$2^0$))} \\ 1010.011 \text{ (add them like you did in primary school)} \\ 1.010011 \cdot 2^3 \text{ Re-normalizing, adjust $e$ and "cut" for $p$} \\ 1.01010 \cdot 2^3 \text{ Rounding, like decimal: 1 up, 0 down, and carry} \\ 1.01010_2 \cdot 2_2^3 = 1010.10_2 = 10.5_{10} \neq 10.375_{10} \end{array}
```

Why 10.5 and not 10.375?

Simply because the exact number 10.375 *can't* be represented in the F^* we were given. The nearest number that *is* in the set F^* is 10.5. This is why floats can sometimes be dangerous and we must follow the *floating point guidelines*.

(By the way: It's not 10.25, because we're rounding up in this case, even if the difference to from both 10.25 and 10.5 to 10.375 is 0.125.)

Exercise

Exercise

Add
$$1.001 \cdot 2^{-1} = 0.5625_{10}$$
 and $1.111 \cdot 2^{-2} = 0.46875_{10}$ in $F^*(2, 4, -2, 2)$.

Solution

1. Bring both to same exponent, say -1 $1.001 \cdot 2^{-1} + 0.1111 \cdot 2^{-1}$

Exercise

Add
$$1.001 \cdot 2^{-1} = 0.5625_{10}$$

and $1.111 \cdot 2^{-2} = 0.46875_{10}$
in $F^*(2,4,-2,2)$.

Solution

1. Bring both to same exponent, say -1 $1.001 \cdot 2^{-1} + 0.1111 \cdot 2^{-1}$

2. Add them as binary numbers: $10.0001 \cdot 2^{-1}$ \longrightarrow $1.000 \cdot 1 \cdot 2^{\circ}$

Exercise

Add
$$1.001 \cdot 2^{-1} = 0.5625_{10}$$
 and $1.111 \cdot 2^{-2} = 0.46875_{10}$ in $F^*(2, 4, -2, 2)$.

- 1. Bring both to same exponent, say -1 $1.001 \cdot 2^{-1} + 0.1111 \cdot 2^{-1}$
- 2. Add them as binary numbers: $10.0001 \cdot 2^{-1}$
- 3. Re-normalize: 1.00001 · 20

Exercise

Add
$$1.001 \cdot 2^{-1} = 0.5625_{10}$$
 and $1.111 \cdot 2^{-2} = 0.46875_{10}$ in $F^*(2, 4, -2, 2)$.

- Bring both to same exponent, say −1 $1.001 \cdot 2^{-1} + 0.1111 \cdot 2^{-1}$
- 2. Add them as binary numbers: $10.0001 \cdot 2^{-1}$
- 3. Re-normalize: 1.00001 · 20
- 4. Round: 1.000 · 20

Exercise

Add
$$1.001 \cdot 2^{-1} = 0.5625_{10}$$
 and $1.111 \cdot 2^{-2} = 0.46875_{10}$ in $F^*(2, 4, -2, 2)$.

- Bring both to same exponent, say −1 $1.001 \cdot 2^{-1} + 0.1111 \cdot 2^{-1}$
- 2. Add them as binary numbers: $10.0001 \cdot 2^{-1}$
- 3. Re-normalize: 1.00001 · 20
- 4. Round: $1.000 \cdot 2^0 = 1_{10}$

- Bring both to same exponent, say −1 $1.001 \cdot 2^{-1} + 0.1111 \cdot 2^{-1}$
- 2. Add them as binary numbers: $10.0001 \cdot 2^{-1}$
- 3. Re-normalize: 1.00001 · 20
- 4. Round: $1.000 \cdot 2^0 = 1_{10} \neq 1.03125_{10}$

Floating Point guidelines

go to Floating_Point_Guidelines.pdf + maybe a short live demo on less ugly code

How to Compare Floating Point Numbers

go to Comparing_FP.pdf

How to Compare Floating Point Numbers

go to Comparing_FP.pdf

in short: don't check for equality, check for "being-within-tolerance"

```
// Example of "equality"-check function for floats
bool equal(double x, double y, double tol){
   double diff = x - y;
   if(diff < 0){
      diff *= -1;
   }
   return (diff < tol);
}</pre>
```

Exam Question

YOUR EXAM WILL BE DIFFERENT, DONT'T FORGET THAT

Geben Sie ein möglichst knappes normalisiertes Fliesskommazahlensystem an, mit welchem sich die folgenden dezimalen Werte gerade noch genau darstellen lassen: jede Verkleinerung von $p,\,e_{\rm max}$ oder $-e_{\rm min}$ muss dazu führen, dass mindestens eine Zahl nicht mehr dargestellt werden kann.

Hinweis: p zählt auch die führende Ziffer. Tipp: Schreiben Sie sich die normalisierte Binärzahldarstellung der Werte auf, wenn sie für Sie nicht offensichtlich ist. Provide a smallest possible normalized floating point number system that can still represent the following values exactly: any decrease of the numbers $p,\,e_{\rm max}$ or $-e_{\rm min}$ must imply that at least one of the numbers cannot be represented any more.

Hint: p does also count the leading digit. Tip: Write down the normalized binary representation of the values, if it is not obvious for you.

Werte / Values: 2.25, $\frac{1}{8}$, 0.5, 16.5, 2³

$$F^*(eta,p,e_{\min},e_{\max})$$
 mit $/$ with $eta=2$, $p=$, $e_{\min}=$, $e_{\max}=$.

Exam Question

YOUR EXAM WILL BE DIFFERENT, DONT'T FORGET THAT

Geben Sie ein möglichst knappes normalisiertes Fliesskommazahlensystem an, mit welchem sich die folgenden dezimalen Werte gerade noch genau darstellen lassen: jede Verkleinerung von $p,\,e_{\rm max}$ oder $-e_{\rm min}$ muss dazu führen, dass mindestens eine Zahl nicht mehr dargestellt werden kann.

Hinweis: p zählt auch die führende Ziffer. Tipp: Schreiben Sie sich die normalisierte Binärzahldarstellung der Werte auf, wenn sie für Sie nicht offensichtlich ist. Provide a smallest possible normalized floating point number system that can still represent the following values exactly: any decrease of the numbers $p,\,e_{\rm max}$ or $-e_{\rm min}$ must imply that at least one of the numbers cannot be represented any more.

Hint: p does also count the leading digit. Tip: Write down the normalized binary representation of the values, if it is not obvious for you.

Werte / *Values*: 2.25, $\frac{1}{8}$, 0.5, 16.5, 2^3

$$F^*(eta,p,e_{\min},e_{\max})$$
 mit $/$ with $eta=2$, $p=\mathbf{6}$, $e_{\min}=\mathbf{-3}$, $e_{\max}=\mathbf{4}$

Questions?