
Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Exercise Session
Week 06

Adel Gavranović
agavranovic@student.ethz.ch

1 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Overview

polybox for session material Mail to TA

Today’s Topics

Introduction

Self-Assessment

PRE and POST

Functions

Stepwise Refinement

2 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

First of all: Thanks!

Thank you all for the kind feedback!

I’ll try to implement it in the future.

3 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Unanswered Questions and Corrections
from last Exercise Session

Note in advance
all of these questions are great and I love trying to answer them
and learning new things myself, but please remember: very
little (to none) of these questions really matter for the exam, so
don’t think you really have to know all the details. Some of
these questions will cause you to go down a wikipedia
rabbithole for hours — hours, which you could’ve spent studying
and practising. But please don’t ever lose you curiosity.

4 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Unanswered Questions and Corrections
from last Exercise Session

Do the floating-point-numbers we sum up have to be
in the F ⇤ already?

I couldn’t find a satisfactory answer to this one. It seems like
they would have to be inside it (much like in yesterday’s
exercises) because the program would first convert the given
input into a NFP inside of F ⇤ and then do arithmetic on it.

5 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Unanswered Questions and Corrections
from last Exercise Session

How exactly is 0 stored in a float?

Surprise! There are two 0’s! (and a few more special values we won’t cover)

sign = 0 for positive zero, 1 for negative zero
”biased” exponent = 0
fraction = 0

6 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Unanswered Questions and Corrections
from last Exercise Session

What if a number is waaay outside F ⇤?

Basically, the IEEE-754 tells us to just round it to the nearest
number, in this case the greatest number in the set F ⇤ or to set
the ”number” to 1. Which one of these options depends on
what rounding is used. (Default: 1)

Positive and negative infinity are represented thusly:
sign = 0 for positive infinity, 1 for negative infinity.
biased exponent = all 1 bits.
fraction = all 0 bits.

7 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Comments on last [code]expert Exercises

Prove that the program terminates...

you usually have to show that for any (usually allowed)
given input, the program (usually a loop) will somehow/at
some point end. In many cases because a loop condition
will turn false
always use the magic wording ”strictly monotonic in-/ or
decreasing”
when this happens is irrelevant, it just has to happen at
some point, usually when i = n or similar
possible trick question: something causes overflows and
the loop/program goes on forever

Always try to turn a sum into one (not multiple) loops first

8 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Comments on last [code]expert Exercises

Prove that the program terminates...
you usually have to show that for any (usually allowed)
given input, the program (usually a loop) will somehow/at
some point end. In many cases because a loop condition
will turn false

always use the magic wording ”strictly monotonic in-/ or
decreasing”
when this happens is irrelevant, it just has to happen at
some point, usually when i = n or similar
possible trick question: something causes overflows and
the loop/program goes on forever

Always try to turn a sum into one (not multiple) loops first

8 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Comments on last [code]expert Exercises

Prove that the program terminates...
you usually have to show that for any (usually allowed)
given input, the program (usually a loop) will somehow/at
some point end. In many cases because a loop condition
will turn false
always use the magic wording ”strictly monotonic in-/ or
decreasing”

when this happens is irrelevant, it just has to happen at
some point, usually when i = n or similar
possible trick question: something causes overflows and
the loop/program goes on forever

Always try to turn a sum into one (not multiple) loops first

8 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Comments on last [code]expert Exercises

Prove that the program terminates...
you usually have to show that for any (usually allowed)
given input, the program (usually a loop) will somehow/at
some point end. In many cases because a loop condition
will turn false
always use the magic wording ”strictly monotonic in-/ or
decreasing”
when this happens is irrelevant, it just has to happen at
some point, usually when i = n or similar

possible trick question: something causes overflows and
the loop/program goes on forever

Always try to turn a sum into one (not multiple) loops first

8 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Comments on last [code]expert Exercises

Prove that the program terminates...
you usually have to show that for any (usually allowed)
given input, the program (usually a loop) will somehow/at
some point end. In many cases because a loop condition
will turn false
always use the magic wording ”strictly monotonic in-/ or
decreasing”
when this happens is irrelevant, it just has to happen at
some point, usually when i = n or similar
possible trick question: something causes overflows and
the loop/program goes on forever

Always try to turn a sum into one (not multiple) loops first

8 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Comments on last [code]expert Exercises

Prove that the program terminates...
you usually have to show that for any (usually allowed)
given input, the program (usually a loop) will somehow/at
some point end. In many cases because a loop condition
will turn false
always use the magic wording ”strictly monotonic in-/ or
decreasing”
when this happens is irrelevant, it just has to happen at
some point, usually when i = n or similar
possible trick question: something causes overflows and
the loop/program goes on forever

Always try to turn a sum into one (not multiple) loops first

8 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Question or Comments re: Exercises?

9 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Learning Objectives Checklist

Now I...
⇤ can write PRE- and POST-conditions for simple functions

⇤ understand what stepwise refinement is
⇤ can solve tasks using stepwise refinement

10 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Learning Objectives Checklist

Now I...
⇤ can write PRE- and POST-conditions for simple functions
⇤ understand what stepwise refinement is

⇤ can solve tasks using stepwise refinement

10 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Learning Objectives Checklist

Now I...
⇤ can write PRE- and POST-conditions for simple functions
⇤ understand what stepwise refinement is
⇤ can solve tasks using stepwise refinement

10 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Self-Assessment

Log into the Moodle page and wait

Do the Self-Assessment (be aware of the 20 minute time
limit)
the Master Solution will be available when you review your
solutions
this has no impact on your final grade
we’ll discuss parts of it after you’re done

11 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Self-Assessment

Log into the Moodle page and wait
Do the Self-Assessment (be aware of the 20 minute time
limit)

the Master Solution will be available when you review your
solutions
this has no impact on your final grade
we’ll discuss parts of it after you’re done

11 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Self-Assessment

Log into the Moodle page and wait
Do the Self-Assessment (be aware of the 20 minute time
limit)
the Master Solution will be available when you review your
solutions

this has no impact on your final grade
we’ll discuss parts of it after you’re done

11 / 25

o;Down 500

1/10/09 z
"

F×(2 , p -72 , . . .)

^
@
max

A.Oz . 2

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Self-Assessment

Log into the Moodle page and wait
Do the Self-Assessment (be aware of the 20 minute time
limit)
the Master Solution will be available when you review your
solutions
this has no impact on your final grade

we’ll discuss parts of it after you’re done

11 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Self-Assessment

Log into the Moodle page and wait
Do the Self-Assessment (be aware of the 20 minute time
limit)
the Master Solution will be available when you review your
solutions
this has no impact on your final grade
we’ll discuss parts of it after you’re done

11 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Questions?

12 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

How to study for the exam?

I would like to know if you already have a strategy
Share your ideas and strategies with the group and get
new ideas and feedback for yours (and I’ll share mine at
the end)

13 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

My ”study workflow” for Computer Science

Have a list of every topic covered in class and a way to
indicate how well you understand it
Practice! try to do every exercise on [code]expert

Note words and concepts you didn’t understand (fully)
while solving the exercises or in class (ideally ask
immediately and write it down). Go over these
words/concepts at the end of the week and study them
again and get help if needed
It’s super important to know ”what you don’t know yet”,
hence the list of words/topics
Go over exercises you didn’t get right the first time
periodically, to check and reevaluate your understanding of
the topic/task. Pro tip: do this in the Lernphase too
You’ll feel dumb (often), but that’s okay. You’re here to
make mistakes and learn

14 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

My ”study workflow” for Computer Science
Have a list of every topic covered in class and a way to
indicate how well you understand it

Practice! try to do every exercise on [code]expert

Note words and concepts you didn’t understand (fully)
while solving the exercises or in class (ideally ask
immediately and write it down). Go over these
words/concepts at the end of the week and study them
again and get help if needed
It’s super important to know ”what you don’t know yet”,
hence the list of words/topics
Go over exercises you didn’t get right the first time
periodically, to check and reevaluate your understanding of
the topic/task. Pro tip: do this in the Lernphase too
You’ll feel dumb (often), but that’s okay. You’re here to
make mistakes and learn

14 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

My ”study workflow” for Computer Science
Have a list of every topic covered in class and a way to
indicate how well you understand it
Practice! try to do every exercise on [code]expert

Note words and concepts you didn’t understand (fully)
while solving the exercises or in class (ideally ask
immediately and write it down). Go over these
words/concepts at the end of the week and study them
again and get help if needed
It’s super important to know ”what you don’t know yet”,
hence the list of words/topics
Go over exercises you didn’t get right the first time
periodically, to check and reevaluate your understanding of
the topic/task. Pro tip: do this in the Lernphase too
You’ll feel dumb (often), but that’s okay. You’re here to
make mistakes and learn

14 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

My ”study workflow” for Computer Science
Have a list of every topic covered in class and a way to
indicate how well you understand it
Practice! try to do every exercise on [code]expert

Note words and concepts you didn’t understand (fully)
while solving the exercises or in class (ideally ask
immediately and write it down). Go over these
words/concepts at the end of the week and study them
again and get help if needed

It’s super important to know ”what you don’t know yet”,
hence the list of words/topics
Go over exercises you didn’t get right the first time
periodically, to check and reevaluate your understanding of
the topic/task. Pro tip: do this in the Lernphase too
You’ll feel dumb (often), but that’s okay. You’re here to
make mistakes and learn

14 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

My ”study workflow” for Computer Science
Have a list of every topic covered in class and a way to
indicate how well you understand it
Practice! try to do every exercise on [code]expert

Note words and concepts you didn’t understand (fully)
while solving the exercises or in class (ideally ask
immediately and write it down). Go over these
words/concepts at the end of the week and study them
again and get help if needed
It’s super important to know ”what you don’t know yet”,
hence the list of words/topics

Go over exercises you didn’t get right the first time
periodically, to check and reevaluate your understanding of
the topic/task. Pro tip: do this in the Lernphase too
You’ll feel dumb (often), but that’s okay. You’re here to
make mistakes and learn

14 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

My ”study workflow” for Computer Science
Have a list of every topic covered in class and a way to
indicate how well you understand it
Practice! try to do every exercise on [code]expert

Note words and concepts you didn’t understand (fully)
while solving the exercises or in class (ideally ask
immediately and write it down). Go over these
words/concepts at the end of the week and study them
again and get help if needed
It’s super important to know ”what you don’t know yet”,
hence the list of words/topics
Go over exercises you didn’t get right the first time
periodically, to check and reevaluate your understanding of
the topic/task. Pro tip: do this in the Lernphase too

You’ll feel dumb (often), but that’s okay. You’re here to
make mistakes and learn

14 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

My ”study workflow” for Computer Science
Have a list of every topic covered in class and a way to
indicate how well you understand it
Practice! try to do every exercise on [code]expert

Note words and concepts you didn’t understand (fully)
while solving the exercises or in class (ideally ask
immediately and write it down). Go over these
words/concepts at the end of the week and study them
again and get help if needed
It’s super important to know ”what you don’t know yet”,
hence the list of words/topics
Go over exercises you didn’t get right the first time
periodically, to check and reevaluate your understanding of
the topic/task. Pro tip: do this in the Lernphase too
You’ll feel dumb (often), but that’s okay. You’re here to
make mistakes and learn

14 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

PRE and POST Conditions
// PRE: describes "accepted" input
// POST: describes expected output
int yourfunction(int a, int b){

...
}

Task
Write the PRE and POST conditions

// PRE:
// POST:
double A(double H, double L){

return H*L;
}

They don’t have to be extremely exact, but they should give you
an idea of what the function expects and returns

15 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

PRE and POST Conditions
// PRE: describes "accepted" input
// POST: describes expected output
int yourfunction(int a, int b){

...
}

Task
Write the PRE and POST conditions

// PRE:
// POST:
double A(double H, double L){

return H*L;
}

They don’t have to be extremely exact, but they should give you
an idea of what the function expects and returns

15 / 25

H
, L
3=0

Return Area of H ad L box?

④ote to self : use better variable names)

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

PRE and POST Conditions
// PRE: describes "accepted" input
// POST: describes expected output
int yourfunction(int a, int b){

...
}

Task
Write the PRE and POST conditions

// PRE:
// POST:
double A(double H, double L){

return H*L;
}

They don’t have to be extremely exact, but they should give you
an idea of what the function expects and returns

15 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Questions?

16 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Functions

:: see function exercises1.pdf ::

:: see function exercises2.pdf ::

17 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Functions

:: see function exercises1.pdf ::

:: see function exercises2.pdf ::

17 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Questions?

18 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Stepwise Refinement

19 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Stepwise Refinement

Code Example ”Perfect Numbers” on [code]expert

Write a program that counts how many perfect numbers exist in
the range [a, b]. Please use stepwise refinement to develop a
solution to this task that is divided into meaningful functions.
We provide a function is perfect in perfect.h that checks if a
given number is perfect.

A number n 2 N is called perfect if and only if it is equal to the
sum of its proper divisors. For example:
28 = 1 + 2 + 4 + 7 + 14 is perfect
12 6= 1 + 2 + 3 + 4 + 6 is not perfect

don’t try to solve it (yet)
first identify the easier problems with pen and paper
share the problems you were able to identify

20 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Stepwise Refinement

Code Example ”Perfect Numbers” on [code]expert

Write a program that counts how many perfect numbers exist in
the range [a, b]. Please use stepwise refinement to develop a
solution to this task that is divided into meaningful functions.
We provide a function is perfect in perfect.h that checks if a
given number is perfect.

A number n 2 N is called perfect if and only if it is equal to the
sum of its proper divisors. For example:
28 = 1 + 2 + 4 + 7 + 14 is perfect
12 6= 1 + 2 + 3 + 4 + 6 is not perfect

don’t try to solve it (yet)
first identify the easier problems with pen and paper

share the problems you were able to identify

20 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Stepwise Refinement

Code Example ”Perfect Numbers” on [code]expert

Write a program that counts how many perfect numbers exist in
the range [a, b]. Please use stepwise refinement to develop a
solution to this task that is divided into meaningful functions.
We provide a function is perfect in perfect.h that checks if a
given number is perfect.

A number n 2 N is called perfect if and only if it is equal to the
sum of its proper divisors. For example:
28 = 1 + 2 + 4 + 7 + 14 is perfect
12 6= 1 + 2 + 3 + 4 + 6 is not perfect

don’t try to solve it (yet)
first identify the easier problems with pen and paper
share the problems you were able to identify

20 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

”Problem Breakdown Tree”

How many perfect numbers are there?

21 / 25

"

difficult"

problem

\
Ipvf

Eisai ¥¥i
T
Tm)(divisor

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Solution to ”Perfect Numbers”

// PRE:
// POST:
bool is_perfect(unsigned int number) {
unsigned int sum = 0;
for (unsigned int d = 1; d < number; ++d) {
if (number % d == 0) {
sum += d;

}
}
return sum == number;

}

22 / 25

→
Positive number (int)

→ tell u if perfect or not (true , false)

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Solution to ”Perfect Numbers”
#include <iostream>
#include "perfect.h"

// PRE:
// POST:
unsigned int count_perfect_numbers(unsigned int a,

unsigned int b) {
unsigned int count = 0;
for (unsigned int i = a; i <= b; ++i) {
if (is_perfect(i)) {
count++;

}
}
return count;

}

...

23 / 25

afb , a Z O , S Z O

number of pet . number Ea , b)

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Solution to ”Perfect Numbers”

...

int main () {
// input
unsigned int a;
unsigned int b;
std::cin >> a >> b;

// computation and output
unsigned int count = count_perfect_numbers(a, b);

// output
std::cout << count << std::endl;

return 0;
}

24 / 25

Intro Self-Assessment PRE and POST Functions Stepwise Refinement

Questions?

25 / 25

