
Intro Recursion EBNF Structs

Exercise Session
Week 09

Adel Gavranović
agavranovic@student.ethz.ch

1 / 26

agavranovic@student.ethz.ch

Intro Recursion EBNF Structs

Overview

polybox for session material mail to TA

Today’s Topics

Introduction

Recursion

(Extended-)Backus-Naur-Form

Structs

2 / 26

https://polybox.ethz.ch/index.php/s/ayv5lvs7eZ8PQO8
mailto:agavranovic@student.ethz.ch

Intro Recursion EBNF Structs

Follow-up

Don’t worry about that one ”recursion sequence” exercise.
It was hard, but we TAs found it was a universal experience
and that basically no group was able to solve it, especially
not in that little time. It’s still a good practice example.

3 / 26

Intro Recursion EBNF Structs

Comments on last [code]expert Exercises

the ”semantically invalid or invalid during runtime” exercise
was rather difficult. I know it’s very hard to tell apart one
kind of mistake from another. I recommend just learning
the ”types of mistakes” by heart and after a while you will
be able to differentiate the two (after you’ve practiced more
and encountered more mistakes)
If you feel like you have trouble solving most exercises
every week, I highly recommend going to the Study Center.
There you can ask questions much more frequently and
directly (than via mail)
I’m sorry if your code suddenly changes its grading.
Sometimes I find mistakes later because I forgot to check
the first time

4 / 26

Intro Recursion EBNF Structs

Comments on last [code]expert Exercises

const: use it whenever a function is only supposed to read
something. Common functions that do this:
print(const...), count(const...), get(const...)
Segmentation faults: usually means, that you tried to
access something outside of a vector’s bounds.
(v.lenght() == 7, dann v[7])
Sometimes, a super-long written feedback is not the
optimal way of helping you, which is why I sometimes tell
you to email me specific questions (no matter how silly the
question might be) or visit the Study Center

5 / 26

Intro Recursion EBNF Structs

Comments on last [code]expert Exercises

the feedback on your first bonus exercise was a bit
meager. That’s because I need more input from you. What
did you think was hindering you from achieving 100%? In
general, leave comments with questions at the very top of
your code and share your thoughts. You can also always
write me a mail or go to the Study Center
Global Variables: are variables, that are not in a function
and can be accessed by all functions. Don’t use them, but
rather learn how to implement references properly

6 / 26

Intro Recursion EBNF Structs

Questions or Comments re: Exercises?

7 / 26

Intro Recursion EBNF Structs

Learning Objectives Checklist

Now I...
� can check whether a character sequence matches given

EBNF rules
� can write EBNF rules that accept only a given set of input

character sequences
� can define and use C++ structs
� can define functions that manipulate C++ structs

8 / 26

Intro Recursion EBNF Structs

Call Graphs

Are a way to visualize function calls "t()"

9 / 26

Intro Recursion EBNF Structs

Call Graph for power(x, 7)

// PRE: base x, power n

// POST: n’th power of x

unsigned int power(const int x, const unsigned int n){

if(n == 0){

return 1;

}else if(n == 1){

return x;

}

return x*power(x, n-1);

}

...

std::cout << power(x, 7) << std::endl;

...

// How will the "Call Graph" look like for this

function?

// How many times will power() be called in total?

10 / 26

Intro Recursion EBNF Structs

You’ve got the power(x,n)

Task

Come up with a better (fewer function calls)
implementation of the power()-function with pen and paper
Hint: xn = x

n
2 · x

n
2

Implement it in [code]expert in groups (Breakout Rooms)
Share your results and analyze the number of function
calls your solution does

11 / 26

Intro Recursion EBNF Structs

Master Solution for Power Function

// POST: result == x^n

unsigned int power (const int x, const unsigned int n){

if (n == 0) {

return 1;

} else if (n == 1) {

return x;

} else if (n % 2 == 0) {

int temp = power(x, n/2);

return temp*temp;

} else {

return x*power(x, n-1);

}

}

This function will call itself at most 2 log2(n + 1)− 1 times, i.e.
only logarithmically many function calls compared to linearly
many with the other implementation.

12 / 26

Intro Recursion EBNF Structs

Questions?

13 / 26

Intro Recursion EBNF Structs

The Concept of (E)BNF

is a way to go through an input (e.g. std::cin, or a file)
and analyze if it is valid according to our given (E)BNF
works recursively
the E in EBNF stands for extended. EBNFs offer a few
additional (shorter/better) ways of describing what a valid
input is
a lot of exercises will be of the form ”is xoo-xooxoo valid
according to the given EBNF?”
think of them as rules for allowed words
(but these ”words” look weird af)
good videos on that topic: EBNF I EBNF II
(small mistake in EBNF I @6:00: in digit all the numbers should be seperated by |s

14 / 26

https://www.youtube.com/watch?v=AiCJRAUpLFk
https://www.youtube.com/watch?v=I75KU_ldfO8

Intro Recursion EBNF Structs

BNF Example ”Aa ”

We want to define a BNF that encompasses the following rules:

Rules
Alphabet = {’A’, ’a’, ’ ’}
’A’ can only appear directly after an underscore or as the very
first symbol. And underscores cannot occur in pairs and cannot
be placed as the very first or the very last symbol.

For example, the following sequence is valid: ”Aaaaa aa”, but
not ”AaaAa”. Our task is now to come up with a BNF
expressing such (valid/allowed) sequences

15 / 26

Intro Recursion EBNF Structs

BNF Example ”Aa ”

BNF
seq = term | term ’ ’ seq

term = ’A’ | ’A’ lowerterm | lowerterm

lowerterm = ’a’ | ’a’ lowerterm

When checking if a word is valid, try to deconstruct it bit by bit
with the given BNF. This BNF has 3 rules: the first and last one
have two alternatives, the second one has three. This BNF has
3 non-terminal symbols (seq, term, lowerterm) and 3 terminal
symbols (’A’, ’a’, ’ ’)

16 / 26

Intro Recursion EBNF Structs

Questions?

17 / 26

Intro Recursion EBNF Structs

EBNF

Task
Rewrite the BNF from the previous slides into an EBNF with the
follwing additional syntax:

{...}: at the location of this syntax, the content between
the brackets can be repeatet n ∈ {N0} times
[...]: at the location of this syntax, the content between
the brackets can be repeatet m ∈ {0,1} times

EBNF
seq = term [’ ’ seq]

term = ’A’ {’a’} | ’a’ {’a’}

18 / 26

Intro Recursion EBNF Structs

Exercise ”Valid Words”

Task

seq = term [’ ’ seq]

term = ’A’ {’a’} | ’a’ {’a’}

Which of the following concatenations are valid seqs in the
sense of the EBNF above?

1. A 2. a 3.
4. Aaa 5. aaA 6. A A

7. Aa Aa

(valid: 1, 2, 4, 6, 7)

19 / 26

Intro Recursion EBNF Structs

Exercise ”Valid Words” Helper Functions

// PRE: valid input stream input

// POST: returns true if further input is available

// otherwise false

bool input_available(std::istream& input);

// PRE: valid input stream input

// POST: the next character at the stream is returned

(but not consumed)

// if no input is available, 0 is returned

char peek(std::istream& input);

20 / 26

Intro Recursion EBNF Structs

Exercise ”Valid Words” Helper Functions

// POST: leading whitespace characters are extracted

// from input, and the first non-whitespace

character is returned (but not consumed)

// if an error or end of stream occurs, 0 is returned

char lookahead(std::istream& input);

// PRE: Valid input stream input, expected > 0

// POST: If ch matches the next lookahead then it is

consumed and true is returned

// otherwise no character is consumed and false is

returned

bool consume(std::istream& input, char expected);

21 / 26

Intro Recursion EBNF Structs

Let’s Code Together!

Help me code a solution to this
Ask, whenever something is unclear or weird to you
Feel free to answer the questions of your fellow students, if
you think you know the answer

22 / 26

Intro Recursion EBNF Structs

Questions?

23 / 26

Intro Recursion EBNF Structs

Structs

Structs are bundles of stuff

this stuff can be types, functions and more (”members”)
the types don’t have to be the same
structs are our way of creating new ”things”, like our own
type of number (complex numbers), mathematical
structures (lines, squares, circles) or things (person data)

24 / 26

Intro Recursion EBNF Structs

Structure of strucs

struct Person {

unsigned int age;

bool alive;

std::vector<int> LuckyNumbers;

};

int main () {

Person Adel = {23, true, {6,7,9}};

Person Adel_clone = Adel; // all elements are copied

Person Jack = {21, true, {1,2,6}};

std::cout << "Adel’s " << Adel.age << " years old\n";

// outputs: 1 3 return 0;

}

25 / 26

Intro Recursion EBNF Structs

Exercise ”Geometry Exercise”

Task

open the exercise ”Geometry Exercise” in [code]expert

how would you write the function sum?
how would you write the struct line?
how would you write the function shift line?
try to implement them

26 / 26

	Introduction
	Recursion
	(Extended-)Backus-Naur-Form
	Structs

