
Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Exercise Session

Week 11

Adel Gavranović

agavranovic@student.ethz.ch

1 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Overview

polybox for session material mail to TA

Today’s Topics

Introduction

Meanings of & and *

References vs Pointers

Pointer Arithmetic

Exercise: ”Push Back”

2 / 22

}-is. pointers

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Introduction

One of the current tasks is running the newest version of

the autograder, so if you find any bugs (or typos) send me

an email

3 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Comments on last [code]expert Exercises

use more comments and try to format them well (don’t get

too slacky now!)

Exercise ”Trains”: many had this one function wrong, so

I’m going to cover it here

4 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

EBNF Exercise ”Trains”

// composition = "<" open loco ">"
// compositions = composition | { composition } .
bool compositions(std::istream& is) {

bool valid = composition(is);
while (valid && lookahead(is) == ’<’) {

valid = valid && composition(is);
}

return valid;
}

[<*(-)*><*((-))*><*(((-)))*><*(-)*>]

5 / 22

→ tried
← valid

Cucuta, 11111 L l lCCWM
train

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Questions or Comments re: Exercises?

6 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Learning Objectives Checklist

Now I...

⇤ can explain the differnce between a reference and a pointer

⇤ can trace programs that use pointers and pointer arithmetic

⇤ can write programs that use pointers and pointer arithmetic

⇤ can trace programs that use dynamic memory

⇤ can write programs that use dynamic memory

7 / 22

@

=
-

-

↳ new
,
intET£

assign werey
during runtime

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Questions?

8 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Meanings of &

The symbol & can disorient many people approaching C++ .

It is important to realize that this symbol has 3 different
meanings, depending on its position in the code:

Meanings of &

1. the bitwise AND operator

z = x & y;

2. to declare a variable as a reference

int& y = x;

3. to take the address of a variable (address operator)

int *ptr a = &a;

9 / 22

(I

i.→ #ar
. of an int type

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Meanings of *

Same with the symbol *:

Meanings of *

1. the arithmetic multiplication operator

z = x * y;

2. to declare a pointer variable

int * ptr a = &a;

3. to take the content of a varibale via its pointer (dereference

operator)

int a = *ptr a;

10 / 22

c

-

accessing
the actual
value at

that addr.

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Questions?

11 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

References

void references(){
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Task

Trace this program and write

down the expected output

12 / 22

noX77A4BEt.IE
→

÷ :÷:2-Z

int&

e 2

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Pointers

void pointers(){
int a = 1;
int b = 2;
int* x = &a;
int* y = x;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

y = 0;
}

Task

Trace this program and write

down the expected output

13 / 22

block of memory
" " "

0×123 0×124 07125 0×126 0×127 0×128

" " "

x
O J

'

gods.ir *y a b
-e - 9707 IT*

drei:

-

E OxABC

intix int*

(← 70M¥) OXHFG 0×747

Noutpnt : 1212 OXABC OXABC

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Pointers & Addresses

void ptrs_and_addresses(){
int a = 5;
int b = 7;

int* x = nullptr;
x = &a;

std::cout << a << "\n";
std::cout << *x << "\n";

std::cout << x << "\n";
std::cout << &a << "\n";

x = &b;
*x = 1;

}

Task

Trace this program and write

down the expected output

14 / 22

" points
→ ←

at

1=-1 nothing
'

a s

C FEI ⑦
G-CAFE 0×123

* lint) (int)

- output Is(/ not imp oxCAFE¥z
A-CAFE (infix)
/
"

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Questions?

15 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Bug hunt

Exercise

Find and fix (at least) 3 problems with the code in the code in

Pointers On Arrays.pdf

16 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Pointers and Arrays

Exercise

1. Trace the code in Reverse Copy.pdf

2. determine a POST-condition for the function

f(int* b, int* e, int* o);

3. Which inputs are valid? (see slides)

4. Make the function const-correct1

1
If the whole const*const&-stuff confuses you, check out the summary for

that topic on the course page.

17 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Constness and Pointers

from ”Summary 11” on Course Website

18 / 22

var is
const

(I

↳pointer

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Questions?

19 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Exercise ”Push Back”

Tasks

1. Open ”Push Back” in [code]expert

2. Try to implement it

3. On a high level this involves the following steps:

3.1 Allocating a new memory block that is larger by one

element.

3.2 Copying all elements from the old memory block to the new

one.

3.3 Adding the new element to the end of the new memory

block.

4. Share and discuss your implementations

20 / 22

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

What the f*&k is this->?

Basically2

”this->” has two parts: the ”this” and the ”->”

this is a pointer to the current object (usually a class or

struct), so it’s of type T*

-> is a very cool looking operator

this->member element is equivalent to

*(this).member element The arrow operator

dereferences a pointer to an object in order to access one

of its members (functions or variables)

More details later...

2
a word I like to preface bad explanations and oversimplifications with

21 / 22

i÷÷:÷÷÷÷÷
→

Intro & and * References vs Pointers Pointer Arithmetic Exercise: ”Push Back”

Questions?

22 / 22

working ,
"

easy
'

but inefficient solution

:
working ,

"

better
" solution

