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Overview

polybox for session material mail to TA

Today’s Topics

Introduction

Meanings of & and *

References vs Pointers

Pointer Arithmetic

Exercise: ”Push Back”
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Introduction

One of the current tasks is running the newest version of

the autograder, so if you find any bugs (or typos) send me

an email
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Comments on last [code]expert Exercises

use more comments and try to format them well (don’t get

too slacky now!)

Exercise ”Trains”: many had this one function wrong, so

I’m going to cover it here
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EBNF Exercise ”Trains”

// composition = "<" open loco ">"
// compositions = composition | { composition } .
bool compositions(std::istream& is) {

bool valid = composition(is);
while (valid && lookahead(is) == ’<’) {

valid = valid && composition(is);
}

return valid;
}

[<*(-)*><*((-))*><*(((-)))*><*(-)*>]
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Questions or Comments re: Exercises?
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Learning Objectives Checklist

Now I...

⇤ can explain the differnce between a reference and a pointer

⇤ can trace programs that use pointers and pointer arithmetic

⇤ can write programs that use pointers and pointer arithmetic

⇤ can trace programs that use dynamic memory

⇤ can write programs that use dynamic memory
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Questions?
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Meanings of &

The symbol & can disorient many people approaching C++ .

It is important to realize that this symbol has 3 different
meanings, depending on its position in the code:

Meanings of &

1. the bitwise AND operator

z = x & y;

2. to declare a variable as a reference

int& y = x;

3. to take the address of a variable (address operator)

int *ptr a = &a;
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Meanings of *

Same with the symbol *:

Meanings of *

1. the arithmetic multiplication operator

z = x * y;

2. to declare a pointer variable

int * ptr a = &a;

3. to take the content of a varibale via its pointer (dereference

operator)

int a = *ptr a;
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Questions?
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References

void references(){
int a = 1;
int b = 2;
int& x = a;
int& y = x;
y = b;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

}

Task

Trace this program and write

down the expected output
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Pointers

void pointers(){
int a = 1;
int b = 2;
int* x = &a;
int* y = x;

std::cout
<< a << " "
<< b << " "
<< x << " "
<< y << std::endl;

y = 0;
}

Task

Trace this program and write

down the expected output
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Pointers & Addresses

void ptrs_and_addresses(){
int a = 5;
int b = 7;

int* x = nullptr;
x = &a;

std::cout << a << "\n";
std::cout << *x << "\n";

std::cout << x << "\n";
std::cout << &a << "\n";

x = &b;
*x = 1;

}

Task

Trace this program and write

down the expected output
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Questions?
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Bug hunt

Exercise

Find and fix (at least) 3 problems with the code in the code in

Pointers On Arrays.pdf
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Pointers and Arrays

Exercise

1. Trace the code in Reverse Copy.pdf

2. determine a POST-condition for the function

f(int* b, int* e, int* o);

3. Which inputs are valid? (see slides)

4. Make the function const-correct1

1
If the whole const*const&-stuff confuses you, check out the summary for

that topic on the course page.
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Constness and Pointers

from ”Summary 11” on Course Website
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Questions?
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Exercise ”Push Back”

Tasks

1. Open ”Push Back” in [code]expert

2. Try to implement it

3. On a high level this involves the following steps:

3.1 Allocating a new memory block that is larger by one

element.

3.2 Copying all elements from the old memory block to the new

one.

3.3 Adding the new element to the end of the new memory

block.

4. Share and discuss your implementations
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What the f*&k is this->?

Basically2

”this->” has two parts: the ”this” and the ”->”

this is a pointer to the current object (usually a class or

struct), so it’s of type T*

-> is a very cool looking operator

this->member element is equivalent to

*(this).member element The arrow operator

dereferences a pointer to an object in order to access one

of its members (functions or variables)

More details later...

2
a word I like to preface bad explanations and oversimplifications with
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Questions?
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