
Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Exercise Session
Week 12

Adel Gavranović
agavranovic@student.ethz.ch

1 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Overview

polybox for session material mail to TA

Today’s Topics
Introduction

Iterators

llvec::init

Missing Knowledge

Pointers

Dynamic Data Types

Misc

2 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Introduction

Make sure you have the right handout
(Handout12 reupload.pdf). The first Handout has missing
slides
All of the current tasks are running the newest version of
the autograder, so if you find any bugs (or typos) send us
an email!
Same goes for the the current Bonus Exercise
For current Bonus Exercise: max size of board will be set
to 16 by 16 (even in the hidden test), so the efficiency of
your solution is irrelevant
If you have any questions you can send me an e-mail at
any time and any day. Depending on the problem/question
it might take a while to give a good answer (this will still
apply even during the Lernphase, so make good use of it)

3 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Follow-up

Try the ”Push Back” code example again, if you manage
that one, everything else will seem much easier

4 / 39

this- s . . .

→

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Comments on last [code]expert Exercises

Don’t forget to &-reference and const your function
parameters properly
What are invariants?
read input-function in ”Task 2a: Complex Numbers”

5 / 39

→

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Invariants

Invariants
An invariant is a logical assertion that is always held to be true
during a certain phase of execution.

For example, a loop invariant is a condition that is true at the
beginning and the end of every execution of a loop.

Invariants are allowed to vary, but only during a process and
then must be true again at the end of the process. This can be
very useful for proofs.

// INV: >= 0 and divisible by 5

6 / 39

→ C

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Task 2a: ”Complex Numbers”: read input()

// (Slightly altered) STUDENT SOLUTION

bool read_input(std::istream &in, Complex &a){

bool valid = true;

char bracket1, comma, bracket2;

in >> bracket1 >> a.real >> comma >> a.imaginary

>> bracket2;

if(bracket1 != ’[’){

valid = false;}

if(comma != ’,’){

valid = false;}

if(bracket2 != ’]’){

valid = false;}

return valid;

}

Credit: L.Z.

7 / 39

-c

÷
"
⇒µ ,

to

② -23

C

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Task 2a: ”Complex Numbers”: read input()

// (Strongly altered) STUDENT SOLUTION

bool read_input(std::istream &in, Complex &a){

char bracket1, comma, bracket2;

in >> bracket1 >> a.real >> comma >> a.imaginary

>> bracket2;

if(bracket1 != ’[’ &&

comma != ’,’ &&

bracket2 != ’]’ &&){

return true;

} else {

return false;

}

}

8 / 39

1 "

c-

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Task 2a: ”Complex Numbers”: read input()

// MASTER SOLUTION

bool read_input(std::istream &in, Complex &a){

unsigned char c;

if(!(in >> c) || c != ’[’

|| !(in >> a.real)

|| !(in >> c) || c != ’,’

|| !(in >> a.imag)

|| !(in >> c) || c != ’]’){

return false;}

else{

return true;

}

}

9 / 39

-

o
- a. say c

2 . return
0 i

n :

(in→ c)
-

O '
.

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Questions or Comments re: Exercises?

10 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Learning Objectives Checklist

Now I...
⇤ can use Iterators for different kinds of containers
⇤ can implement a simple container

11 / 39

-

(←

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Iterators

Iterators are a handy way of going through (= iterating over)
a std::set, std::vector, or any other kind of container
They work very similarly to pointers, so you can use code
like ++it to ”move them forward” and *it to access the
underlying data
It helps to think of them as fancy pointers

12 / 39

Il

9

to

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Iterators in Code (std::vector)

std::vector<int> cont = {8,3,1,4,6,9};

for (std::vector<int>::iterator it = cont.begin();

it != cont.end();

++it) {

std::cout << *it << " ";

}

13 / 39

incl =vectors

F t coat -end
✓ it

←-
C

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Iterators in Code (std::set)

std::set<int> cont = {8,3,1,4,6,9};

for (std::vector<int>::iterator it = cont.begin();

it != cont.end();

++it) {

std::cout << *it << " ";

}

14 / 39

-

i

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Exercise ”llvec::init”
Description

The files vector linkedlist.h and vector linkedlist.cpp

contain a simplified version of the llvec-vector from the lecture
slides. Implement the constructor that initializes the vector with
all elements from the iterator.

Hints:
How can you add the first element from the iterator?
How can you add any other element from the iterator?

Personal Hint
Don’t ”waste” too much time trying to figure out how exactly the
other member functions have been implemented. Just read the
PRE/POSTs and comments and don’t get confused trying to
decipher the actual implementations.

15 / 39

$

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Exercise ”llvec::init”

Simpler Description

Implement the constructor llvec::llvec(begin, end)

This constructor initializes a new llvec and inserts the values
that are in a different llvec between begin and end.

16 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Inside the llvec-class: Basics

struct llnode {

int value;

llnode* next;

};

llnode* head;

17 / 39

-

E i

⇒
w

fi
a.beg.in# -

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Inside the llvec-class: const iterator class
class const_iterator {

const llnode* node;

public:

const_iterator(const llnode* const n);

// PRE: Iterator does not point to the element

beyond the last one.

// POST: Iterator points to the next element.

const_iterator& operator++(); // Pre-increment

// POST: Return the reference to the number at

which the iterator is currently pointing.

const int& operator*() const;

// True if iterators are pointing to different

elements.

bool operator!=(const const_iterator& other) const;

// True if iterators are pointing to the same

element.

bool operator==(const const_iterator& other) const;

};

18 / 39

÷?
""

'

i'÷:

TEL

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Inside the llvec-class: Member Functions
// Default Constructor

llvec();

// PRE: begin and end are iterators pointing to the

same vector and begin is before end.

// POST: The constructed llvec contains all elements

between begin and end.

llvec(const_iterator begin, const_iterator end);

// POST: e is prepended to the vector.

void push_front(int e);

// POST: Returns an iterator that points to the first

element.

const_iterator begin() const;

// POST: Returns an iterator that points after the

last element.

const_iterator end() const;

19 / 39

→I

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Visualization of llvec

20 / 39

man. .

A
,
4
I
6

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Conceptual Solution for ”llvec::init”

21 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

”llvec::init” Solution
llvec::llvec(llvec::const_iterator begin,

llvec::const_iterator end) {

this->head = nullptr;

if (begin == end) {

return;

}

llvec::const_iterator it = begin;

// Let’s add the first element from the iterator.

this->head = new llnode{*it, nullptr};

++it;

llnode* current_node = this->head;

// Let’s add all the remaining elements.

while(it != end){

current_node->next = new llnode{*it, nullptr};

current_node = current_node->next;

++it;

}

}

22 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Exercise ”llvec::init”

Task
Do this exercise on your own this evening and try to visualize
your solution

23 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Introduction

You’re not expected to master recursion, pointers and
datastructures (yet), so don’t panic!

You will understand stuff better the more you (try to) use it.1

1I know this sounds paradoxical, but there really is no better teacher than
good ol’ Mr. Practice

24 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Survey Results

Thanks to Google froms for the illegible diagramm

25 / 39

0

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Visualization
I noticed many of the concepts some of you struggle with might be hard to understand because you don’t see how
the computer actually handles data. I hope the following visualization can help you understand what we mean when
we talk about memory allocation.

26 / 39

joyte

i
-
-

t.gr#.o...OxA23O27084ptrs
move by

→ Bt p
= &ai

the number of #
bytes that

their

→
std : :cont cc * p I

type dictates , f
so that it always

''

IIIfs
"

by one
"'

jieefooee operator

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Pointers

We use pointers mainly to to keep track of dynamically
allocated memory (and to pose complicated exam
questions)

Seriously, they really are just the memory-address of the
thing you let it point to
When std::cout-ing them, they usually look something
like this: 0xDB11E4 which is just a number in hexidecimal

27 / 39

I
''

new
"

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Pointers

We use pointers mainly to to keep track of dynamically
allocated memory (and to pose complicated exam
questions)
Seriously, they really are just the memory-address of the
thing you let it point to

When std::cout-ing them, they usually look something
like this: 0xDB11E4 which is just a number in hexidecimal

27 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Pointers

We use pointers mainly to to keep track of dynamically
allocated memory (and to pose complicated exam
questions)
Seriously, they really are just the memory-address of the
thing you let it point to
When std::cout-ing them, they usually look something
like this: 0xDB11E4 which is just a number in hexidecimal

27 / 39

-

012 - - SAB . - F

9=15

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Pointers

How to actually use them:

// allocating normally

int a = 21;

int* a_ptr = &a;

// changing value

*a_ptr = 42;

// allocating dynamically

int* b = new int(34);

// changing value

*b = *a_ptr;

std::cout << *a_ptr << a << *a << *b << std::endl;

28 / 39

t¥
EE? .

%M÷, man.

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Free Advice

Make use of the summaries and the internet!

At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file
Personal recommendation: the Cherno

Practice, Practice, Practice

29 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Free Advice

Make use of the summaries and the internet!
At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file

Personal recommendation: the Cherno

Practice, Practice, Practice

29 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Free Advice

Make use of the summaries and the internet!
At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file
Personal recommendation: the Cherno

Practice, Practice, Practice

29 / 39

(Ctt videos)

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Free Advice

Make use of the summaries and the internet!
At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file
Personal recommendation: the Cherno

Practice, Practice, Practice

29 / 39

c-

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Summary on pointers

30 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Questions?

31 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?

Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically
You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?
Whenever we want an object to outlive its scope
Whenever the task says we have to

How to use them?
With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

(new , delete)

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?
Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically
You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?
Whenever we want an object to outlive its scope
Whenever the task says we have to

How to use them?
With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

- g

Kayal
Std : : int a = 5

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?
Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?
Whenever we want an object to outlive its scope
Whenever the task says we have to

How to use them?
With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

-

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?
Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically
You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?
Whenever we want an object to outlive its scope
Whenever the task says we have to

How to use them?
With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

11 node * of =&
.
. . 17¥ - -

-

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?
Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically
You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?

Whenever we want an object to outlive its scope
Whenever the task says we have to

How to use them?
With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?
Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically
You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?
Whenever we want an object to outlive its scope

Whenever the task says we have to
How to use them?

With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?
Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically
You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?
Whenever we want an object to outlive its scope
Whenever the task says we have to

How to use them?
With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?
Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically
You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?
Whenever we want an object to outlive its scope
Whenever the task says we have to

How to use them?

With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?
Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically
You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?
Whenever we want an object to outlive its scope
Whenever the task says we have to

How to use them?
With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Data Types

What are they even good for?
Dynamically allocated memory is used when we want to
create things that last outside of their initial scope2

”Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically
You have to know how to handle pointers in order to use
dynamically allocated data

When to use them?
Whenever we want an object to outlive its scope
Whenever the task says we have to

How to use them?
With the keyword new

To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Variables vs ”normal” Variables

// "normally" allocated variable

int n = 42;

// accessing it

n = 1;

// dynamically allocated variable

int* d = new int(42);

// accessing it

*d = 1;

33 / 39

0000

CCC
chart cp

- new
char (

' h ');

I
-4569"

new :
" hey ,

make room

q,µ
Ptr for an int

"

works #
if implanted L#

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Dynamic Arrays

// dynamically allocated array of variables

int* d = new int[5];

// accessing and modifying

d[0] = 1337; // first int in array

d[4] = 42; // last int in array

34 / 39

* a

-
""""u,

tHEI
delete

bytes / dqoy = 1337

d

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Summary on Dynamic Data Types

35 / 39

→
-

} constructor

iii.
S

O O
C '

"

-

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Summary on Dynamic Data Types

36 / 39

(Arrays)

yw

i

:
staivector

17¥ v. push -back) ;
o '

Elis't

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Questions?

37 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Quick Answers

L-value vs R-value
Basically, if it has an address it’s an L-value, otherwise it’s
an R-value

In general, rvalues are temporary and short lived, while
lvalues live a longer life since they exist as variables
Article on that topic lvalues and rvalues in C++

Floats
Please revisit the lecture on that topic and the exercise
session notes
Website on that topic IEEE-754 Floating Point Converter

38 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Quick Answers

L-value vs R-value
Basically, if it has an address it’s an L-value, otherwise it’s
an R-value
In general, rvalues are temporary and short lived, while
lvalues live a longer life since they exist as variables

Article on that topic lvalues and rvalues in C++

Floats
Please revisit the lecture on that topic and the exercise
session notes
Website on that topic IEEE-754 Floating Point Converter

38 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Quick Answers

L-value vs R-value
Basically, if it has an address it’s an L-value, otherwise it’s
an R-value
In general, rvalues are temporary and short lived, while
lvalues live a longer life since they exist as variables
Article on that topic lvalues and rvalues in C++

Floats
Please revisit the lecture on that topic and the exercise
session notes
Website on that topic IEEE-754 Floating Point Converter

38 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Quick Answers

L-value vs R-value
Basically, if it has an address it’s an L-value, otherwise it’s
an R-value
In general, rvalues are temporary and short lived, while
lvalues live a longer life since they exist as variables
Article on that topic lvalues and rvalues in C++

Floats
Please revisit the lecture on that topic and the exercise
session notes

Website on that topic IEEE-754 Floating Point Converter

38 / 39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Quick Answers

L-value vs R-value
Basically, if it has an address it’s an L-value, otherwise it’s
an R-value
In general, rvalues are temporary and short lived, while
lvalues live a longer life since they exist as variables
Article on that topic lvalues and rvalues in C++

Floats
Please revisit the lecture on that topic and the exercise
session notes
Website on that topic IEEE-754 Floating Point Converter

38 / 39

0

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Post Exercise Session

39 / 39

"

Objects
"

- state + behaviour - fancy

M M
types

Data , features ,
values , functions,
etc. functionalities

C. push-
back etc.)

