Intro
000000

Self-Assessment -tors Exercise "Box” Vocabulary
e]e] 0000000000 0000000000 000000

Exercise Session
Week 13

Adel Gavranovi¢
agavranovic@student.ethz.ch

1/35


agavranovic@student.ethz.ch

Intro Self-Assessment -tors Exercise "Box” Vocabulary
900000 (e]e] 0000000000 0000000000 000000

Overview

» polybox for session material » mail to TA

Today’s Topics

Introduction
Self-Assessment
-tors

Exercise "Box”

Vocabulary

2/35


https://polybox.ethz.ch/index.php/s/ayv5lvs7eZ8PQO8
mailto:agavranovic@student.ethz.ch

Intro Self-Assessment -tors Exercise "Box” Vocabulary
0e0000 e]e] 0000000000 0000000000 000000

Introduction

m We had very little exercises in the past few exercise
sessions. Today will be more exercise focused

m Be ready to answer a lot of tiny questions

3/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
00000 0o 0000000000 0000000000 000000

Comments on last [code] expert Exercises

m When giving ranges in PRE/POST-conditions, make sure
to be precise: ¢ in [0,127] 0r0 <= c < 128

m Use vec.at (i) instead of vec[i] whenever you can. ltis a
little slower, but much safer!

m Great job on last week’s exercises, especially the quicksort
and nonogram exercise!

4/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000e00 e]e] 0000000000 0000000000 000000

Questions or Comments re: Exercises?

5/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 0o 0000000000 0000000000 000000

Learning Objectives Checklist

Now ...

[0 can trace code that uses new, delete, copy-constructors,
and destructors

O can implement simple data structures that act as values,
but are implemented internally by using dynamic memory

O know how to avoid common problems with dynamically
allocated memory (dangling pointers, double-free,
use-after-free)

O understand the difference between new/delete and
newl[]/deletel[]

6/35



Questions?

7/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 o0 0000000000 0000000000 000000

Self-Assessment IV

m log into the Moodle page and wait

m do the Self-Assessment (be aware of the 20 minute time
limit)

m the Master Solution will be available when you review your
solutions

m this has no impact on your final grade

m we'll discuss parts of it after you’re done

8/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 oe 0000000000 0000000000 000000

Questions?

9/35



-tors
©000000000

Remember...

Don’t forget
To each new a delete.
Constructor, Copy-Constructor, Destructor

m Are just fancy functions that get called on specific
occasions

m Must be in the public section of your class/struct

10/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 0o 0®00000000 0000000000 000000

Constructor

Constructor
m gets called when an object of that class/struct gets
created/constructed

m can be used to pass construction arguments, so you can
initialize the object however you like

m you can define multiple constructors (e.g. for different
types) and the compiler will choose which one to use
classname object1(6.0f) Or classname object2(’A’)

m excellent resource on this:

11/35


https://en.cppreference.com/w/cpp/language/constructor

Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0O0@0000000 0000000000 000000

Constructor example in a class

Good looking way of writing a constructor

class classname {
int a, b;
public:
const int& r;

classname (int i)
: r(a) // initializes X::r to refer to X::a
, a(i) // initializes X::a to the value of i
, b(i+5) // initializes X::b to the value of i+5
{ } // <= if you want your constructor to do
anything else, put it in there

12/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 0o 000®000000 0000000000 000000

Destructor

Destructor

m gets called when an object gets deleted/deconstructed (at
the end of a scope or when using delete)

m used, to clean up memory when an object is no longer
needed (delete)

13/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0O000e00000 0000000000 000000

Destructor example in a class

A way of writing a destructor

class classname {
int* value;
public:

~classname () {
delete value; // that’s how we clean up the value
where the int-pointer is pointing to, instead
of just deleting the int-pointer (avoiding
"memory leaks")

14/35



Self-Assessment -tors Exercise "Box” Vocabulary
000000 0o 00000e0000 0000000000 000000

Copy-Constructor

m gets called when initalizing a object with another object of
the same class/struct

m enables you to modify how exactly you want the compiler
to copy another object of the same class/struct (instead of
just a "shallow copy”)

m not to be confuse with operator=, which does a very
similar thing (more on that later)

15/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000008000 0000000000 000000

Shallow Copy

What the copy-constructor does. (We usually want deep copy)

16/35



-tors
0000000800

Assignment-operator (=)

Assignment-operator (=)

m gets called when assigning an object of the same
class/struct to an object

m gets called after initialization
m called "assignment operator”, just like with regular types (=)

m rule of thumb: activates destructor and then
copy-constructor

m has a return type (usually classname&) SO one can use
"chained assigments” (e.g. a = b = ¢ = 4, all of them will
be assigned d)

17/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000080 0000000000 000000

Difference between Assignment-operator=
and Copy-Constructor

// our class/struct is named "Box"

Box first;

// = initialization by default constructor
Box second(first);

// ~ initialization by copy constructor
Box third = first;

// = Also initialization by copy constructor
second = third;

// = assignment by copy assignment operator

18/35



Questions?

19/35



Self-Assessment -tors Exercise "Box” Vocabulary
000000 0o 0000000000 ©000000000 000000

Exercise "Box (copy)”

Task

m Go to [codelexpert and open the code example "Box
(copy)”
m Don’t worry about main.cpp yet, we’ll get to that

m Don’t worry about std: : cerr, it’s just fancy std: : cout
m Program Tracing!

20/35



Vocabulary

Intro Self-Assessment -tors Exercise "Box”
000000 e]e] 0000000000 0000000000 000000
b 3
Members of "Box”"
Box: :Box(const Box& other) {
ptr = new int(*other.ptr);
}
Box& Box::operator= (const Box& other) {
*ptr = *other.ptr;
return *this;
}

21/35

'with all std: : cerr removed



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 0o 0000000000 00®0000000 000000

Members of ”Box’’2

Box::~Box() {
delete ptr;
ptr = nullptr;

}

Box: :Box(int* v) {
ptr = v;
}

int& Box::value() {
return *ptr;

}

2with all std: : cerr removed
22/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000000000 000000

Tracing test_destructor1 ()

void test_destructori() {
std::cerr << "[enter] test_destructorl" << std::endl;

int a;
{
Box box(new int(1));
a = b5;
}
std::cout << "a = " << a << std::endl;

std::cerr << "[exit] test_destructorl" << std::endl;

23/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000@00000 000000

Tracing test_destructor2()

void test_destructor2() {
std::cerr << "[enter] test_destructor2" << std::endl;
{
Box* box_ptr = new Box(new int(2));
delete box_ptr;
}

std::cerr << "[exit] test_destructor2" << std::endl;

24/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000080000 000000

Tracing test_copy_constructor ()

void test_copy_constructor() {
std::cerr << "[enter] test_copy_constructor" <<

std: :endl;
{
Box demo(new int(0));
Box demo_copy = demo;
// assert(demo.value() == 0);
// assert(demo_copy.value() == 0);
demo.value() = 4;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 0);
demo_copy.value() = 5;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 5);
}
std::cerr << "[exit] test_copy_constructor" <<
std::endl;

25/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 000000e000 000000

Tracing test_copy_constructor ()

26/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000000e00 000000

Tracing test_assignment ()

void test_assignment() {
std::cerr << "[enter] test_assignment" << std::endl;

{
Box demo(new int(0));
demo.value() = 3;
Box demo_copy(new int(0));
demo_copy = demo;
// assert(demo.value() == 3);
// assert(demo_copy.value() == 3);
demo.value() = 4;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 3);
demo_copy.value() = 5;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 5);
}

std::cerr << "[exit] test_assignment" << std::endl;

}

27/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000000080 000000

Tracing test_assignment ()

28/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 000000000e 000000

Questions?

29/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000000000 @00000

Dangling Pointer

30/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000000000 0@0000

Double-Free

31/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000000000 [e]e] lele]e]

Use-after-Free

32/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000000000 000e00

Memory Leak

33/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary

D or nbt to [1?

0000000000 0000000000 0000e0

When to use []

Actually quite easy:

m use new[] if allocating more than one variable at a time
(simple values or object)

m use delete[] if deallocating more than one variable at a
time (arrays of values/object)

Check out the Summary 11 on how to actually use them in your
code

34/35



Intro Self-Assessment -tors Exercise "Box” Vocabulary
000000 e]e] 0000000000 0000000000 00000e

Questions?

35/35



	Introduction
	Self-Assessment
	-tors
	Exercise "Box"
	Vocabulary

