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Introduction

m We had very little exercises in the past few exercise
sessions. Today will be more exercise focused

m Be ready to answer a lot of tiny questions
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Comments on last [code] expert Exercises

m When giving ranges in PRE/POST-conditions, make sure
to be precise: ¢ in [0,127] 0r0 <= c < 128

m Use vec.at (i) instead of vec[i] whenever you can. ltis a
little slower, but much safer!

m Great job on last week’s exercises, especially the quicksort
and nonogram exercise!
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Questions or Comments re: Exercises?
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Learning Objectives Checklist

Now ...

[0 can trace code that uses new, delete, copy-constructors,
and destructors

O can implement simple data structures that act as values,
but are implemented internally by using dynamic memory

O know how to avoid common problems with dynamically
allocated memory (dangling pointers, double-free,
use-after-free)

O understand the difference between new/delete and
newl[]/deletel[]
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Self-Assessment IV

m log into the Moodle page and wait

m do the Self-Assessment (be aware of the 20 minute time
limit)

m the Master Solution will be available when you review your
solutions

m this has no impact on your final grade

m we'll discuss parts of it after you’re done
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Questions?
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Remember...

Don’t forget
To each new a delete.
Constructor, Copy-Constructor, Destructor

m Are just fancy functions that get called on specific
occasions

m Must be in the public section of your class/struct
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Constructor

Constructor
m gets called when an object of that class/struct gets
created/constructed

m can be used to pass construction arguments, so you can
initialize the object however you like

m you can define multiple constructors (e.g. for different
types) and the compiler will choose which one to use
classname object1(6.0f) Or classname object2(’A’)

m excellent resource on this:
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Constructor example in a class

Good looking way of writing a constructor

class classname {
int a, b;
public:
const int& r;

classname (int i)
: r(a) // initializes X::r to refer to X::a
, a(i) // initializes X::a to the value of i
, b(i+5) // initializes X::b to the value of i+5
{ } // <= if you want your constructor to do
anything else, put it in there
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Destructor

Destructor

m gets called when an object gets deleted/deconstructed (at
the end of a scope or when using delete)

m used, to clean up memory when an object is no longer
needed (delete)
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Destructor example in a class

A way of writing a destructor

class classname {
int* value;
public:

~classname () {
delete value; // that’s how we clean up the value
where the int-pointer is pointing to, instead
of just deleting the int-pointer (avoiding
"memory leaks")
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Copy-Constructor

m gets called when initalizing a object with another object of
the same class/struct

m enables you to modify how exactly you want the compiler
to copy another object of the same class/struct (instead of
just a "shallow copy”)

m not to be confuse with operator=, which does a very
similar thing (more on that later)
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Shallow Copy

What the copy-constructor does. (We usually want deep copy)
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Assignment-operator (=)

Assignment-operator (=)

m gets called when assigning an object of the same
class/struct to an object

m gets called after initialization
m called "assignment operator”, just like with regular types (=)

m rule of thumb: activates destructor and then
copy-constructor

m has a return type (usually classname&) SO one can use
"chained assigments” (e.g. a = b = ¢ = 4, all of them will
be assigned d)
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Difference between Assignment-operator=
and Copy-Constructor

// our class/struct is named "Box"

Box first;

// = initialization by default constructor
Box second(first);

// ~ initialization by copy constructor
Box third = first;

// = Also initialization by copy constructor
second = third;

// = assignment by copy assignment operator
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Exercise "Box (copy)”

Task

m Go to [codelexpert and open the code example "Box
(copy)”
m Don’t worry about main.cpp yet, we’ll get to that

m Don’t worry about std: : cerr, it’s just fancy std: : cout
m Program Tracing!
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b 3
Members of "Box”"
Box: :Box(const Box& other) {
ptr = new int(*other.ptr);
}
Box& Box::operator= (const Box& other) {
*ptr = *other.ptr;
return *this;
}
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Members of ”Box’’2

Box::~Box() {
delete ptr;
ptr = nullptr;

}

Box: :Box(int* v) {
ptr = v;
}

int& Box::value() {
return *ptr;

}

2with all std: : cerr removed
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Tracing test_destructor1 ()

void test_destructori() {
std::cerr << "[enter] test_destructorl" << std::endl;

int a;
{
Box box(new int(1));
a = b5;
}
std::cout << "a = " << a << std::endl;

std::cerr << "[exit] test_destructorl" << std::endl;
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Tracing test_destructor2()

void test_destructor2() {
std::cerr << "[enter] test_destructor2" << std::endl;
{
Box* box_ptr = new Box(new int(2));
delete box_ptr;
}

std::cerr << "[exit] test_destructor2" << std::endl;
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Tracing test_copy_constructor ()

void test_copy_constructor() {
std::cerr << "[enter] test_copy_constructor" <<

std: :endl;
{
Box demo(new int(0));
Box demo_copy = demo;
// assert(demo.value() == 0);
// assert(demo_copy.value() == 0);
demo.value() = 4;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 0);
demo_copy.value() = 5;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 5);
}
std::cerr << "[exit] test_copy_constructor" <<
std::endl;
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Tracing test_copy_constructor ()
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Tracing test_assignment ()

void test_assignment() {
std::cerr << "[enter] test_assignment" << std::endl;

{
Box demo(new int(0));
demo.value() = 3;
Box demo_copy(new int(0));
demo_copy = demo;
// assert(demo.value() == 3);
// assert(demo_copy.value() == 3);
demo.value() = 4;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 3);
demo_copy.value() = 5;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 5);
}

std::cerr << "[exit] test_assignment" << std::endl;

}
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Tracing test_assignment ()
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Questions?
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Dangling Pointer
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Double-Free
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Use-after-Free
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Memory Leak
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When to use []

Actually quite easy:

m use new[] if allocating more than one variable at a time
(simple values or object)

m use delete[] if deallocating more than one variable at a
time (arrays of values/object)

Check out the Summary 11 on how to actually use them in your
code
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Questions?
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