
Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Exercise Session
Week 13

Adel Gavranović
agavranovic@student.ethz.ch

1 / 35

agavranovic@student.ethz.ch


Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Overview

polybox for session material mail to TA

Today’s Topics

Introduction

Self-Assessment

-tors

Exercise ”Box”

Vocabulary

2 / 35

https://polybox.ethz.ch/index.php/s/ayv5lvs7eZ8PQO8
mailto:agavranovic@student.ethz.ch


Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Introduction

We had very little exercises in the past few exercise
sessions. Today will be more exercise focused
Be ready to answer a lot of tiny questions

3 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Comments on last [code]expert Exercises

When giving ranges in PRE/POST-conditions, make sure
to be precise: c in [0,127] or 0 <= c < 128

Use vec.at(i) instead of vec[i] whenever you can. It is a
little slower, but much safer!
Great job on last week’s exercises, especially the quicksort
and nonogram exercise!

4 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions or Comments re: Exercises?

5 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Learning Objectives Checklist

Now I...
� can trace code that uses new, delete, copy-constructors,

and destructors
� can implement simple data structures that act as values,

but are implemented internally by using dynamic memory
� know how to avoid common problems with dynamically

allocated memory (dangling pointers, double-free,
use-after-free)

� understand the difference between new/delete and
new[]/delete[]

6 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

7 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Self-Assessment IV

log into the Moodle page and wait
do the Self-Assessment (be aware of the 20 minute time
limit)
the Master Solution will be available when you review your
solutions
this has no impact on your final grade
we’ll discuss parts of it after you’re done

8 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

9 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Remember...

Don’t forget

To each new a delete.

Constructor, Copy-Constructor, Destructor

Are just fancy functions that get called on specific
occasions
Must be in the public section of your class/struct

10 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Constructor

Constructor

gets called when an object of that class/struct gets
created/constructed
can be used to pass construction arguments, so you can
initialize the object however you like
you can define multiple constructors (e.g. for different
types) and the compiler will choose which one to use
classname object1(6.0f) or classname object2(’A’)

excellent resource on this: cppreference link

11 / 35

https://en.cppreference.com/w/cpp/language/constructor


Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Constructor example in a class

Good looking way of writing a constructor

class classname {

int a, b;

public:

const int& r;

classname(int i)

: r(a) // initializes X::r to refer to X::a

, a(i) // initializes X::a to the value of i

, b(i+5) // initializes X::b to the value of i+5

{ } // <- if you want your constructor to do

anything else, put it in there

};

12 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Destructor

Destructor

gets called when an object gets deleted/deconstructed (at
the end of a scope or when using delete)
used, to clean up memory when an object is no longer
needed (delete)

13 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Destructor example in a class

A way of writing a destructor

class classname {

int* value;

public:

...

∼classname(){
delete value; // that’s how we clean up the value

where the int-pointer is pointing to, instead

of just deleting the int-pointer (avoiding

"memory leaks")

}

};

14 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Copy-constructor

Copy-Constructor

gets called when initalizing a object with another object of
the same class/struct
enables you to modify how exactly you want the compiler
to copy another object of the same class/struct (instead of
just a ”shallow copy”)
not to be confuse with operator=, which does a very
similar thing (more on that later)

15 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Shallow Copy

What the copy-constructor does. (We usually want deep copy)

16 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Assignment-operator (=)

Assignment-operator (=)

gets called when assigning an object of the same
class/struct to an object
gets called after initialization
called ”assignment operator”, just like with regular types (=)
rule of thumb: activates destructor and then
copy-constructor
has a return type (usually classname&) so one can use
”chained assigments” (e.g. a = b = c = d, all of them will
be assigned d)

17 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Difference between Assignment-operator=
and Copy-Constructor

// our class/struct is named "Box"

Box first;

// ^ initialization by default constructor

Box second(first);

// ^ initialization by copy constructor

Box third = first;

// ^ Also initialization by copy constructor

second = third;

// ^ assignment by copy assignment operator

18 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

19 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Exercise ”Box (copy)”

Task

Go to [code]expert and open the code example ”Box
(copy)”
Don’t worry about main.cpp yet, we’ll get to that
Don’t worry about std::cerr, it’s just fancy std::cout

Program Tracing!

20 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Members of ”Box”1

Box::Box(const Box& other) {

ptr = new int(*other.ptr);

}

Box& Box::operator= (const Box& other) {

*ptr = *other.ptr;

return *this;

}

1with all std::cerr removed
21 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Members of ”Box”2

Box::∼Box() {

delete ptr;

ptr = nullptr;

}

Box::Box(int* v) {

ptr = v;

}

int& Box::value() {

return *ptr;

}

2with all std::cerr removed
22 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test destructor1()

void test_destructor1() {

std::cerr << "[enter] test_destructor1" << std::endl;

int a;

{

Box box(new int(1));

a = 5;

}

std::cout << "a = " << a << std::endl;

std::cerr << "[exit] test_destructor1" << std::endl;

}

23 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test destructor2()

void test_destructor2() {

std::cerr << "[enter] test_destructor2" << std::endl;

{

Box* box_ptr = new Box(new int(2));

delete box_ptr;

}

std::cerr << "[exit] test_destructor2" << std::endl;

}

24 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test copy constructor()

void test_copy_constructor() {

std::cerr << "[enter] test_copy_constructor" <<

std::endl;

{

Box demo(new int(0));

Box demo_copy = demo;

// assert(demo.value() == 0);

// assert(demo_copy.value() == 0);

demo.value() = 4;

// assert(demo.value() == 4);

// assert(demo_copy.value() == 0);

demo_copy.value() = 5;

// assert(demo.value() == 4);

// assert(demo_copy.value() == 5);

}

std::cerr << "[exit] test_copy_constructor" <<

std::endl;

}

25 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test copy constructor()

26 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test assignment()

void test_assignment() {

std::cerr << "[enter] test_assignment" << std::endl;

{

Box demo(new int(0));

demo.value() = 3;

Box demo_copy(new int(0));

demo_copy = demo;

// assert(demo.value() == 3);

// assert(demo_copy.value() == 3);

demo.value() = 4;

// assert(demo.value() == 4);

// assert(demo_copy.value() == 3);

demo_copy.value() = 5;

// assert(demo.value() == 4);

// assert(demo_copy.value() == 5);

}

std::cerr << "[exit] test_assignment" << std::endl;

}

27 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test assignment()

28 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

29 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Dangling Pointer

30 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Double-Free

31 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Use-after-Free

32 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Memory Leak

33 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

[] or not to []?

When to use []

Actually quite easy:
use new[] if allocating more than one variable at a time
(simple values or object)
use delete[] if deallocating more than one variable at a
time (arrays of values/object)

Check out the Summary 11 on how to actually use them in your
code

34 / 35



Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

35 / 35


	Introduction
	Self-Assessment
	-tors
	Exercise "Box"
	Vocabulary

