
Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Exercise Session

Week 13

Adel Gavranović

agavranovic@student.ethz.ch

1 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Overview

polybox for session material mail to TA

Today’s Topics

Introduction

Self-Assessment

-tors

Exercise ”Box”

Vocabulary

2 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Introduction

We had very little exercises in the past few exercise
sessions. Today will be more exercise focused

Be ready to answer a lot of tiny questions

3 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Comments on last [code]expert Exercises

When giving ranges in PRE/POST-conditions, make sure

to be precise: c in [0,127] or 0 <= c < 128

Use vec.at(i) instead of vec[i] whenever you can. It is a

little slower, but much safer!

Great job on last week’s exercises, especially the quicksort

and nonogram exercise!

4 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions or Comments re: Exercises?

5 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Learning Objectives Checklist

Now I...

⇤ can trace code that uses new, delete, copy-constructors,

and destructors

⇤ can implement simple data structures that act as values,

but are implemented internally by using dynamic memory

⇤ know how to avoid common problems with dynamically

allocated memory (dangling pointers, double-free,

use-after-free)

⇤ understand the difference between new/delete and

new[]/delete[]

6 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

7 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Self-Assessment IV

log into the Moodle page and wait

do the Self-Assessment (be aware of the 20 minute time

limit)

the Master Solution will be available when you review your

solutions

this has no impact on your final grade

we’ll discuss parts of it after you’re done

8 / 35

-

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Self-Assessment IV

log into the Moodle page and wait

do the Self-Assessment (be aware of the 20 minute time

limit)

the Master Solution will be available when you review your

solutions

this has no impact on your final grade

we’ll discuss parts of it after you’re done

8 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Self-Assessment IV

log into the Moodle page and wait

do the Self-Assessment (be aware of the 20 minute time

limit)

the Master Solution will be available when you review your

solutions

this has no impact on your final grade

we’ll discuss parts of it after you’re done

8 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Self-Assessment IV

log into the Moodle page and wait

do the Self-Assessment (be aware of the 20 minute time

limit)

the Master Solution will be available when you review your

solutions

this has no impact on your final grade

we’ll discuss parts of it after you’re done

8 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Self-Assessment IV

log into the Moodle page and wait

do the Self-Assessment (be aware of the 20 minute time

limit)

the Master Solution will be available when you review your

solutions

this has no impact on your final grade

we’ll discuss parts of it after you’re done

8 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

9 / 35

•④
a

C C
-

b

(=: - 3
- ⑦

,

*

r
' "} c

✓ begin (begin
end

d

far:iIa.

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

9 / 35

Q3
all

intiiii ii.t.i.iiait.in; raine assigned,
K

c-

[IT .

C c-

3 -4 - 3 4 10 O O

5

* ALI] is de ref 'd
.

9 nope .at (I← thing

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

9 / 35

←must
be

> ③
Ptr

* * (MyclassD.Memberfirst- node 0

first-node !=nuHptr

¥#qp÷¥t¥• . . .P

pointers /
list

-
node

l nulpptr
int key

"value
"

list-no# next

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Remember...

Don’t forget

To each new a delete.

Constructor, Copy-Constructor, Destructor

Are just fancy functions that get called on specific

occasions

Must be in the public section of your class/struct

10 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Constructor

Constructor

gets called when

an object of that class/struct gets

created/constructed

can be used to pass construction arguments, so you can

initialize the object however you like

you can define multiple constructors (e.g. for different

types) and the compiler will choose which one to use

classname object1(6.0f) or classname object2(’A’)

excellent resource on this: cppreference link

11 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Constructor

Constructor

gets called when an object of that class/struct gets

created/constructed

can be used to pass construction arguments, so you can

initialize the object however you like

you can define multiple constructors (e.g. for different

types) and the compiler will choose which one to use

classname object1(6.0f) or classname object2(’A’)

excellent resource on this: cppreference link

11 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Constructor

Constructor

gets called when an object of that class/struct gets

created/constructed

can be used to pass construction arguments, so you can

initialize the object however you like

you can define multiple constructors (e.g. for different

types) and the compiler will choose which one to use

classname object1(6.0f) or classname object2(’A’)

excellent resource on this: cppreference link

11 / 35

snauea
1

"

object
"

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Constructor

Constructor

gets called when an object of that class/struct gets

created/constructed

can be used to pass construction arguments, so you can

initialize the object however you like

you can define multiple constructors (e.g. for different

types) and the compiler will choose which one to use

classname object1(6.0f) or classname object2(’A’)

excellent resource on this: cppreference link

11 / 35

- -

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Constructor

Constructor

gets called when an object of that class/struct gets

created/constructed

can be used to pass construction arguments, so you can

initialize the object however you like

you can define multiple constructors (e.g. for different

types) and the compiler will choose which one to use

classname object1(6.0f) or classname object2(’A’)

excellent resource on this: cppreference link

11 / 35

•

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Constructor example in a class

Good looking way of writing a constructor

class classname {
int a, b;

public:
const int& r;

classname(int i)
: r(a) // initializes X::r to refer to X::a
, a(i) // initializes X::a to the value of i
, b(i+5) // initializes X::b to the value of i+5

{ } // <- if you want your constructor to do
anything else, put it in there

};

12 / 35

mainIIT

class a (s);
9=5

T S = it 5 - 5-15=10

y
i

q

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Destructor

Destructor

gets called when

an object gets deleted/deconstructed (at

the end of a scope or when using delete)

used, to clean up memory when an object is no longer

needed (delete)

13 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Destructor

Destructor

gets called when an object gets deleted/deconstructed (at

the end of a scope or when using delete)

used, to clean up memory when an object is no longer

needed (delete)

13 / 35

- -

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Destructor

Destructor

gets called when an object gets deleted/deconstructed (at

the end of a scope or when using delete)

used, to clean up memory when an object is no longer

needed (delete)

13 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Destructor example in a class

A way of writing a destructor

class classname {
int* value;

public:

...

⇠classname(){
delete value; // that’s how we clean up the value

where the int-pointer is pointing to, instead
of just deleting the int-pointer (avoiding
"memory leaks")

}
};

14 / 35

f
' 'tilde

"

-

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Copy-constructor

Copy-Constructor

gets called when

initalizing a object with another object of

the same class/struct

enables you to modify how exactly you want the compiler

to copy another object of the same class/struct (instead of

just a ”shallow copy”)

not to be confuse with operator=, which does a very

similar thing (more on that later)

15 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Copy-constructor

Copy-Constructor

gets called when initalizing a object with another object of

the same class/struct

enables you to modify how exactly you want the compiler

to copy another object of the same class/struct (instead of

just a ”shallow copy”)

not to be confuse with operator=, which does a very

similar thing (more on that later)

15 / 35

wainllf
classname a (s) ;

classnaiiea) ; d

l P'

-

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Copy-constructor

Copy-Constructor

gets called when initalizing a object with another object of

the same class/struct

enables you to modify how exactly you want the compiler

to copy another object of the same class/struct (instead of

just a ”shallow copy”)

not to be confuse with operator=, which does a very

similar thing (more on that later)

15 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Copy-constructor

Copy-Constructor

gets called when initalizing a object with another object of

the same class/struct

enables you to modify how exactly you want the compiler

to copy another object of the same class/struct (instead of

just a ”shallow copy”)

not to be confuse with operator=, which does a very

similar thing (more on that later)

15 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Shallow Copy

What the copy-constructor does. (We usually want deep copy)

16 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Assignment-operator (=)

Assignment-operator (=)

gets called when

assigning an object of the same

class/struct to an object

gets called after initialization

called ”assignment operator”, just like with regular types (=)

rule of thumb: activates destructor and then

copy-constructor

has a return type (usually classname&) so one can use

”chained assigments” (e.g. a = b = c = d, all of them will

be assigned d)

17 / 35

operator =

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Assignment-operator (=)

Assignment-operator (=)

gets called when assigning an object of the same

class/struct to an object

gets called after initialization

called ”assignment operator”, just like with regular types (=)

rule of thumb: activates destructor and then

copy-constructor

has a return type (usually classname&) so one can use

”chained assigments” (e.g. a = b = c = d, all of them will

be assigned d)

17 / 35

STIs,
a=s;

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Assignment-operator (=)

Assignment-operator (=)

gets called when assigning an object of the same

class/struct to an object

gets called after initialization

called ”assignment operator”, just like with regular types (=)

rule of thumb: activates destructor and then

copy-constructor

has a return type (usually classname&) so one can use

”chained assigments” (e.g. a = b = c = d, all of them will

be assigned d)

17 / 35

(on init. stuff)

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Assignment-operator (=)

Assignment-operator (=)

gets called when assigning an object of the same

class/struct to an object

gets called after initialization

called ”assignment operator”, just like with regular types (=)

rule of thumb: activates destructor and then

copy-constructor

has a return type (usually classname&) so one can use

”chained assigments” (e.g. a = b = c = d, all of them will

be assigned d)

17 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Assignment-operator (=)

Assignment-operator (=)

gets called when assigning an object of the same

class/struct to an object

gets called after initialization

called ”assignment operator”, just like with regular types (=)

rule of thumb: activates destructor and then

copy-constructor

has a return type (usually classname&) so one can use

”chained assigments” (e.g. a = b = c = d, all of them will

be assigned d)

17 / 35

→

-

②

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Assignment-operator (=)

Assignment-operator (=)

gets called when assigning an object of the same

class/struct to an object

gets called after initialization

called ”assignment operator”, just like with regular types (=)

rule of thumb: activates destructor and then

copy-constructor

has a return type (usually classname&)

so one can use

”chained assigments” (e.g. a = b = c = d, all of them will

be assigned d)

17 / 35

•
0

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Assignment-operator (=)

Assignment-operator (=)

gets called when assigning an object of the same

class/struct to an object

gets called after initialization

called ”assignment operator”, just like with regular types (=)

rule of thumb: activates destructor and then

copy-constructor

has a return type (usually classname&) so one can use

”chained assigments” (e.g. a = b = c = d, all of them will

be assigned d)

17 / 35

-⇐
Id&

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Difference between Assignment-operator=

and Copy-Constructor

// our class/struct is named "Box"

Box first;
// ^ initialization by default constructor

Box second(first);
// ^ initialization by copy constructor

Box third = first;
// ^ Also initialization by copy constructor

second = third;
// ^ assignment by copy assignment operator

18 / 35

=

(I no argue
ts

-
-

•

-

(cut init .)

I

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

19 / 35

0
Box (copy)

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Exercise ”Box (copy)”

Task

Go to [code]expert and open the code example ”Box

(copy)”

Don’t worry about main.cpp yet, we’ll get to that

Don’t worry about std::cerr, it’s just fancy std::cout

Program Tracing!

20 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Exercise ”Box (copy)”

Task

Go to [code]expert and open the code example ”Box

(copy)”

Don’t worry about main.cpp yet, we’ll get to that

Don’t worry about std::cerr, it’s just fancy std::cout

Program Tracing!

20 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Exercise ”Box (copy)”

Task

Go to [code]expert and open the code example ”Box

(copy)”

Don’t worry about main.cpp yet, we’ll get to that

Don’t worry about std::cerr, it’s just fancy std::cout

Program Tracing!

20 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Exercise ”Box (copy)”

Task

Go to [code]expert and open the code example ”Box

(copy)”

Don’t worry about main.cpp yet, we’ll get to that

Don’t worry about std::cerr, it’s just fancy std::cout

Program Tracing!

20 / 35

-

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Members of ”Box”1

Box::Box(const Box& other) {
ptr = new int(*other.ptr);

}

Box& Box::operator= (const Box& other) {
*ptr = *other.ptr;
return *this;

}

1
with all std::cerr removed

21 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Members of ”Box”2

Box::⇠Box() {
delete ptr;
ptr = nullptr;

}

Box::Box(int* v) {
ptr = v;

}

int& Box::value() {
return *ptr;

}

2
with all std::cerr removed

22 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test destructor1()

void test_destructor1() {
std::cerr << "[enter] test_destructor1" << std::endl;
int a;
{

Box box(new int(1));
a = 5;

}
std::cout << "a = " << a << std::endl;
std::cerr << "[exit] test_destructor1" << std::endl;

}

23 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test destructor2()

void test_destructor2() {
std::cerr << "[enter] test_destructor2" << std::endl;
{

Box* box_ptr = new Box(new int(2));
delete box_ptr;

}
std::cerr << "[exit] test_destructor2" << std::endl;

}

24 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test copy constructor()

void test_copy_constructor() {
std::cerr << "[enter] test_copy_constructor" <<

std::endl;
{

Box demo(new int(0));
Box demo_copy = demo;
// assert(demo.value() == 0);
// assert(demo_copy.value() == 0);
demo.value() = 4;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 0);
demo_copy.value() = 5;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 5);

}
std::cerr << "[exit] test_copy_constructor" <<

std::endl;
}

25 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test copy constructor()

26 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test assignment()

void test_assignment() {
std::cerr << "[enter] test_assignment" << std::endl;
{

Box demo(new int(0));
demo.value() = 3;
Box demo_copy(new int(0));
demo_copy = demo;
// assert(demo.value() == 3);
// assert(demo_copy.value() == 3);
demo.value() = 4;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 3);
demo_copy.value() = 5;
// assert(demo.value() == 4);
// assert(demo_copy.value() == 5);

}
std::cerr << "[exit] test_assignment" << std::endl;

}
27 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Tracing test assignment()

28 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

29 / 35

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Dangling Pointer

30 / 35

i
/

(conceptually) deleted obj '

ydeleted obj .

repo s object madea:

dangling > deleted obj . '8%47151:D
pointer " slots' for

better visual -

object ization)

:

dangling pointer occur, when
'

the

memory address that the pointer
is pointing to got freed (with delete)
but the pointer wasn't deleted

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Double-Free

31 / 35

Ox 125ft

int# c = new int (5) i→
c-

175

in:*: :: :÷÷÷÷:÷÷÷"
delete c ; 11 ERROR ! Address was already

freed (by the line before).
Can't ''

free it again
"
.

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Use-after-Free

32 / 35

(very closely linked to dangling pointers !)

Ox 125ft

int# c = new int (5) i→
c#

: i

int * a = c ; -a
delete

di" day:::c ee:
"

!
H c is now a dangling pointer

Std : '- cont cc * c ca stai : endl; 11 will usually run,

but god knows
what's in that

① no: T.io?s?sIc:eiesssenToiconia
be 7-C ' 'elf

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Memory Leak

33 / 35

> 5

f Ox F-782A

int * p = new int (s) ;

} ← here
, our pointer will be deleted

(like

any
"

normally
" (not dynamically) allocated

value (object), because the scope ended .

wait
. . .

how can we now free the

memory we allocated for our int ?

well shit
, we can

't ! we lost the

address (our int x-p which contained

the address of where our int -value

was stored
.
) That's a memory

leak!

We allocated memory but can
't free it again

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

[] or not to []?

When to use []

Actually quite easy:

use new[] if allocating more than one variable at a time

(simple values or object)

use delete[] if deallocating more than one variable at a

time (arrays of values/object)

Check out the Summary 11 on how to actually use them in your

code

34 / 35

% newEI or new

'⇒

Intro Self-Assessment -tors Exercise ”Box” Vocabulary

Questions?

35 / 35

https://de.wikipedia.org/wiki/Hängender_Zeiger
https://en.wikipedia.org/wiki/Dangling_pointer

- H TODO :

I read the (short Wikipedia article

on
"

dangling pointers
" (DE ZEN)

↳ Don't worry
about

"

heap
"

and " stack " yet , those are

just regions in our memory
(band)

.

I after delete - ing a pointer,
it's good practice to set it
to p = nnllptr .

(just to be safe
)

D seriously, try the
"

Box (copyl
"

code example

I check out the SEGFAULT .Pdf
on the polybox . (pretty tricky!)

