Intro Recursion EBNF Structs
0000000 00000 0000000000 000

Exercise Session
Week 09

Adel Gavranovi¢
agavranovic@student.ethz.ch

1/26

Intro Recursion EBNF Structs
9000000 00000 0000000000 000

Overview

Today’s Topics

Introduction
Recursion
(Extended-)Backus-Naur-Form

Structs

2/26

Intro Recursion EBNF Structs
0000000 00000 0000000000 000

Follow-up

m Don’t worry about that one "recursion sequence” exercise.
It was hard, but we TAs found it was a universal experience
and that basically no group was able to solve it, especially
not in that little time. It’s still a good practice example.

3/26

Intro Recursion EBNF Structs
0080000 00000 0000000000 000

Comments on last [code] expert Exercises

m the "semantically invalid or invalid during runtime” exercise
was rather difficult. | know it’s very hard to tell apart one
kind of mistake from another. | recommend just learning
the "types of mistakes” by heart and after a while you will
be able to differentiate the two (after you've practiced more
and encountered more mistakes)

m |f you feel like you have trouble solving most exercises
every week, | highly recommend going to the Study Center.
There you can ask questions much more frequently and
directly (than via mail)

m I’'m sorry if your code suddenly changes its grading.
Sometimes | find mistakes later because | forgot to check
the first time

4/26

Intro Recursion EBNF Structs
0008000 00000 0000000000 000

Comments on last [code] expert Exercises

Pa‘n-lc (censt s'ld::wd-vdv)

m const: use it whenever a function is only supposed to read
something. Common functions that do this:
print(const...), count(const...), get(const...)

m Segmentation faults: usually means, that you tried to “‘q3
access something outside of a vector’s bounds.
(v.lenght () == 7,dannv[7]) T\ A N\ \ 1\ _1

m Sometimes, a super-long written feedback is not the
optimal way of helping you, which is why | sometimes tell
you to email me specific questions (no matter how silly the
question might be) or visit the Study Center

5/26

Intro Recursion EBNF Structs
0000000 00000 0000000000 000

Comments on last [code] expert Exercises

m the feedback on your first bonus exercise was a bit
meager. That’s because | need more input from you. What
did you think was hindering you from achieving 100%? In
general, leave comments with questions at the very top of
your code and share your thoughts. You can also always
write me a mail or go to the Study Center

m Global Variables: are variables, that are not in a function
and can be accessed by all functions. Don’t use them, but
rather learn how to implement references properly

6/26

Intro Recursion EBNF Structs
0000000 00000 0000000000 000

Questions or Comments re: Exercises?

7/26

Intro Recursion EBNF Structs
000000e 00000 0000000000 000

Learning Objectives Checklist

Now ...

O can check whether a character sequence matches given
EBNF rules

O can write EBNF rules that accept only a given set of input
character sequences

0 can define and use C++ structs
O can define functions that manipulate C++ structs

8/26

Intro Recursion EBNF Structs
0000000 @0000 0000000000 000

Call Graphs

Are a way to visualize function calls "t)"

9/26

Intro Recursion EBNF Structs
0000000 00000 0000000000 000

Call Graph for power(x, 7) y¥_ % .«

// PRE: base x, power n
// POST: n’th power of x
unsigned int power(const int x, const unsigned int n){
if(n == 0){
return 1; QU“) ~
}else if(n == 1){ o
<

return Xx; 5
} ; ((1\)

}

e A) ow (X Q.)
return x*power(x, n-1); Q(? T /
std::cout << power(x, 7) << std::endl; ?M(x)q—)
// How will the "Call Graph" look like for this

function?
// How many times will power() be called in total?

10/26

Intro Recursion EBNF Structs
0000000 00@00 0000000000 000

You’ve got the power (x,n)__ 42‘“?: fow(X, .‘L_::

—o redem -\—Wf -\-unf
Task fhum {ow (ey3 |- 0o
m Come up with a better (fewer function calls)

|mplementat|on of the power () -function with pen and paper
Hint: x” = x2 - x2

m Implement it in [code]expert in groups (Breakout Rooms)

m Share your results and analyze the number of function
calls your solution does

11/26

Intro Recursion EBNF Structs
0000000 000e0 0000000000 ?LKS 000
Master Solution for Power Function))”
O(X

// POST: result == x"n
unsigned int power (const int x, const unagnedé n){
P2

if (n == 0) { Pow (x

.)
S N 7 “i&z(

return X;

} else if (n % 2 == 0) { Z (ow (chj\
i)

int temp = power(x, n/2
return temp*temp;

} else { l @
ow
return x*power(x, n-1); c >(l

3 NS

This function will call itself at most 2logo(n+ 1) — 1 times, i.e.
only logarithmically many function calls compared to linearly
many with the other implementation.

12/26

Intro Recursion EBNF Structs
0000000 [e]e]e]e]] 0000000000 000

Questions?

13/26

Intro Recursion EBNF Structs
0000000 00000 9000000000 000

The Concept of (E)BNF

m is a way to go through an input (e.g. std: :cin, or a file)
and analyze if it is valid according to our given (E)BNF

m works recursively

m the E in EBNF stands for extended. EBNFs offer a few
additional (shorter/better) ways of describing what a valid
input is

m a lot of exercises will be of the form ”is xoo-xooxoo valid
according to the given EBNF?”

m think of them as rules for allowed words
(but these "words” look weird af)

m good videos on that topic:

(small mistake in EBNF | @6:00: in digit all the numbers should be seperated by |s

14/26

Intro

0000000 00000 0®00000000 000

Recursion EBNF Structs

BNF Example ”Aa_”

We want to define a BNF that encompasses the following rules:

Rules

Alphabet = {’A’, ’a’,@
'A’ can only appear diréctly after an underscore or as the very
first symbol. And u% cannot occur in pairs and cannot
be placed as the very the very last symbol.

For example, the following sequence is valid: "Aaaaa_aa”, but
not "AaaAa’. Our task is now to come up with a BNF
expressing such (valid/allowed) sequences

15/26

Intro Recursion EBNF
0000000 00000 0080000000

BNF Example "Aa_”

o
2 on\c‘\"s -—
BNF /
[Wes = Seq =[(term) | term ’_’ seq
__ term = 'A’ () ’A’ |ITowerterm| | lowerterm

lowerterm = (’a’ a,; lowerterm .
L.. (; (? d 0 or aoo-

When checking if a word is valid, try to deconstruct it bit by bit
with the given BNF. This BNF has 3 rules: the first and last one
have two alternatives, the second one has three. This BNF has
3 non-terminal symbols (seq, term, lowerterm) and 3 terminal
symbols (A’, ’a’, ')

Structs
000

16/26

Intro Recursion EBNF Structs
0000000 00000 0008000000 000

Questions?

17/26

Intro Recmswom EBNF Structs
"""""" 0000800000 000

EBNFr-———- Cod&
iﬂ‘“«‘\) (w2 tecrsion)

Task
Rewrite the BNF from the previous slides into an{EBNF with the
follwing additional syntax:
m @200} at the location of this syntax, the content between
the brackets can be repeatet n € {Ng} times G,1,2 --
m([...]: at the location of this syntax, the content between
the brackets can be repeatet m € {0, 1} times

EBNF o Lok nnigue)

seq =(term [’_’"seq

term A {Pak | a’ LPa’h (q\lvwa\ﬁv{’ L‘A‘}{‘&‘ﬂ
Net rea(lj haed, aci\mc(ly,m

-lan " s
berourR umpd s 18“;*2:

Intro

0000000 00000 00000@0000

Recursion EBNF

Task

seq = term [’_’ seq]
term A {’a’} | ’a’ {’a’}

Which of the following concatenations are valid segs in the
sense of the EBNF above?

X " -
1.4/ 2 a7 3. v, cux.— # Ave

4. haa’/ (5 a3ak) 6. AAY

mas ><J

(valid: 1, 2, 4, 6, 7)

Structs

19/26

Intro Recursion EBNF Structs
0000000 00000 0000008000 [e]e]e}

Exercise ”Valid Words” Helper Functions

// PRE: valid input stream input
// POST: returns true if further input is available
// otherwise false

bool input_available (SEANFEEEEEE(E)EHpUD) ;

// PRE: valid input stream input

// POST: the next character at the stream is returned
(but not consumed)

// if no input is available, O is returned

char peck (SEAEESHESAY GHPE) ;
‘ ‘,(‘S’

£defliny
7

20/26

Intro Recursion EBNF Structs
0000000 00000 0000000800 [e]e]e}

Exercise ”Valid Words” Helper Functions

// POST: leading whitespace characters are extracted

// from input, and the first non-whitespace
character is returned (but not consumed)
// if an error or end of stream occurs, O is returned

char lookahead(std::istream& input);

// PRE: Valid input stream input, expected > O

// POST: If ch matches the next lookahead then it is
consumed and true is returned

// otherwise no character is consumed and false is
returned

bojgonsume _& -, char expected) ; ' ,
L] Grorcise_Session
coaswme(is yE) t

21/26

Intro Recursion EBNF Structs
0000000 00000 0000000080 000

Let’s Code Together!

m Help me code a solution to this
m Ask, whenever something is unclear or weird to you

m Feel free to answer the questions of your fellow students, if
you think you know the answer

22/26

Intro Recursion EBNF Structs
0000000 00000 000000000e 000

Questions?

23/26

Intro Recursion EBNF Structs
0000000 00000 0000000000 @00

Structs
/N

Shrwek s oo
(143
Char
vector
(m/**\ . —

Structs are bundles of stuff '~}

m this stuff can be types, functions and more ("members”)
m the types don’t have to be the same

m structs are our way of creating new “things”, like our own
type of number (complex numbers), mathematical
structures (lines, squares, circles) or things (person data)

24/26

Intro Recursion EBNF Structs
0000000 00000 0000000000 oeo

Structure of strucs
Ade) O .Clowe Tzck

A A A

—

struct Person { 1?
unsigned int age; g;;i

bool alive;

std: :vector<int>N,ucklyNumbers;
18 >
int main () {

(Person| Adel = {23, true, {6,7,9}}; "haw nstaea of ?f('Sw
Person Adel_ clone = Adel; // all elements are copied
—>Person Jack = {21, true, {1,2,6}};
std::cout << "Adel’s " << Adel. age << " years old\n";

M (mMalu_ in handout)

25/26

Intro Recursion EBNF Structs
0000000 00000 0000000000 ooe

Exercise ”Geometry Exercise”

Task
m open the exercise "Geometry Exercise” in [code]expert
m how would you write the function sum?
m how would you write the struct 1ine?

m how would you write the function shift 1ine?
m try to implement them

26/26

Intro Recursion EBNF Structs
0000000 00000 0000000000 oooe

Questions?

q
2B/26

