Intro lterators 1lvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 000 000000000 00 000000 000000

Exercise Session
Week 12

Adel Gavranovic¢
agavranovic@student.ethz.ch

Misc
oo

1/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
©000000000 folele} 000000000 0o 000000 000000 fole}

Overview
Today’s Topics
Introduction
lterators
llvec::init
Missing Knowledge
Pointers

Dynamic Data Types

Misc

2/39

Intro Iterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0@00000000 000 000000000 00 000000 000000 oo

Introduction

m Make sure you have the right handout
(Handout12_reupload.pdf). The first Handout has missing
slides

m All of the current tasks are running the newest version of
the autograder, so if you find any bugs (or typos) send us
an email!

m Same goes for the the current Bonus Exercise
m For current Bonus Exercise: max size of board will be set

to 16 by 16 (even in the hidden test), so the efficiency of
your solution is irrelevant

m |f you have any questions you can send me an e-mail at
any time and any day. Depending on the problem/question
it might take a while to give a good answer (this will still
apply even during the Lernphase, so make good use of it)

3/39

Intro Iterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types
00®0000000 000 000000000 00 000000 000000

Follow-up

Fhis—> ...

e

m Try the "Push Back” code example again, if you manage
that one, everything else will seem much easier

Misc
oo

4/39

Intro Iterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types
000@000000 000 000000000 00 000000 000000

Comments on last [code] expert Exercises

m Don’t forget to &-reference and const your function
parameters properly

m What are invariants?
m read_input-function in "Task 2a: Complex Numbers”

D

Misc
oo

5/39

Intro Iterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000®00000 000 000000000 00 000000 000000 oo

Invariants

Invariants

An invariant is a logical assertion that is always held to be true
during a certain phase of execution.

For example, a loop invariant is a condition that is true at the
beginning and the end of every execution of a loop.

Invariants are allowed to vary, but only during a process and
then must be true again at the end of the process. This can be

very useful for proofs.
— \

—= // INV: >= 0 and/ﬁzisible by 57

6/39

Intro Iterators 1lvec::init Missing Knowledge Pointers Dynamic Data Types Misc
00000e0000 000 000000000 00 000000 000000 oo

Task 2a: "Complex Numbers”: read input ()

// (Slightly altered) STUDENT SOLUTION

bool jgead_input(std::istream &in, Complex &a){
ool valid = true;
char bracketl, comma, bracket2;

—> in >5'§racket1‘> > qpﬁﬁa >> a.imaginary

>> braclfet2;

if (bracket1 != *€)]
5 tvalid = Talse:}

/’;gf(comma 1= 7)4
valid = false;} > ’3 b
if (bracket2 != '1°){ =7)
valid = false;}

return valid;

m—

N\
Crgfit: L.Z.
7/39

Intro Iterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000008000 000 000000000 00 000000 000000 [e]e]
Task 2a: "Complex Numbers”: read input ()
// (Strongly altered) STUDENT SOLUTION
bool read_input(std::istream &in, Complex &a){
char bracketl, comma, bracket2;
sSamge

in >> bracketl >> a.real >> comma >> a.imaginary
>> bracket?2;

bracket2=t= ’]’ &&){)

return true,@——"
} else {

return false; &

}

8/39

Intro Iterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types

Misc
0000000800 000 000000000 00

000000 000000 (e]e]

Task 2a: "Complex Numbers”: read input ()

| e .
/ MASTER SOLUTION

bo ::istream &in, Complex &a){
unsigned char c;
if('@n>>c) Il c =0 A, sa L
|| '(in >> a.real) W Var C
[| '(in >> ¢) || ¢ '= 7,?
. frwn
1 0Gm 5 @) 1. e
Il 1¢n > ¢) [l ¢ t= 1"){ 20
return false;} o
elseq{
return true;
} Lm>>c)
} —
v

9/39

Intro Iterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000080 000 000000000 00 000000 000000 oo

Questions or Comments re: Exercises?

10/39

Intro Iterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
000000000e 000 000000000 00 000000 00 ——a)

Learning Objectives Checklist

Now I...
O can use lterators for different kinds of containers
O can implement a simple container (&—

11/39

Intro Iterators 1lvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 ®00 000000000 00 000000 000000 oo

lterators

MLl

|

rs are a handy way of going through (= iterating over)
: :set) std: :vector, or any other kind of container

m They work very similarly to pointers, so you can use code
like ++it to "move them forward” and *it to access the
underlying data

m It helps to think of them as fancy pointers

12/39

Intro lterators 1lvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 fo] Yo} 000000000 00 000000 000000 oo

Iterators in Code (std: :vector)
\od L vechor? ryvetyve)
eonb.ad

P —— Y
std: :vector<int) cont = {8,3,1,%,6,9};

for (std::vector<int>::iterator it = (cont.begin(J3
. RECTTON (3)
_3it !'= cont.end(); €mm—

++it) {

std::cout << *it << " ";

13/39

lterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc

Intro
000000 000000 fele}

0000000000 ooce 000000000 (o]e}

Iterators in Code (std: :set)

std::set<int> cont = {8,3,1,4,6,9};
—_—

for (std:: ®erbr<int>::iterator it = cont.begin();
it != cont.end(); .

++it) {

std::cout << *it <<

14/39

1lvec::init
®00000000

Exercise ”’11vec::init”
Description

The files vector_linkedlist.h and vector_linkedlist.cpp
contain a simplified version of the llvec-vector from the lecture
slides. Implement the constructor that initializes the vector with
all elements from the iterator.

Hints:
How can you add the first element from the iterator?
How can you add any other element from the iterator?

Personal Hint

Don’t "waste” too much time trying to figure out how exactly the
other member functions have been implemented. Just read the
PRE/POSTs and comments and don’t get confused trying to
decipher the actual implementations.

15/39

Intro lterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 0e0000000 00 000000 000000 [e]e]

Exercise ’11vec::init”

9

Simpler Description

Implement the constructor 11vec :llvec(begi@
e

This constructor initializes a new 11vec and inserts the values
that are in a different 11vec between begin and end.

16/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamlc Data Types Misc

0000000000 [e]o]e} O0@000000 (o]e} 000000 (e]e]

Inside the 11vec-class: Basics
{1,4,\. 3

[ECCAN
struct llnode { vale uexk

[ﬁfmliiuiéxt; \W L | Uledal

- \%/ =

. L‘)Q. l'\()

17/39

Intro lterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000800000 00 000000 000000 [e]e]

Inside the 11vec-class: const_iterator class

class const_iterator {

const llnode* node; 7(("““)’?‘) ‘,_J—-(‘)
__spublic— 1 }

—sconst_iterator(const llnode* const n);
// PRE: Iterator does not point to the element
beyond the last one.)
// POST: Iterator points to the next element. *"hk}
const_ iterator& operator++() // Pre-increment
POST: Retu’n the reference to the number at
which the iterator is currently pointing.
const int& operator*() const;
rue 1I 1terators are pointing to different
elements.
bool operator!=(const const_iterator& other) const;
// True if iterators are pointing to the same
element.
bool operator==(const const_iterator& other) const;

18/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 000 0000e0000 00 000000 000000

Inside the 11vec-class: Member Functions

// Default Constructor
1lvec();

// PRE: begin and end are iterators pointing to the
same vector and begin is before end.

// POST: The constructed llvec contains all elements
between begin and end.

llvec(const_iterator begin, const_iterator end);

/<7/ POST: e is prepended to the vector.

void push_front(int e);

// POST: Returns an iterator that points to the first
element.

— const_iteratof beéin(} xonst;

// POST: Returns an iterator that points after the
last element.

const_iterator end() const;

Misc
[e]e]

19/39

Intro lterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 00000e000 00 000000 000000 [e]e]

Visualization of 11vec

* ({node”

_L- @/@ nnll pre

/ (ser

20/39

Intro lterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000800 00 000000 000000 [e]e]

Conceptual Solution for ’11vec: :init”

21/39

Intro lterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000080 00 000000 000000 [e]e]

”1lvec: :init” Solution

llvec::1lvec(llvec: :const_iterator begin,
llvec::const_iterator end) {
this->head = nullptr;
if (begin == end) {
return;

}

llvec::const_iterator it = begin;
// Let’s add the first element from the iterator.
this->head = new llnode{*it, nullptr};
++it;
llnode* current_node = this->head;
// Let’s add all the remaining elements.
while(it !'= end){
current_node->next = new llnode{*it, nullptr};
current_node = current_node->next;
++it;

22/39

Intro lterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 00000000e 00 000000 000000 [e]e]

Exercise ’11vec::init”

Task

Do this exercise on your own this evening and try to visualize
your solution

23/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 [Je] 000000 000000 [e]e]

Introduction

You’re not expected to master recursion, pointers and
datastructures (yet), so don’t panic!

You will understand stuff better the more you (try to) use it.’

'I know this sounds paradoxical, but there really is no better teacher than

good ol’ Mr. Practice
24/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 oe 000000 000000 [e]e]

Survey Results

Which of these topics (keywords) would you like to revisit in the next exercise session?
(Select all that you would like to revisit)

8 Antworten

neyger ANuimeuc dnu s
limitations

Control Flow (for(), while(),
break, re...

Functions (Definitions,
Declarations)

Vectors (std::vector, push_
back(), a[n])

0(0 %)

0(0 %)

0(0 %)

2 (25 %)
0(0 %)

0(0 %)

0(0 %)

2 (25 %)
Recursion 5 (62,5 %)
4 (50 %)

Overloading (functions,

o
operators) 1125 %)

7 (87,5 %)
Pointers (&a, *ptr_a)

Thanks to Google froms for the illegible diagramm

25/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 900000 000000 [e]e]

Visualization byk.
| noticed many of the concepts some of you strug{e with might be hard to understand because you don'’t see how

the computer actually handles data. | hope the foflowing visualization can help you understand what we mean when
we talk about memory allocation. I

ik
a

o ()
[’ﬂ] (@lc| pel [

oxAzy Ox123 0x\1%
Ox.--

§
qkﬂ M ove 'o)
‘*\N. V\um\w °l’
kb\os fuatr el hdircomdk << xp)
R dickae, 7 .

we U&
So Mnke T elwrep AT 0T T e s

\ = Ny
wky ¢ = Loy

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 000 000000000 00 0@0000 000QO00

Pointers

n“.'w\

m We use pointers mainly to to keep track of dynamically
allocated memory (and to pose complicated exam
questions)

Misc
oo

27/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 000 000000000 00 0@0000 000000

Pointers

m We use pointers mainly to to keep track of dynamically
allocated memory (and to pose complicated exam
questions)

m Seriously, they really are just the memory-address of the
thing you let it point to

Misc
oo

27/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 000 000000000 00 0@0000 000000

Pointers

m We use pointers mainly to to keep track of dynamically
allocated memory (and to pose complicated exam
questions)

m Seriously, they really are just the memory-address of the
thing you let it point to

m When std: : cout-ing them, they usually look something
like this: 0xDB11E4 which is just a number in hexidecimal

_—

O12--90 .. ¢
t

=9

Misc
oo

27/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 000000 [e]e]

Pointers

How to actually use them: (

// allocatinW

int* a_ptr = &a;
// changing value

std::cout << *a_ptr << a <<Eio << std::endl;

« “’L @&Q =0xlL?
ya

28/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000e00 000000 [e]e]

Free Advice

m Make use of the summaries and the internet!

29/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 000 000000000 00 000e00 000000

Free Advice

m Make use of the summaries and the internet!

m At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file

Misc
oo

29/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000e00 000000 [e]e]

Free Advice

m Make use of the summaries and the internet!

m At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file

m Personal recommendation: CIEEETD (C*'\' \l\c,bos)

29/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000e00 000000 [e]e]

Free Advice

m Make use of the summaries and the internet!

m At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file

m Personal recommendation:
m Practice, Practice, Practice &

29/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 0000e0 000000 [e]e]

Summary on pointers

Zeiger (generell) Adresse eines Objekts im Speicher

Wichtige Befehle:

Definition: int* ptr = address_of_type_int;
(ohne Startwert: int* ptr = nullptr;)
Zugriff auf Zeiger: ptr = otr_ptr // Pointer gets new target.

Zugriff auf Target: #*ptr =5 // Target gets new value 5.
Adresse auslesen: int* ptr_to_a = &a; // (a is int-variable)
Vergleich: ptr == otr_ptr // Same target?

ptr != otr_ptr // Different targets?

(Anstatt int gehen natiirlich auch andere Typen.)
(Eine address_of _type_int kann man durch einen anderen Zeiger oder
auch mittels dem Adressoperator & erzeugen (siehe Beispiel unten).)

Der Wert des Zeigers ist die Speicheradresse des Targets. Will man also das
Target via diesen Zeiger veréindern, muss man zuerst “zu der Adresse gehen”.
Genau das macht der Dereferenz-Operator *.

Beispiel: (Gelte int a = 5;)

Wert von a: 5
Speicheradresse von a: 0x28fef8
Wert von a_ptr: 0x28fef8
Wert von *a_ptr: 5

Ein Zeiger kann immer nur auf den entsprechenden Typ zeigen.
(z.B. int* ptr = &a; Hier muss a Typ int haben.)

30/39

Questions?

31/39

Intro Iterators llvec::init M\ssmg Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 000000 @00000 [e]e]

Dynamic Data Types (new, detele)

m What are they even good for?

2A scope is usually whatever is inside {swirly brackets}
32/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 000 000000000 00 000000 @00000

Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

N's 72/4

Misc
oo

5}&:) ln‘< a = 5

2A scope is usually whatever is inside {swirly brackets}

32/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 ©00000 fole}

Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

2A scope is usually whatever is inside {swirly brackets}
32/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 @00000 [e]e]

Dynamic Data Types Nrode s £ =2

m What are they even good for? |

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

2A scope is usually whatever is inside {swirly brackets}
32/39

Intro lterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 [e]o]e} 000000000 (o]e} 000000 ®00000

Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

2A scope is usually whatever is inside {swirly brackets}

Misc
oo

32/39

Intro lterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 [e]o]e} 000000000 (o]e} 000000 ®00000

Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?
m Whenever we want an object to outlive its scope

2A scope is usually whatever is inside {swirly brackets}

Misc
oo

32/39

Intro lterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 [e]o]e} 000000000 (o]e} 000000 ®00000

Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

m Whenever we want an object to outlive its scope
m Whenever the task says we have to

2A scope is usually whatever is inside {swirly brackets}

Misc
oo

32/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 ©00000 fole}

Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

m Whenever we want an object to outlive its scope
m Whenever the task says we have to

m How to use them?

2A scope is usually whatever is inside {swirly brackets}
32/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 ©00000 fole}

Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

m Whenever we want an object to outlive its scope
m Whenever the task says we have to

m How to use them?
m With the keyword new

2A scope is usually whatever is inside {swirly brackets}
32/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 ©00000 fole}

Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

m Whenever we want an object to outlive its scope
m Whenever the task says we have to

m How to use them?

m With the keyword'new
m To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
32/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 0®0000 (e]e]

Dynamic Variables vs “normal” Variables

// "normglly" allocated variable
DO daar (W);

// accessing it chasae 0= NRW
(n}(=) 1,

d =(new: “vaQ
// accessing it new : “\'\QA) wake coom

*dE&1; pie Loc an lak "
1

‘:’s (':t:(tmu l \u// / /

“M/ Eynamically alloyéted variable
%‘ *

33/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 000 000000000 00 000000 00000

Dynamic Arrays
5 C}QVCD\'—) QL“‘-“’)

// dynamically g¥Tqcated array of variables

intx =

Ccessing and modifying

xd :®= 1337; // first int in array
/d 4] = 42; // last int in array

d\‘o-k = 1273

Misc
[e]e]

34/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 000e00 [e]e]

Summary on Dynamic Data Types

Objekt mit dynamischer Lebensdauer er-

new
stellen.

Mit new wird ein Objekt erstellt, indem der nétige Speicherplatz reserviert
wird, und dann ein gegebener Konstruktor aufgerufen wird.

Der Riickgabewert von new ist ein Pointer auf das neu erstellte Objekt.

Class My_Class {
public:
My Class (comst int i) : y (i) { std::cout << "Hello"; }QSCU _\“}No‘—u(
——> int get_y O { return y; }
private: -
int y; ke
s

Q'\ 2

My_Class* ptr = new My _Class (3); // outputs Hello
My_Class* ptr) =@tn; // another pointer to the new object
std::cout << Cxptr).get_y(); // Output: 3

\A—

35/39

Intro Iterators llvec::init M\ssmg Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 000000 0000 e0 [e]e]

Summary on Dynamlc Data Types (Awrys s)

) P

Ranges mit dynamischer Lebensdauer
und Linge erstellen.

int n; std::cin >> n;

int* range = new int[n];

// Read in values to the range

for (int* i = range; i < range + n; ++i) std::cin >> *i;

@ geckor 7N > gduvecter

r\)\ ‘ae,anr\L)
T \J. V. pash- ‘o%‘*ﬂ

“alol f

36/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 00000e (e]e]

Questions?

37/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 000000 [le]

Quick Answers

m L-value vs R-value

m Basically, if it has an address it's an L-value, otherwise it's
an R-value

38/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 000000 [le]

Quick Answers

m L-value vs R-value
m Basically, if it has an address it's an L-value, otherwise it's
an R-value
m In general, rvalues are temporary and short lived, while
Ivalues live a longer life since they exist as variables

38/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 000000 [le]

Quick Answers

m L-value vs R-value
m Basically, if it has an address it's an L-value, otherwise it's

an R-value
m In general, rvalues are temporary and short lived, while
Ivalues live a longer life since they exist as variables

m Article on that topic

38/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 000000 [le]

Quick Answers

m L-value vs R-value
m Basically, if it has an address it's an L-value, otherwise it's
an R-value
m In general, rvalues are temporary and short lived, while
Ivalues live a longer life since they exist as variables

m Article on that topic

m Floats
m Please revisit the lecture on that topic and the exercise
session notes

38/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 000000 [le}

Quick Answers

m L-value vs R-value
m Basically, if it has an address it's an L-value, otherwise it's

an R-value
m In general, rvalues are temporary and short lived, while
Ivalues live a longer life since they exist as variables

m Article on that topic

m Floats
m Please revisit the lecture on that topic and the exercise

session notes
m Website on that topi

38/39

Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000000 000000 oe

Post Exercise Session

.O‘D;\X«k{ - slale + belaviowr
—

Dadta Leatures,
ga\wed, fun chons,

. *-\‘o'\ﬁ.ll. H"s
eXc ,Qw)c. . be)

(. Qv\s\fu

39/39

