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Introduction

m Make sure you have the right handout
(Handout12_reupload.pdf). The first Handout has missing
slides

m All of the current tasks are running the newest version of
the autograder, so if you find any bugs (or typos) send us
an email!

m Same goes for the the current Bonus Exercise
m For current Bonus Exercise: max size of board will be set

to 16 by 16 (even in the hidden test), so the efficiency of
your solution is irrelevant

m |f you have any questions you can send me an e-mail at
any time and any day. Depending on the problem/question
it might take a while to give a good answer (this will still
apply even during the Lernphase, so make good use of it)
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Follow-up

Fhis—> ...

e

m Try the "Push Back” code example again, if you manage
that one, everything else will seem much easier
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Comments on last [code] expert Exercises

m Don’t forget to &-reference and const your function
parameters properly

m What are invariants?
m read_input-function in "Task 2a: Complex Numbers”

D
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Invariants

Invariants

An invariant is a logical assertion that is always held to be true
during a certain phase of execution.

For example, a loop invariant is a condition that is true at the
beginning and the end of every execution of a loop.

Invariants are allowed to vary, but only during a process and
then must be true again at the end of the process. This can be

very useful for proofs.
— \

—= // INV: >= 0 and/ﬁzisible by 57
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Task 2a: "Complex Numbers”: read input ()

// (Slightly altered) STUDENT SOLUTION

bool jgead_input(std::istream &in, Complex &a){
ool valid = true;
char bracketl, comma, bracket2;

—> in >5'§racket1‘> > qpﬁﬁa >> a.imaginary

>> braclfet2;

if (bracket1 != *€)]
5 tvalid = Talse:}

/’;gf(comma 1= 7 )4
valid = false;} > ’3 b
if (bracket2 != '1°){ =7 )
valid = false;}

return valid;

m—

N\
Crgfit: L.Z.
7/39




Intro Iterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000008000 000 000000000 00 000000 000000 [e]e]
Task 2a: "Complex Numbers”: read input ()
// (Strongly altered) STUDENT SOLUTION
bool read_input(std::istream &in, Complex &a){
char bracketl, comma, bracket2;
sSamge

in >> bracketl >> a.real >> comma >> a.imaginary
>> bracket?2;

bracket2=t= ’]’ && ){ )

return true,@——"
} else {

return false; &

}
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Task 2a: "Complex Numbers”: read input ()

| e .
/ MASTER SOLUTION

bo ::istream &in, Complex &a){
unsigned char c;
if( '@n>>c) Il c =0 A, sa L
|| '(in >> a.real) W Var C
[| '(in >> ¢) || ¢ '= 7,?
. frwn
1 0Gm 5 @) 1. e
Il 1¢n > ¢) [l ¢ t= 1" ){ 20
return false;} o
elseq{
return true;
} Lm>>c)
} —
v
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Questions or Comments re: Exercises?
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Learning Objectives Checklist

Now I...
O can use lterators for different kinds of containers
O can implement a simple container (&—
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lterators

MLl

|

rs are a handy way of going through (= iterating over)
: :set) std: :vector, or any other kind of container

m They work very similarly to pointers, so you can use code
like ++it to "move them forward” and *it to access the
underlying data

m It helps to think of them as fancy pointers
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Iterators in Code (std: :vector)
\od L vechor? ryvetyve)
eonb.ad

P —— Y
std: :vector<int) cont = {8,3,1,%,6,9};

for (std::vector<int>::iterator it = (cont.begin(J3
. RECTTON ( 3 )
_3it !'= cont.end(); €mm—

++it) {

std::cout << *it << " ";
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Iterators in Code (std: :set)

std::set<int> cont = {8,3,1,4,6,9};
—_—

for (std:: ®erbr<int>::iterator it = cont.begin();
it != cont.end(); .

++it) {

std::cout << *it <<

14/39
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Exercise ”’11vec::init”
Description

The files vector_linkedlist.h and vector_linkedlist.cpp
contain a simplified version of the llvec-vector from the lecture
slides. Implement the constructor that initializes the vector with
all elements from the iterator.

Hints:
How can you add the first element from the iterator?
How can you add any other element from the iterator?

Personal Hint

Don’t "waste” too much time trying to figure out how exactly the
other member functions have been implemented. Just read the
PRE/POSTs and comments and don’t get confused trying to
decipher the actual implementations.

15/39



Intro lterators 1llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 0e0000000 00 000000 000000 [e]e]

Exercise ’11vec::init”

9

Simpler Description

Implement the constructor 11vec :llvec(begi@
e

This constructor initializes a new 11vec and inserts the values
that are in a different 11vec between begin and end.
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Inside the 11vec-class: Basics
{1,4,\. 3

[ECCAN
struct llnode { vale uexk

[ﬁfmliiuiéxt; \W L | Uledal

- \%/ =

. L‘)Q. l'\()
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Inside the 11vec-class: const_iterator class

class const_iterator {

const llnode* node; 7(("““)’?‘) ‘,_J—-(‘ )
__spublic— 1 }

—sconst_iterator(const llnode* const n);
// PRE: Iterator does not point to the element
beyond the last one. )
// POST: Iterator points to the next element. *"hk}
const_ iterator& operator++() // Pre-increment
POST: Retu’n the reference to the number at
which the iterator is currently pointing.
const int& operator*() const;
rue 1I 1terators are pointing to different
elements.
bool operator!=(const const_iterator& other) const;
// True if iterators are pointing to the same
element.
bool operator==(const const_iterator& other) const;
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Inside the 11vec-class: Member Functions

// Default Constructor
1lvec();

// PRE: begin and end are iterators pointing to the
same vector and begin is before end.

// POST: The constructed llvec contains all elements
between begin and end.

llvec(const_iterator begin, const_iterator end);

/<7/ POST: e is prepended to the vector.

void push_front(int e);

// POST: Returns an iterator that points to the first
element.

— const_iteratof beéin(} xonst;

// POST: Returns an iterator that points after the
last element.

const_iterator end() const;

Misc
[e]e]
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Visualization of 11vec

* ({node”

\_L- @/@ nnll pre

/ (ser
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Conceptual Solution for ’11vec: :init”
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”1lvec: :init” Solution

llvec::1lvec(llvec: :const_iterator begin,
llvec::const_iterator end) {
this->head = nullptr;
if (begin == end) {
return;

}

llvec::const_iterator it = begin;
// Let’s add the first element from the iterator.
this->head = new llnode{*it, nullptr};
++it;
llnode* current_node = this->head;
// Let’s add all the remaining elements.
while(it !'= end){
current_node->next = new llnode{*it, nullptr};
current_node = current_node->next;
++it;
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Exercise ’11vec::init”

Task

Do this exercise on your own this evening and try to visualize
your solution
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Introduction

You’re not expected to master recursion, pointers and
datastructures (yet), so don’t panic!

You will understand stuff better the more you (try to) use it.’

'I know this sounds paradoxical, but there really is no better teacher than

good ol’ Mr. Practice
24/39
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Survey Results

Which of these topics (keywords) would you like to revisit in the next exercise session?
(Select all that you would like to revisit)

8 Antworten

neyger ANuimeuc dnu s
limitations

Control Flow (for(), while(),
break, re...

Functions (Definitions,
Declarations)

Vectors (std::vector, push_
back(), a[n])

0(0 %)

0(0 %)

0(0 %)

2 (25 %)
0(0 %)

0(0 %)

0(0 %)

2 (25 %)
Recursion 5 (62,5 %)
4 (50 %)

Overloading (functions,

o
operators) 1125 %)

7 (87,5 %)
Pointers (&a, *ptr_a)

Thanks to Google froms for the illegible diagramm
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Visualization byk.
| noticed many of the concepts some of you strug{e with might be hard to understand because you don'’t see how

the computer actually handles data. | hope the foflowing visualization can help you understand what we mean when
we talk about memory allocation. I
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Pointers

n“.'w\

m We use pointers mainly to to keep track of dynamically
allocated memory (and to pose complicated exam
questions)

Misc
oo
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Pointers

m We use pointers mainly to to keep track of dynamically
allocated memory (and to pose complicated exam
questions)

m Seriously, they really are just the memory-address of the
thing you let it point to
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Pointers

m We use pointers mainly to to keep track of dynamically
allocated memory (and to pose complicated exam
questions)

m Seriously, they really are just the memory-address of the
thing you let it point to

m When std: : cout-ing them, they usually look something
like this: 0xDB11E4 which is just a number in hexidecimal

_—

O12--90 .. ¢
t

=9
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Pointers

How to actually use them: (

// allocatinW

int* a_ptr = &a;
// changing value

std::cout << *a_ptr << a <<Eio << std::endl;

« “’L @&Q =0xlL?
ya
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Free Advice

m Make use of the summaries and the internet!

29/39



Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types
0000000000 000 000000000 00 000e00 000000

Free Advice

m Make use of the summaries and the internet!

m At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file

Misc
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29/39



Intro Iterators llvec::init Missing Knowledge Pointers Dynamic Data Types Misc
0000000000 000 000000000 00 000e00 000000 [e]e]

Free Advice

m Make use of the summaries and the internet!

m At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file

m Personal recommendation: CIEEETD (C*'\' \l\c,bos)
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Free Advice

m Make use of the summaries and the internet!

m At the end of the semester (when all summaries are
published), save them all into one large PDF and if you
stumble upon something you don’t understand yet, just
search it in this file

m Personal recommendation:
m Practice, Practice, Practice &
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Summary on pointers

Zeiger (generell) Adresse eines Objekts im Speicher

Wichtige Befehle:

Definition: int* ptr = address_of_type_int;
(ohne Startwert: int* ptr = nullptr;)
Zugriff auf Zeiger: ptr = otr_ptr // Pointer gets new target.

Zugriff auf Target: #*ptr =5 // Target gets new value 5.
Adresse auslesen: int* ptr_to_a = &a; // (a is int-variable)
Vergleich: ptr == otr_ptr // Same target?

ptr != otr_ptr // Different targets?

(Anstatt int gehen natiirlich auch andere Typen.)
(Eine address_of _type_int kann man durch einen anderen Zeiger oder
auch mittels dem Adressoperator & erzeugen (siehe Beispiel unten).)

Der Wert des Zeigers ist die Speicheradresse des Targets. Will man also das
Target via diesen Zeiger veréindern, muss man zuerst “zu der Adresse gehen”.
Genau das macht der Dereferenz-Operator *.

Beispiel: (Gelte int a = 5;)

Wert von a: 5
Speicheradresse von a: 0x28fef8
Wert von a_ptr: 0x28fef8
Wert von *a_ptr: 5

Ein Zeiger kann immer nur auf den entsprechenden Typ zeigen.
(z.B. int* ptr = &a; Hier muss a Typ int haben.)
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Dynamic Data Types (new, detele)

m What are they even good for?

2A scope is usually whatever is inside {swirly brackets}
32/39
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Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

N's 72/4

Misc
oo

5}&:) ln‘< a = 5

2A scope is usually whatever is inside {swirly brackets}
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Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

2A scope is usually whatever is inside {swirly brackets}
32/39
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Dynamic Data Types Nrode s £ =2

m What are they even good for? |

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

2A scope is usually whatever is inside {swirly brackets}
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Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

2A scope is usually whatever is inside {swirly brackets}
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Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?
m Whenever we want an object to outlive its scope

2A scope is usually whatever is inside {swirly brackets}
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Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

m Whenever we want an object to outlive its scope
m Whenever the task says we have to

2A scope is usually whatever is inside {swirly brackets}
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Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

m Whenever we want an object to outlive its scope
m Whenever the task says we have to

m How to use them?

2A scope is usually whatever is inside {swirly brackets}
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Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

m Whenever we want an object to outlive its scope
m Whenever the task says we have to

m How to use them?
m With the keyword new

2A scope is usually whatever is inside {swirly brackets}
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Dynamic Data Types

m What are they even good for?

m Dynamically allocated memory is used when we want to
create things that last outside of their initial scope?®

m "Normal” variables get deconstructed (= deleted) when the
scope in which they were created in ends. A function is also
a scope, so every variable that is created inside a function
will get deleted if it wasn’t allocated dynamically

m You have to know how to handle pointers in order to use
dynamically allocated data

m When to use them?

m Whenever we want an object to outlive its scope
m Whenever the task says we have to

m How to use them?

m With the keyword'new
m To each new a delete! (more on that later)

2A scope is usually whatever is inside {swirly brackets}
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Dynamic Variables vs “normal” Variables

// "normglly" allocated variable
DO daar (W);

// accessing it chasae 0= NRW
( n}(=) 1,

d =(new: “vaQ
// accessing it new : “\'\QA ) wake coom

*dE&1; pie Loc an lak "
1

‘:’s (':t:(tmu l \u// / /

“M/ Eynamically alloyéted variable
%‘ *
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Dynamic Arrays
5 C}QVCD\'—) QL“‘-“’)

// dynamically g¥Tqcated array of variables

intx =

Ccessing and modifying

xd :®= 1337; // first int in array
/d 4] = 42; // last int in array

d\‘o-k = 1273

Misc
[e]e]
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Summary on Dynamic Data Types

Objekt mit dynamischer Lebensdauer er-

new
stellen.

Mit new wird ein Objekt erstellt, indem der nétige Speicherplatz reserviert
wird, und dann ein gegebener Konstruktor aufgerufen wird.

Der Riickgabewert von new ist ein Pointer auf das neu erstellte Objekt.

Class My_Class {
public:
My Class (comst int i) : y (i) { std::cout << "Hello"; }QSCU _\“}No‘—u(
——> int get_y O { return y; }
private: -
int y; ke
s

Q'\ 2

My_Class* ptr = new My _Class (3); // outputs Hello
My_Class* ptr) =@tn; // another pointer to the new object
std::cout << Cxptr).get_y(); // Output: 3

\A—
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Summary on Dynamlc Data Types (Awrys s)

) P

Ranges mit dynamischer Lebensdauer
und Linge erstellen.

int n; std::cin >> n;

int* range = new int[n];

// Read in values to the range

for (int* i = range; i < range + n; ++i) std::cin >> *i;

@ geckor 7N > gduvecter

r\)\ ‘ae,anr\L)
T \J. V. pash- ‘o%‘*ﬂ

“alol f
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Questions?
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Quick Answers

m L-value vs R-value

m Basically, if it has an address it's an L-value, otherwise it's
an R-value
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Quick Answers

m L-value vs R-value
m Basically, if it has an address it's an L-value, otherwise it's
an R-value
m In general, rvalues are temporary and short lived, while
Ivalues live a longer life since they exist as variables
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Quick Answers

m L-value vs R-value
m Basically, if it has an address it's an L-value, otherwise it's

an R-value
m In general, rvalues are temporary and short lived, while
Ivalues live a longer life since they exist as variables

m Article on that topic
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Quick Answers

m L-value vs R-value
m Basically, if it has an address it's an L-value, otherwise it's
an R-value
m In general, rvalues are temporary and short lived, while
Ivalues live a longer life since they exist as variables

m Article on that topic

m Floats
m Please revisit the lecture on that topic and the exercise
session notes
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Quick Answers

m L-value vs R-value
m Basically, if it has an address it's an L-value, otherwise it's

an R-value
m In general, rvalues are temporary and short lived, while
Ivalues live a longer life since they exist as variables

m Article on that topic

m Floats
m Please revisit the lecture on that topic and the exercise

session notes
m Website on that topi
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Post Exercise Session
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