Exercise Session W08
Computer Science (CSE & CBB & Statistics) — AS 23

Overview

Today's Agenda

Follow-up

Objectives
Multidimensional Vectors
Recursion

Outro

n.ethz.ch/~agavranovic

1. Follow-up

Follow-up

m Thank you all for the overwhelmingly positive Feedback!

m If there’s still something you want to tell me, feel free to send me an
email (with a throwaway address if you want to stay anonymous)

Questions?

2. Objectives

Objectives

(] be able to write programs using multidimensional vectors
[J be able to understand and write programs using recursion

3. Multidimensional Vectors

What are Multidimensional Vectors?

Multidimensional vectors are Matrices'

Tthey're actually vectors of vectors!

Exercise "Matrix Transpose"

m Open "Matrix Transpose" on code expert

.
;) i _ [1 3 5]
5 6 2 46

m Think about how you would approach the problem with pen and paper

m Simplification of the syntax:
using irow = std::vector<int>;
using imatrix = std::vector<irow>;
m Implement a solution (optionally in groups)

Solution to "Matrix Transpose"

imatrix transpose_matrix(const imatrix &matrix){
unsigned int r, c;
r = get_rows(matrix); // number of rows
c = get_cols(matrix); // number of columns
imatrix transposed_matrix; // init' transp. matrix
for(unsigned int col_i = 0; col_i < c; col_i++){
irow row; // init' transp. row
// entry-wise add transp. row to transp. matrix
for(unsigned int row_i = 0; row_i < r; row_i++){
row.push_back(matrix.at(row_i).at(col_i));
}
transposed_matrix.push_back(row) ;

}

return transposed_matrix;

Questions?

4, Recursion

What is Recursion?

Recursion
often helpful when solving problems using the divide and

conquer-approach
We want to solve a problem forn
1. Find a way to split the problem into smaller subproblems:
ko,l{fl,...,k‘m (Vnggmkl<n)
2. Solve every k; independently (perhaps by subdividing further)
3. Construct the solution to the problem from the solutions to the
subproblems

Example of Recursion

We want to write a function with the following PRE and POSTs

//
//
//
//
//
//
//
//
//
//
//

PRE:

POST:

a positive integer n

returns the n-th number of a series x_n, defined as

Example:

* n
* n
* n

x_n =2, forn =1
xn=1, for n = 2
x_n = x_(n-1) + x_(n-2), for n > 2

1 ~~> 2

2 ~~> 1

3 ~~>3

Example of Recursion

// PRE: a positive integer n

//
// POST: returns the n-th number of a serie x_n, defined as
// Xx_n = 2, forn =1
// xn =1, for n = 2
// x.n = x_(n-1) + x_(n-2), for n > 2
unsigned int compute_element(unsigned int n) {
if (n == 1) return 2;
else if (n == 2) return 1;

else return compute_element(n-1) + compute_element(n-2);

}

Video Recommendations

Especially try to follow the concept of the Recursive Leap of Faith. It is
comparable to the induction hypothesis in an induction proof in maths.

Videos on recursion

[> Towers of Hanoi: A Complete Recursive Visualization
| I » 5 Simple Steps for Solving Any Recursive Problem

16

https://www.youtube.com/watch?v=rf6uf3jNjbo
https://www.youtube.com/watch?v=ngCos392W4w

Exercise "Partial Sum"

Task
Write a function that

1. Computes the sum of all natural numbers below (and equal to) n using
recursion and returns this value

2. Outputs all the added terms in ascending order (from 0 to n to the
console in the same recursive function)

Exercise "Partial Sum"

m Open "Partial Sum" on code expert
m Think about how you would approach the problem with pen and paper
m Implement a (recursive) solution (optionally in groups)

Solution to "Partial Sum"

unsigned int partial_sum(const unsigned int n) {
if (n == 0){
return 0;
} else {
// print descending
unsigned int partial = partial_sum(n - 1);

// print ascending
std::cout << n << std::endl;

return n + partial;

Solution to "Partial Sum"

int main() {
std::cout << "n = ";

unsigned int n;
std::cin >> n;

std::cout << partial_sum(n) << std::endl;

return O;

20

Questions?

21

Exercise "Power Function"

Question
How many recursive calls does the following function need to compute z7?

unsigned int power(const unsigned int x, const unsigned int n) {

if (n == 0){
return 1;

} else if (n ==1) {
return Xx;

}

return x * power(x, n - 1);

Answer:7

22

Exercise "Power Function"

Task
Write a function that requires significantly less recursive calls for larger n.

How many recursive calls does your implementation require?

23

Exercise "Power Function"

m Open "Power Function" on code expert
m Think about how you would approach the problem with pen and paper
m Implement a (recursive) solution (optionally in groups)

m Hint: This task is a generalization of the task "Multiply with 29" from the
first week

24

Solution to "Power Function"

// POST: result == x"n
unsigned int power (const unsigned int x, const unsigned int n) {
if(n == 0) {
return 1;

} else if(n == 1) {
return x;

} else if(n % 2 == 0) {
int temp = power(x, n/2);
return temp * temp;

} else {
return x * power(x, n-1);

Questions?

26

5. Qutro

General things regarding code expert

E8:T1: "Vector and matrix operations"

m The task can seem very daunting. Keep an overview over all the

different possible cases (perhaps using sketches) and try to implement
separate functions for the operations.

m Use using to make the program clearer
m Don't forget // comments &references, and const!

28

General Questions?

29

Till next time!

Cheers!

30

	Follow-up
	Objectives
	Multidimensional Vectors
	Recursion
	Outro

