
Exercise Session W13
Computer Science (CSE & CBB & Statistics) – AS 23

Overview

Today’s Agenda
Follow-up
Objectives
Pointers
Exercise "Push Back"
Memory Management
Outro n.ethz.ch/~agavranovic

1

1. Follow-up

2

Follow-up from previous exercise sessions

I messed up the Plan: The recap will be next week!
Feel free to send me an email with your questions

3

Follow-up from previous exercise sessions

I messed up the Plan: The recap will be next week!

Feel free to send me an email with your questions

3

Follow-up from previous exercise sessions

I messed up the Plan: The recap will be next week!
Feel free to send me an email with your questions

3

2. Objectives

4

Objectives

⇤ Understand the di�erence between new / delete and new[] /
delete[]

⇤ Be able to trace programs that use pointer arithmetic
⇤ Be able to write programs that use pointer arithmetic

5

3. Pointers

6

new vs new[]

new T allocates one space in memory for the specified type

new T[n] allocates n spaces in memory for the specified type1
Both return a pointer which points to the (first) element of the range

Example
int my_arr[5] = {2, 3, 8, -1, 3};

my_arr now points to the 2
*my_arr returns 2
my_arr[2] returns 8

1this memory will be contiguous, i.e. "next to each other in memory"
7

new vs new[]

new T allocates one space in memory for the specified type
new T[n] allocates n spaces in memory for the specified type1

Both return a pointer which points to the (first) element of the range
Example
int my_arr[5] = {2, 3, 8, -1, 3};

my_arr now points to the 2
*my_arr returns 2
my_arr[2] returns 8

1this memory will be contiguous, i.e. "next to each other in memory"
7

new vs new[]

new T allocates one space in memory for the specified type
new T[n] allocates n spaces in memory for the specified type1
Both return a pointer which points to the (first) element of the range

Example
int my_arr[5] = {2, 3, 8, -1, 3};

my_arr now points to the 2
*my_arr returns 2
my_arr[2] returns 8

1this memory will be contiguous, i.e. "next to each other in memory"
7

new vs new[]

new T allocates one space in memory for the specified type
new T[n] allocates n spaces in memory for the specified type1
Both return a pointer which points to the (first) element of the range

Example
int my_arr[5] = {2, 3, 8, -1, 3};

my_arr now points to the 2
*my_arr returns 2
my_arr[2] returns 8

1this memory will be contiguous, i.e. "next to each other in memory"
7

new vs new[]

new T allocates one space in memory for the specified type
new T[n] allocates n spaces in memory for the specified type1
Both return a pointer which points to the (first) element of the range

Example
int my_arr[5] = {2, 3, 8, -1, 3};

my_arr now points to the

2
*my_arr returns 2
my_arr[2] returns 8

1this memory will be contiguous, i.e. "next to each other in memory"
7

new vs new[]

new T allocates one space in memory for the specified type
new T[n] allocates n spaces in memory for the specified type1
Both return a pointer which points to the (first) element of the range

Example
int my_arr[5] = {2, 3, 8, -1, 3};

my_arr now points to the 2
*my_arr returns

2
my_arr[2] returns 8

1this memory will be contiguous, i.e. "next to each other in memory"
7

new vs new[]

new T allocates one space in memory for the specified type
new T[n] allocates n spaces in memory for the specified type1
Both return a pointer which points to the (first) element of the range

Example
int my_arr[5] = {2, 3, 8, -1, 3};

my_arr now points to the 2
*my_arr returns 2
my_arr[2] returns

8

1this memory will be contiguous, i.e. "next to each other in memory"
7

new vs new[]

new T allocates one space in memory for the specified type
new T[n] allocates n spaces in memory for the specified type1
Both return a pointer which points to the (first) element of the range

Example
int my_arr[5] = {2, 3, 8, -1, 3};

my_arr now points to the 2
*my_arr returns 2
my_arr[2] returns 8

1this memory will be contiguous, i.e. "next to each other in memory"
7

delete vs delete[]

We remember:

every new needs a delete

delete[] is the corresponding operator to new[]

Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing
Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

8

delete vs delete[]

We remember: every new needs a delete

delete[] is the corresponding operator to new[]

Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing
Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

8

delete vs delete[]

We remember: every new needs a delete

delete[] is the corresponding operator to new[]

Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing
Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

8

delete vs delete[]

We remember: every new needs a delete

delete[] is the corresponding operator to new[]

Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing

Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

8

delete vs delete[]

We remember: every new needs a delete

delete[] is the corresponding operator to new[]

Be aware: We do not delete the pointer but the range of objects to
which the pointer is pointing
Common source of bugs
Calling delete on the first element but not the entire array (with
delete[])

8

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3 ptr - 3

Permanent shifts
ptr++ --ptr ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2

Compare positions
ptr_1 < ptr_2

ptr_1 != ptr_2

9

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3 ptr - 3

Permanent shifts
ptr++ --ptr ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2

Compare positions
ptr_1 < ptr_2

ptr_1 != ptr_2

9

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3 ptr - 3

Permanent shifts
ptr++ --ptr ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2

Compare positions
ptr_1 < ptr_2

ptr_1 != ptr_2

9

3 + 2

a + = 2

s99

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3 ptr - 3

Permanent shifts
ptr++ --ptr ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2

Compare positions
ptr_1 < ptr_2

ptr_1 != ptr_2

9

Pointer Arithmetic

We can do "pointer math"
The most important instructions are:

Temporary shifts
ptr + 3 ptr - 3

Permanent shifts
ptr++ --ptr ptr += 2

Determine distance between
pointers
ptr_1 - ptr_2

Compare positions
ptr_1 < ptr_2

ptr_1 != ptr_2

9

Questions?

10

3 -8 1 5 -3 4 1 7 2

Pointer Program

1

int* a = new int[5]{0, 8, 7, 2, -1};
int* ptr = a; // pointer assignment
++ptr; // shift to the right
int my_int = *ptr; // read target
ptr += 2; // shift by 2 elements
*ptr = 18; // overwrite target
int* past = a+5;
std::cout << (ptr < past) << "\n"; // compare pointers

1-6

Pointer Program

Find and fix at least 3 problems in the following
program.

(From: Script Exercise 117) 2

#include <iostream>
int main () {

int* a = new int[7]{0, 6, 5, 3, 2, 4, 1};
int* b = new int[7];
int* c = b;
// copy a into b using pointers
for (int* p = a; p <= a+7; ++p) {

*c++ = *p;
}
// cross-check with random access
for (int i = 0; i <= 7; ++i) {

if (a[i] != c[i]) {
std::cout << "Oops, copy error...\n";

}
}
return 0;

}

Pointer Program

(From: Script Exercise 117) 3

#include <iostream>
int main () {

int* a = new int[7]{0, 6, 5, 3, 2, 4, 1};
int* b = new int[7];
int* c = b;
// copy a into b using pointers
for (int* p = a; p <= a+7; ++p) {

*c++ = *p;
}
// cross-check with random access
for (int i = 0; i <= 7; ++i) {

if (a[i] != c[i]) {
std::cout << "Oops, copy error...\n";

}
}
return 0;

}

p = a+7 is dereferenced

Solution:
Use < instead of <=

Pointer Program

(From: Script Exercise 117) 4

#include <iostream>
int main () {

int* a = new int[7]{0, 6, 5, 3, 2, 4, 1};
int* b = new int[7];
int* c = b;
// copy a into b using pointers
for (int* p = a; p <= a+7; ++p) {

*c++ = *p;
}
// cross-check with random access
for (int i = 0; i <= 7; ++i) {

if (a[i] != c[i]) {
std::cout << "Oops, copy error...\n";

}
}
return 0;

}

p = a+7 is dereferenced

Solution:
Use < instead of <=

Same problem as
above

Pointer Program

(From: Script Exercise 117) 5

#include <iostream>
int main () {

int* a = new int[7]{0, 6, 5, 3, 2, 4, 1};
int* b = new int[7];
int* c = b;
// copy a into b using pointers
for (int* p = a; p <= a+7; ++p) {

*c++ = *p;
}
// cross-check with random access
for (int i = 0; i <= 7; ++i) {

if (a[i] != c[i]) {
std::cout << "Oops, copy error...\n";

}
}
return 0;

}

Same problem as
above

c doesn’t point to b[0]
anymore.

Solution:
Use b instead of c

p = a+7 is dereferenced

Solution:
Use < instead of <=

Exercise – Applying Pointers

Exercise – Applying Pointers
// PRE: [b, e) and [o, o+(e-b)) are disjoint
// valid ranges
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

(From: Script Exercise 113)

1

Exercise – Applying Pointers

Now determine a POST-condition for the function.

// PRE: [b, e) and [o, o+(e-b)) are disjoint
// valid ranges
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

(From: Script Exercise 113) 2

Exercise – Applying Pointers

// PRE: [b, e) and [o, o+(e-b)) are disjoint
// valid ranges
// POST: The range [b, e) is copied in reverse
// order into the range [o, o+(e-b))
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

(From: Script Exercise 113) 3

Exercise – Valid Inputs

Exercise – Valid Inputs

• Which of these inputs are valid?

(From: Script Exercise 113)

int* a = new int[5];
// Initialise a.
a) f(a, a+5, a+5);
b) f(a, a+2, a+3);
c) f(a, a+3, a+2);

// PRE: [b, e) and [o, o+(e-b)) are disjoint
// valid ranges
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

4

int* a = new int[5];
// Initialise a.
a) f(a, a+5, a+5);
b) f(a, a+2, a+3);
c) f(a, a+3, a+2);

Exercise – Valid Inputs

• Which of these inputs are valid?

(From: Script Exercise 113)

[o,o+(e-b))
is out of bounds

// PRE: [b, e) and [o, o+(e-b)) are disjoint
// valid ranges
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

5

int* a = new int[5];
// Initialise a.
a) f(a, a+5, a+5);
b) f(a, a+2, a+3);
c) f(a, a+3, a+2);

Exercise – Valid Inputs

• Which of these inputs are valid?

(From: Script Exercise 113)

// PRE: [b, e) and [o, o+(e-b)) are disjoint
// valid ranges
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

[o,o+(e-b))
is out of bounds

6

int* a = new int[5];
// Initialise a.
a) f(a, a+5, a+5);
b) f(a, a+2, a+3);
c) f(a, a+3, a+2);

// PRE: [b, e) and [o, o+(e-b)) are disjoint
// valid ranges
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

Exercise – Valid Inputs

• Which of these inputs are valid?

(From: Script Exercise 113)

Ranges not
disjoint

[o,o+(e-b))
is out of bounds

7

Questions?

11

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to target a

i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to pointer ptr

i.e. we are not allowed to change to
where the pointer points

12

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to target a

i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to pointer ptr

i.e. we are not allowed to change to
where the pointer points

12

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to target a

i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to pointer ptr

i.e. we are not allowed to change to
where the pointer points

12

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to target a

i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to pointer ptr

i.e. we are not allowed to change to
where the pointer points

12

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to target a

i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to pointer ptr

i.e. we are not allowed to change to
where the pointer points

12

Pointer Costness

There are two kinds of constness of pointers:

const int* ptr = &a;

no write-access to target a

i.e. we are not allowed to change
the value of the integer a

int* const ptr = &a;

no write-access to pointer ptr

i.e. we are not allowed to change to
where the pointer points

12

-
const

i

Exercise – const Correctness

Exercise – const Correctness

• Make the function const-correct.

(From: Script Exercise 113)

// PRE: [b, e) and [o, o+(e-b)) are disjoint
// valid ranges
void f (int* b, int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

8

Exercise – const Correctness

• Make the function const-correct.

(From: Script Exercise 113)

// PRE: [b, e) and [o, o+(e-b)) are disjoint
// valid ranges
void f (const int* const b, const int* e, int* o) {

while (b != e) {
--e;
*o = *e;
++o;

}
}

9

Questions?

13

4. Exercise "Push Back"

14

Exercise "Push Back"

Open "Push Back" on code expert

Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

15

Exercise "Push Back"

Open "Push Back" on code expert
Think about how you would approach the problem with pen and paper

Implement a solution (optionally in groups)

15

Exercise "Push Back"

Open "Push Back" on code expert
Think about how you would approach the problem with pen and paper
Implement a solution (optionally in groups)

15

Solution "Push Back"

// PRE: source_begin points to first element to be copied.

// PRE: source_ends points to element after the last element to be copied.

// PRE: destination_begin points to first element of target memory block

// PRE: #elements in target memory location >= #elements in source

// POST: copies the content of the source memory block to the destination

// memory block.

void copy_range(const int* const source_begin,

const int* const source_end,

int* const destination_begin){

int* dst = destination_begin;

for (const int* src = source_begin; src != source_end; ++src) {

*dst = *src;

++dst;

}

}
16

Solution "Push Back"

// POST: this contains the same sequence as before with the

// new_element appended at the end.

void our_vector::push_back(int new_element){

int* const new_elements = new int[this->count + 1];

copy_range(this->elements, this->elements + this->count, new_elements);

delete[] this->elements;

new_elements[this->count] = new_element;

this->count++;

this->elements = new_elements;

}

17

Questions?

18

Studenten sagen Professor mit
Inserat Danke

Eine Gruppe ETH-Studenten will
sich bei einem ihrer Professoren
bedanken. Dafür kauft sie eine
ganze 20-Minuten-Seite. Auf das
ungewöhnliche Geschenk reagiert
der Lehrer sichtlich gerührt.

«Wir wollten die Seite unbedingt
kaufen, um uns bei einem unserer
Professoren für seinen Einsatz zu
bedanken», sagt Zibung.
Tatsächlich schaffte es einer der
Studenten, der erste von 4000
Teilnehmern zu sein, die in den
ersten drei Sekunden nach
Aktionsstart den Sofortkaufen-
Button auf Ricardo drückten.
Somit gehörte die Seite der
Studentengruppe.

5. Memory Management

19

Find mistakes in the following code and suggest fixes:

1 // PRE: len is the length of the memory block that starts at array

2 void test1(int* array, int len) {

3 int* fourth = array + 3;

4 if (len > 3) {

5 std::cout << *fourth << std::endl;

6 }

7 for (int* p = array; p != array + len; ++p) {

8 std::cout << *p << std::endl;

9 }

10 }

1

Find mistakes in the following code and suggest fixes:

1 // PRE: len is the length of the memory block that starts at array

2 void test1(int* array, int len) {

3 //int* fourth = array + 3; // ERROR

4 if (len > 3) {

5 int* fourth = array + 3; // OK

6 std::cout << *fourth << std::endl;

7 }

8 for (int* p = array; p != array + len; ++p) {

9 std::cout << *p << std::endl;

10 }

11 }

Even if the pointer is not dereferenced, it must point into a memory block or to the
element just after its end.

2

Find mistakes in the following code and suggest fixes:

1 // PRE: len >= 2

2 int* fib(unsigned int len) {

3 int* array = new int[len];

4 array[0] = 0; array[1] = 1;

5 for (int* p = array+2; p < array + len; ++p) {

6 *p = *(p-2) + *(p-1); }

7 return array; }

8 void print(int* array, int len) {

9 for (int* p = array+2; p < array + len; ++p) {

10 std::cout << *p << " ";

11 }

12 }

13 void test2(unsigned int len) {

14 int* array = fib(len);

15 print(array, len);

16 }
3

-
.....

"

01 2

I ↑
* P

E ar+2

error from before?

1 // PRE: len >= 2

2 int* fib(unsigned int len) {

3 int* array = new int[len];

4 array[0] = 0; array[1] = 1;

5 for (int* p = array+2; p < array + len; ++p) {

6 *p = *(p-2) + *(p-1); }

7 return array; }

8 void print(int* array, int len) {

9 for (int* p = array+2; p < array + len; ++p) {

10 std::cout << *p << " ";

11 }

12 }

13 void test2(unsigned int len) {

14 int* array = fib(len);

15 print(array, len);

16 } // array is leaked; to fix add: delete[] array

4

Find mistakes in the following code and suggest fixes:

1 // PRE: len >= 2

2 int* fib(unsigned int len) {

3 // ...

4 }

5 void print(int* m, int len) {

6 for (int* p = m+2; p < m + len; ++p) {

7 std::cout << *p << " ";

8 }

9 delete m;

10 }

11 void test2(unsigned int len) {

12 int* array = fib(len);

13 print(array, len);

14 delete[] array;

15 }

5

1 // PRE: len >= 2

2 int* fib(unsigned int len) {

3 // ...

4 }

5 void print(int* m, int len) {

6 for (int* p = m+2; p < m + len; ++p) {

7 std::cout << *p << " ";

8 }

9 delete m; // should be delete[]

10 }

11 void test2(unsigned int len) {

12 int* array = fib(len);

13 print(array, len);

14 delete[] array; // array deallocated twice

15 }

6

Questions?

20

6. Outro

21

General Questions?

22

Till next time!

Cheers!

23

